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Abstract

In the linguistics literature, the derivation of scalar implicatures has often been
handled in a relatively modular way, using computations that are sensitive to log-
ical relations among alternatives such as entailment but are blind to other notions
such as the probabilities that participants in a conversation might associate with
these alternatives (or with related propositions). In recent years, a family of models
that we refer to as iterated rationality models (IRMs) have offered an interestingly
different perspective on such alternative-sensitive processes in terms of multiple
iterations of probabilistic reasoning. Our paper attempts to identify and disentan-
gle some of the central assumptions that are bundled within IRMs in the literature
in order to better understand the predictions and maneuver space of such models
and to facilitate their comparison with more traditional approaches. We focus in
particular on an argument for probabilities made in Franke 2011 and some of the
intricacies it involves. We conclude that the argument is not only compatible with
a modular perspective on the computation of SIs, but in fact is crucially dependent
on it.

1 Introduction
Work on Scalar Implicatures (SIs) has grown significantly over the past fifteen years,
leading to new empirical generalizations and a rich body of competing theoretical per-
spectives. Under one family of proposals, SIs result from pragmatic strengthening of
weak logical representations (the pragmatic approach, as outlined in Grice 1975 and
developed further in Horn 1972 and much later work). Under another family of pro-
posals, SIs are logical entailments of enriched grammatical representations (the gram-
matical approach; see Chierchia 2004, Fox 2007 and Chierchia et al. 2012), often using
a covert operator, notated as Exh, that is akin to ‘only’ in its semantics and that derives
SIs in much the same way that ‘only’ derives its entailments. An obvious concep-
tual argument in favor of the pragmatic approach is that it does not require the formal
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mechanisms of grammatical enrichment.1 On the other hand, it has been argued that
the grammatical approach allows for a more principled theory of pragmatic reason-
ing (see Fox 2007, 2014). This conceptual impasse motivates the search for empirical
considerations that might distinguish the two approaches.

1.1 Modularity and probability
One relevant consideration pertains to modularity. If the pragmatic approach is correct,
one would expect the computation of SIs to be sensitive, at least in principle, to any
type of information that is available to participants in a conversation. If the grammat-
ical approach is correct, the computation could be highly modular and, in particular,
informationally encapsulated. Hirschberg (1985/1991) has famously argued that ad
hoc scales can serve as the basis for the computation of SIs. Her arguments can be
taken to support the claim that the notion of entailment relevant for the computation
of SIs is that of entailment given contextual information (contextual entailment) rather
than the modular notion of logical entailment predicted by proposals that follow the
grammatical approach. Specifically, “John sent the letter” does not logically entail
“John put the letter in an envelope” but might contextually entail it, in which case the
two sentences would belong to an ad hoc scale. This scale, in turn, is appealed to in
Hirschberg’s account of certain implicatures (“John put the letter in an envelope” could
lead to the implicature that he did not send the letter).

While Hirschberg’s examples seem to call for access to general contextual infor-
mation in the computation of SIs, Fox and Hackl (2006) and Magri (2009, 2011) have
presented evidence that goes in the opposite direction and appears to require a highly
modular computation. More recently, Magri (2017) has argued for a resolution of this
empirical conflict based on the grammatical approach. Specifically, he has shown that
minor modifications of Hirschberg’s cases behave differently and suggested a reanaly-
sis of her basic cases using only logical scales. So, as things stand, it seems to us that
the empirical facts pertaining to modularity favor the grammatical approach.

A reason to revisit the question of modularity in SIs comes from the relatively re-
cent development of models within the pragmatic approach in which probabilities play
a crucial role in the computation of SIs. If arguments can be presented for the crucial
use of probabilities in the computation of SIs, this would seem, at least at first sight,
to present important evidence against the type of modularity assumed under the gram-
matical approach, motivating, in particular, the search for alternative theories of the
phenomena presented by Fox and Hackl and by Magri. The goal of the current paper
is, thus, to extract arguments from current literature in favor of introducing probabilis-
tic considerations into the computation of SIs and to see to what extent they favor a
non-modular perspective.

Our tentative conclusion will be that, to the extent that such arguments exist, they
do not favor non-modular theories. In fact, the opposite is true: at least within the scope

1The mechanisms of grammatical enrichment under the grammatical approach (at least under the Exh-
based version of the approach) are rather simple and needed for a theory of focus sensitivity outside the
domain of SIs (see Fox and Katzir 2011 and Katzir 2014). Hence the conceptual argument against the
grammatical approach is much weaker than the very cogent argument against lexical ambiguity found in,
e.g., Grice 1989 and Horn 1989.
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of our examination, the arguments can survive only if a highly modular perspective on
probabilities is taken. Moreover, in evaluating the arguments themselves, we will see
that they rely on arbitrary decisions and analyses that are in no way superior to what can
be achieved in the relatively simple modular theories proposed within the grammatical
approach.

1.2 External and internal probabilities
Finding arguments that the computation of SIs is sensitive to probabilities is not go-
ing to be simple. The distribution of SIs is, of course, expected to be affected by a
variety of contextual variables, among other things by the belief states of participants
in a conversation, and in particular by their assessments of the probabilities of various
states of affairs. But such interactions can easily be accounted for outside the system
that computes SIs. Consider, for example, the potential inference from “Some of the
students did their homework” to “It is not the case that many of the students did their
homework”. Presumably, the likelier the speaker is to know and care about the truth
of “Many of the students did their homework”, the likelier the inference is to be made.
See Fox 2007, Goodman and Stuhlmüller 2013, and Chemla and Singh 2014a,b for
discussion, including experimental evidence supporting this assessment.

However, this kind of correlation is unhelpful in evaluating whether probabilities
play a role in the computation of SIs.2 For example, under the grammatical view
this probabilistic correlation can be derived through the probability that the potential
alternative “Many of the students did their homework” will be used, i.e. will end up
being a member of the restrictor argument of Exh (and perhaps even the probability
that a parse with Exh will be used in the first place), while the computation of SIs itself
remains modular and probability-free. (This is analogous to the observation that, while
considerations of likelihood can affect how structural ambiguity is resolved in examples
such as “Kim saw the student with the telescope”, this does not constitute an argument
for incorporating probabilities into the syntax.) Supporting a role for probabilities in
the computation of SIs, then, is more complicated than noting that the presence of SIs
correlates with the likelihood of various speaker/hearer beliefs.3

2Here we disagree with Goodman and Stuhlmüller (2013) who write: “This interaction between language
understanding and general knowledge is not predicted by strongly modular theories that place scalar impli-
cature within a semantics module (Chierchia et al. 2012). We show further that the interaction of knowledge
and implicature is fine grained: The details of a speaker’s belief distribution affect the details of an implica-
ture.” (p. 174)

3Somewhat separately from the present point, one of Goodman and Stuhlmüller (2013)’s results raises
an interesting challenge for the grammatical approach, as noted by Irene Heim (in a class taught at MIT,
Fall 2013). This challenge concerns an asymmetry between SIs and ‘only’, which, on the grammatical view,
are almost identical. To see this asymmetry, consider a speaker who has seen the contents of exactly two
out of three envelopes and says “One of the three envelopes contains a check”. The inference drawn from
this utterance is typically that at least one of the three envelopes contains a check and that at most two of
them do (the 1 ≤ n ≤ 2 inference). With ‘only’, on the other hand, the corresponding sentence (“Only one
of the three envelopes contains a check”) entails that exactly one of the three envelopes contains a check.
This discrepancy, however, is resolved if, as argued by Meyer (2013, 2014, 2015) and further defended by
Fox (2016) and Buccola and Haida (2018), the grammar contains a covert assertion operator, K, and if that
operator can only attach close to the root and therefore always outscopes ‘only’ but can be outscoped by
Exh. If that is the case, the sentence “One of the envelopes contains a check” can have a strengthened
meaning paraphraseable as I only know/assert that one of the envelopes contains a check (Exh � K),
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To better understand the question of sensitivity to probabilities, it is useful to try to
associate with every theory of SIs a function, f , that takes as input a proposition (the
basic meaning of a sentence), and various other arguments and returns a strengthened
meaning. To say that a theory assumes sensitivity to probabilities is to say that one
of the arguments of the f associated with this theory is a probability distribution.4 To
say that the computation is sensitive to probabilities is to say that this holds for the f
associated with the correct theory.

The most obvious argument that the computation of SIs is sensitive to probabilities
would consist in a demonstration that there is no way to state the function f without a
probability distribution as argument – there is simply not enough information. Argu-
ments of this form are not uncommon in semantics, including in the domain of SIs. For
example, there is a well-known argument that one cannot write a function that simply
takes a proposition as argument and returns a strengthened meaning. This argument
is based on the so-called symmetry problem and is commonly taken to show that the
computation of SIs is sensitive to formal alternatives. We are not aware of a parallel
argument for probabilities. (As just mentioned, the general observation that SIs cor-
relate with the likelihood of the speaker’s opinionatedness does not constitute such an
argument.) Still, many current models assume that probabilities are crucial. Our goal
in writing this paper was to focus on places where a role for probabilities within the
computation of SIs is not simply assumed but actually argued for.

The most promising argument we are familiar with for the use of probabilities in the
computation of SIs is made by Franke (2009, 2011). Franke argues for a unified account
of a potentially disparate set of phenomena within a probabilistic framework (see van
Rooij 2010 for further discussion). An obvious question is whether this can be turned
into an argument of the form described above (that is, that f requires a probability
distribution as argument). We will argue that it cannot. In fact, we will show that for
Franke’s proposal to derive correct predictions, the relevant probability distributions
must be uniform, which in turns means that f has no probabilistic argument (see fn.
4). In other words, while Franke’s proposal uses what we may refer to as internal
probabilities (that is, probabilities within the mechanism of f ), it does not rely on
external probabilities (which are probabilistic inputs to f ).

A theory that makes use of internal probabilities but not of external probabilities
does not argue for non-modularity. On the contrary, it further bolsters arguments for
modularity. The question, of course, is which modular theory is correct. While we
will not be able to address this question here, we will attempt to present the neces-

while the variant with overt only can only be read as “I know/assert that only one of the envelopes contains
a check” (K � Exh). The Exh � K parse contextually entails the 1 ≤ n ≤ 2 inference: from the fact
that the speaker saw the contents of two of the envelopes, it follows that if n were greater than 2, the speaker
would have known that n is at least 2, contrary to a logical inference of Exh� K. So while the challenge
is interesting, it is separate from our point regarding probabilities.

4By ‘the f associated with T ’ we mean the simplest f that one can associate with T (when there is a
unique simplest f ). It is, of course, possible to add arguments to f that would not affect its output (arguments
with respect to which f is constant). If such gratuitous arguments exist, f can be simplified by their elimi-
nation and will thus not be associated with any theory. Our observation that Franke’s theory needs to assume
a uniform probability distribution is, hence, a demonstration that if f were to take a probability distribution
as argument, it would not be affected by this argument, hence that the (simplest) f associated with Franke’s
theory does not take a probability distribution as argument. Of course, what we say would not be affected if
it turns out that there is more than one simplest f – simply replace the definite ‘the’ with the indefinite ‘a’.
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sary ingredients of Franke’s theory in the hope that this can contribute towards theory
comparison.

Our goals in this paper are rather limited. Specifically, we will attempt to outline
Franke’s argument for the use of probabilities in the computation of SIs doing our best
to divorce it from the type of framework that Franke assumes. Along the way, we
will attempt to identify some of the challenges that this kind of argument will have to
face, and to explain why, if correct, it is an argument against external probabilities and
hence an argument for modularity. But even these limited goals will require a rather
long journey most of which will not be concerned with the question of modularity to
which we will return at the very end.

1.3 Iterated rationality models and paper outline
Franke 2009, 2011’s motivation for (internal) probabilities is presented within a com-
plex model that belongs to a family of recent approaches to pragmatics that we will
refer to as Iterated Rationality Models (IRMs). Other prominent IRMs include Good-
man and Stuhlmüller 2013, Franke and Jäger 2014, and Bergen et al. 2016.5 These
proposals differ among themselves in various ways but share two central properties
that we will focus on here and that set them apart from familiar alternative accounts
in the literature. First, like Franke’s model, the other IRMs in the literature are heav-
ily probabilistic, which differs from other approaches, where the computation of SIs
is sensitive to logical relations (in particular, entailment) but not to probabilities. Sec-
ond, IRMs derive SIs through iterations of reasoning, typically going back and forth
between hearers and speakers at increasing levels of sophistication, that attempt to
gradually sort messages into (unions of) cells of the partition induced by the set of
messages. This differs from other approaches (from Horn 1972 onward) in which SIs
are typically derived without alternating between hearer and speaker perspectives and
using only one or two rounds where alternatives are negated (or asserted).

IRMs are usually presented as bundles of these two components – probabilistic
reasoning and back-and-forth iterations – and various other assumptions. For example,
particular further commitments are needed to specify the use of probabilities to model
hearers and speakers, with common choices in the literature reflecting the origins of
existing IRMs in Bayesian and game-theoretic models of rationality. This bundling of
assumptions makes it hard to see the motivation for each element and to tease apart
the essential predictions of the system from the consequences of arbitrary decisions at
various choice points. In what follows, we will try to unbundle the main components
of IRMs mentioned above in order to understand Franke’s argument for probabilities.

To this end, we start with a highly simplified iterative model where reasoning
takes place from one participant’s viewpoint (rather than going back and forth between
speaker and hearer) and without probabilities. We then introduce the requisite compli-
cations where they might be needed: we provide a weak motivation for both probabil-
ities and back-and-forth iterations between speaker and hearer in section 2.2; and we
provide a potentially stronger argument for probabilities, extracted from Franke 2011,

5For a recent overview of this literature and its broader game-theoretic context see Benz and Stevens
2018.
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in section 3.2. This argument, though very interesting, is not as simple as it appears
at first sight as we discussion in section 4. Furthermore, if correct, it only serves to
motivate internal probabilities and can in fact serve to argue that external probabilities
are never relevant for the computation of SIs as discussed in section 5.

2 A Toy System
The present section begins our presentation of the type of reasoning involved in IRMs,
and, as just mentioned, this is done with a very minimal IRM. As a first step we set
aside probabilities and back-and-forth reasoning between speaker and hearer and focus
only on the basic iterative aspect of IRMs. This will help show a central property of
such models – namely, iterations – within a simple setting, and it will also help in
highlighting why and where probabilities might become useful. In particular, we will
see how iterated disambiguation derives SIs in cases of finite scalar alternatives. This
can be done in a non-probabilistic setting and will then allow us to identify potential
motivations for probabilities coming from cases that are more complex than the finite
scalar one.

The following idealization, modeled on assumptions made by current IRMs, will
be assumed throughout the discussion:

(1) Idealization of conversational setting:
a. The context set (the set of worlds consistent with whatever is common

belief) is partitioned into cells
b. It is common belief that the epistemic state of the speaker entails one of

the cells (the assumption of an opinionated speaker, sometimes called the
speaker competence assumption)

c. It is common belief that the goal of the speaker is to convey that cell (the
speaker’s cell) to the hearer

d. It is common belief that the speaker is truthful – that is, they only say what
they believe to be true in accordance with Grice’s Maxim of Quality

Throughout the discussion, the partition of the context set, Π, will be induced by a
set of alternatives, M . We will consider the elements of M to be syntactic objects and
refer to them as messages.6,7

6The cells in the partition reflect all the consistent ways to assign truth values to the different alternatives
in M . These can be characterized by defining an equivalence relation∼ over the context set C such that for
any w,w′ ∈ S, w ∼ w′ if for every m ∈ M , [[ m ]](w) = [[ m ]](w′). The partition of the context set is
then the quotient set of the context set by ∼, Π = C/ ∼.

7As has been discussed in detail in the literature, SIs cannot be derived if the alternatives are the set of
all possible messages (all sentences of the language) and if there is no further way to differentiate between
them. (This is so because of the symmetry problem mentioned in section 1.2.) One common method of
differentiation, which we adopt here, is to offer a restrictive definition of alternatives (see Horn 1972, Katzir
2007, Fox and Katzir 2011, Trinh and Haida 2015, and Trinh 2018 for concrete proposals). This is convenient
in the current context also in providing the basis for the partition of the context set. We note, however, that
some of the literature on IRMs, such as Bergen et al. 2016, prefers to allow all possible messages to serve as
alternatives and to differentiate between them in terms of costs. On this view, which we do not adopt here,
the partition of the context set must come from some other source.
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2.1 Scalar alternatives (the finite case)
In the scalar case, the set of alternatives is linearly ordered by entailment. We start
with the simplest of the scalar cases, where there is only one alternative other than
the assertion itself. Consider, for example, an assertion of ‘some’ with just ‘all’ as an
alternative. Given these alternatives, the context set is partitioned into three cells: ¬∃,
∃ ∧ ¬∀, ∀.8 The cell ¬∃ is inconsistent with the assertion (and with its alternative) so
it will never be conveyed by any of the messages in the set of alternatives {some, all}
(given (1d)); consequently, we will be able to set aside ¬∃ for the discussion and focus
on the cells in {∃ ∧ ¬∀,∀}.

Here is a possible strategy for the speaker to convey their cell:

• Step I: Suppose that the speaker’s cell is ∀. In this case, the speaker can say ‘all’,
and the hearer will easily be able to identify the correct cell. The hearer can do
so since only the cell ∀ is consistent with the assertion and since the speaker is
assumed to be truthful.

• Step II: Suppose now that the speaker’s cell is ∃ ∧ ¬∀. In this case, the speaker
cannot meet their goal directly. Suppose, however, that the speaker can rely on
the hearer’s knowledge of Step I above (namely, that if the speaker’s cell were ∀
they would have uttered ‘all’) to rule out the cell ∀ upon an utterance of ‘some’.
This leaves the hearer with cell ∃ ∧ ¬∀ for ‘some’, as desired.

In other words, the first step allowed the conversational participants to pair the mes-
sage ‘all’ and the cell ∀ and in effect peel them off. Following this step, the participants
remain with just the message ‘some’ and the cell ∃ ∧ ¬∀ which can now be paired as
well.9

Note that in the reasoning above, the speaker was assumed to follow the Maxim of
Quality but was not explicitly assumed to follow the Maxim of Quantity. Elimination
and iteration were able to derive what Quantity is typically used for (e.g., in Horn
1972).

The above generalizes to all SIs that rely on finite scales (as well as certain addi-
tional cases, some of which we will briefly mention below). Take, for example, the
case where ‘some’ has not just ‘all’ but also ‘many’ as an alternative. The induced
partition in this case is {¬∃,∃ ∧ ¬many,many ∧ ¬∀,∀}.

We can reason as before, adding one further step of peeling:

• Step I: If the speaker’s cell is ∀, they will utter ‘all’, which will directly lead the
hearer to the correct cell (since the message is inconsistent with any other cell).
The cell (and possibly the message) are now peeled off.

8Concretely, ‘some’ might stand for an assertion of “John did some of the homework”, with “John did
all of the homework”, notated as ‘all’ as its sole alternative. In this case, ∃ ∧ ¬∀ stands for the cell in which
John did some but not all of the homework (with analogous interpretations for the remaining cell labels). For
ease of presentation, we will stick with schematic shorthand such as ‘some’ and ∃ ∧¬∀ where no confusion
is likely to arise.

9Note that what matters for the process just described is that the cell ∀ be peeled off after the first step.
The message ‘all’ would do no damage if it stayed for the second step: that message is not true in any of
the remaining cells (it was only true in the cell ∀, and that cell is now removed), so it cannot affect the
identification of any other cell. For convenience, however, and for uniformity with a different notion of
identification that we will see in (4) below, we will keep talking about peeling off both cells and messages.
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• Step II: If the speaker’s cell is many∧¬∀, they will utter ‘many’, which – given
Step I – will lead the hearer to the correct cell (since the message is inconsistent
with any of the remaining cells). The cell (and possibly the message) are now
peeled off.

• Step III: If the speaker’s cell is ∃ ∧ ¬many, they will utter ‘some’, which –
given Steps I, II – will lead the hearer to the correct cell (since the message is
inconsistent with any of the remaining cells). The cell (and possibly the message)
are now peeled off.

• Thanks to Step III, ‘some’ obtains its reading of ‘some and not many’

To be able to refer to iterative peeling more easily, both using the current idea of
cell identification and with certain variants thereof, we state the current criterion for
cell identification in (2) and a general recipe for iterative peeling in (3).10

(2) CELL IDENTIFICATION (first version; further versions to be stated in (4) and
(8)): Message m identifies a cell t given a set of cells Π if m is true in t and
there is no distinct t′ ∈ Π such that m is true in t′

(3) PEELING STRATEGY: Given a set of messagesM , a partition Π, and a criterion
C for cell identification, we build a set X of message-cell pairings as follows:
a. Initialize X = ∅, as well as M ′ = M and Π′ = Π

b. Collect all message-cell pairs where the message identifies the cell accord-
ing to C into a temporary set U . That is, U = {< m, t >∈ M ′ × Π′ :
m identifies t according to C}

c. If U = ∅, break and return X
d. Otherwise:

i. Update X with U . That is, X = X ∪ U
ii. Remove from M ′ every message m that appears in the left-hand side

of some pair in U
iii. Remove from Π′ every cell t that appears in the right-hand side of

some pair in U
iv. Go to step (3b)

The reasoning described in the scalar examples above follows the use of the recipe
in (3) with the identification criterion in (2). The same reasoning extends to some non-
scalar cases. For example, suppose that the set of messages is {A, B, A and B}, which
induces the partition {¬A ∧ ¬B,A ∧ ¬B,¬A ∧B,A ∧B}.

10In keeping with the IRM literature, we present the model in procedural terms. As mentioned above,
however, we believe that it can also be useful to view the model more abstractly, in terms of its mapping of
inputs to outputs. This mapping, as in the discussion of the function f above, makes it easier to evaluate the
different parameters that the system must be sensitive to than the procedural presentation. We take up this
point in section 5 below, where we note that the abstract perspective of mapping inputs to outputs highlights
a challenge to the idea that the computation of SIs has access to external probabilities.

Characterizing SIs in terms of inputs and outputs is also of help in understanding what an actual semantic
operator in the grammar would look like if it were to behave like an IRM. This is particularly significant
given the evidence in the literature that the operator ‘only’ is very similar to SIs (see Fox 2003), which
suggests a unified treatment of the two.
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• Step I: The message ‘A and B’ identifies the cell A∧B, so the cell (and possibly
the message) can be peeled off. (Note that neither ‘A’ nor ‘B’ identifies a cell in
this step.)

• Step II: Given Step I, the message ‘A’ identifies the cellA∧¬B, and the message
‘B’ identifies the cell ¬A ∧B

Crucially, the presence of the conjunctive alternative ‘A and B’ allowed the peeling
process to start. As we will shortly see, when such an alternative is absent, peeling
cannot start, and this challenge will motivate the introduction of probabilities into the
system.

2.2 Infinite scales, back-and-forth reasoning, and a first motivation
for internal probabilities

We defined cell identification in terms of a message that guarantees a particular cell.
Imagine we approached cell identification from the opposite direction as well, by look-
ing for a cell that guarantees a particular message. In the ‘some’/‘all’ case, for example,
the hearer can reason that if a speaker is in cell ∃ ∧ ¬∀, the only message they can use
is ‘some’. This reasoning might result in ‘some’ identifying the cell ∃ ∧ ¬∀, and both
message and cell will be peeled off, which allows the remaining messages and cells to
be paired in the next step. We could state this new (reverse) sense of identification as
follows (using the same peeling strategy defined in (3) as before):11

(4) MIRROR-IMAGE CELL IDENTIFICATION (to be revised in (8)): Message m
mirror-identifies a cell t given a set of messages M if m is true in t and there
is no distinct message m′ ∈M that is true in t

The motivation for our first notion of cell identification, as stated in (2) was quite
straightforward: if m identifies t then, by definition (along with the assumption in (1d)
that the speaker is truthful), a hearer who receives m knows that the speaker’s cell is
t. The motivation for the mirror-image notion in (4) seems less obvious: why should
it matter if the speaker can use only m in a particular cell t? After all, if the same m
is also true in a different cell t′, the hearer will not be able to use m (without further
assumptions) as a reliable indicator that the speaker’s cell is t.

To see a potential conceptual motivation for (4) in terms of the goal of indicating
the speaker’s cell to the hearer, we propose thinking of the hearer’s inference about
the speaker’s cell in terms of a best guess about that cell rather than full certainty

11Note that (4) makes it possible in principle for a message to identify multiple cells. Consider, as a
schematic example, a partition Π = {1, 2, 3, 4} induced by M = {A,B,C}, where [[ A ]]= 1 ∪ 2,
[[ B ]]= 2∪ 3, and [[ C ]]= 3∪ 4. In Step I, ‘A’ mirror-image identifies 1 (since it is the only message true in
that cell) and, similarly, ‘C’ mirror-image identifies 4. Then, in Step II, message ‘B’ mirror-image identifies
both cell 2 and cell 3, since for each of them, this is the only remaining message that is true in that cell. This
is a somewhat counter-intuitive state of affairs, and it is potentially problematic for communication, but we
will not attempt here to explore its possible impact on the conversational setting or potential modifications
that could avoid the issue. (For the original notion of cell identification in (2), a parallel issue can arise with
multiple messages identifying the same cell. That, however, seems more natural and less problematic.) With
our final statement of identification, in (8) below, this issue does not arise.
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(perhaps because a message that conveys a cell with full certainty is not available, as
will be the case in an example we will consider shortly). This, in turn, invites thinking
about inference within a probabilistic setting, the informal idea being that if m is the
only message true in cell t then (on certain assumptions) hearing m will make t more
probable than any other cell in which additional messages are true. Consider again the
case of ‘some’/‘all’, and suppose that the hearer has received the message ‘some’. The
hearer’s goal is to identify the speaker’s cell. Assuming, as we do, that the speaker is
truthful, this cell is either ∃∧¬∀ or ∀. The hearer can use Bayes’ Rule to compare how
likely each cell is given the message:12

P (∃ ∧ ¬∀|‘some’) =
P (‘some’|∃ ∧ ¬∀)P (∃ ∧ ¬∀)

P (‘some’)

P (∀|‘some’) =
P (‘some’|∀)P (∀)

P (‘some’)

The denominator on the right-hand side of both cases is identical and does not affect
the comparison.13 As to the numerator, let us start by making the assumption that the
prior probability of the two relevant cells is the same: P (∀) = P (∃ ∧ ¬∀). This can
follow from a general assumption of flat priors:

(5) Flat priors (tentative): The prior distribution is uniform, so that if Π is finite,
for any t ∈ Π, P (t) = 1

|Π| .

The assumption of a uniform prior distribution cannot hold if (as in an example we
will consider immediately below) the partition is countably infinite. There might also
be other reasons to abandon (5), such as connecting priors to what we referred to above
as external probabilities – that is, to actual probabilistic assessments (that might be
part of the common ground), a possibility that we discuss in section 5 below (though,
as mentioned in the introduction, we will see an empirical argument against such a
move). In the case of ‘some’/‘all’, however, flat priors have the advantage of allowing
us to focus entirely on the likelihood component for the purpose of the comparison of
the two probabilities under consideration, and we will tentatively make this assumption
here.

With both the denominator and the priors out of the way, the comparison of P (∃ ∧
¬∀|‘some’) andP (∀|‘some’) boils down to a comparison of the likelihoods, P (‘some’|∃∧
¬∀) and P (‘some’|∀). And it is here that the number of messages that are true in a

12According to Bayes’ Rule, P (t|m) can be written as

P (t|m) =
P (m|t) · P (t)

P (m)

Of the two factors in the numerator, P (m|t) is referred to as the likelihood, and P (t) is the prior. The
denominator P (m) can be ignored if, as in the discussion below, we are only interested in comparing the
probability of various cells given the same message. If the denominator cannot be ignored (for example, if we
wish to compute the actual probability of a cell given a message and not just make the relevant comparisons),
it can be rewritten again as

∑
t′∈P P (m|t′) · P (t′).

13If it needs to be computed explicitly it can be done in the usual way by writing it as P (‘some’) =
P (‘some’|∃ ∧ ¬∀)P (∃ ∧ ¬∀) + P (‘some’|∀)P (∀).
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given cell can become relevant. More specifically, (4) would be explained as a conse-
quence of probabilistic reasoning if we can assume that the conditional probability of
a message given a cell is maximal whenever this message is the only one that is true in
the cell.

Here is a way to justify this assumption. Recall from (1d) that we are assuming
that the speaker is always truthful. If we further assume that the speaker always sends
some message, as stated in (6a), then P (‘some’|∃ ∧ ¬∀) = 1, since ‘some’ is the
only message that is true in the cell ∃ ∧ ¬∀. If we also assume that every message
that is true in a cell has a positive probability of being sent, as stated in (6b), then
P (‘some’|∀) < 1, since in the cell ∀ there are two true messages, ‘some’ and ‘all’ (so
if each message has a positive probability, neither can have probability 1).

(6) Additional conversational assumptions:
a. The speaker always sends a message (and cannot remain silent)
b. If the speaker’s cell is t and m is true in t, the speaker has a positive prob-

ability of uttering m

From the above, we obtain P (‘some’|∃ ∧ ¬∀) > P (‘some’|∀), which in turn (on
our current assumptions) means that P (∃ ∧ ¬∀|‘some’) > P (∀|‘some’). So, on the
assumptions above, a hearer who receives ‘some’ can conclude that it is most probable
that the speaker’s cell is ∃ ∧ ¬∀. Consequently, if it is reasonable to take a message m
as indicating the cell that m makes most probable (when such a cell exists), something
like (4) can serve as a sensible criterion for cell identification.14

This kind of probabilistic reasoning, then, can motivate adopting something like
(4).15 But is there also an empirical reason to think that (2) is insufficient and that
something like (4) needs to be added to the system (perhaps supporting a system that
goes back and forth between the two notions of identification)? Relevant cases would
be SIs in which at some point during iterative peeling the following hold: (a) there is no
alternative that is true in just one cell (otherwise (2) could be used); and (b) there is a
cell in which just one message is true (so (4) holds). We discuss two potential cases of
this kind, though we conclude that neither provides stong support for (4). We present
these cases, as an illustration of the type of consideration that might support (4) and as
a way of indicating that we were unable to find stronger support.

As a first example, suppose that the set of messages is {A,B}, which induces the
partition {¬A ∧ ¬B,A ∧ ¬B,¬A ∧ B,A ∧ B}. Clearly, an utterance of ‘A’ does not
identify any cell: it is compatible with two distinct cells, A∧¬B and A∧B. Similarly
for an utterance of ‘B’. And in the absence of a cell identifier, peeling using (2) cannot
start. The situation changes when mirror-image identification in (4) is available: ‘A’
is the only message that is true in the cell A ∧ ¬B, and similarly for the message ‘B’
and the cell B ∧¬A, so mirror-image identification succeeds. The problem with using

14The idea of maximizing the probability of a cell given a message is very similar to Franke (2011)’s
proposal. One difference between the two notions is that Franke’s proposal maximizes also the speaker’s
probabilities of messages given a cell.

15Note, however, that while the motivation for (4) is probabilistic, its statement is not. Empirical evi-
dence in favor of (4), then, might suggest a role for probabilistic reasoning in conventionalizing the non-
probabilistic (4), but it will not necessarily support a role for probabilities within the IRM itself. In later
sections we will consider revising this so as to give probabilities an actual role in the computation of SIs.
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this case to support (4) is that it is not obvious that SIs based on the relevant sets of
alternatives are ever computed. Specifically whenever an utterance of ‘A’ identifies the
cellA∧¬B there are other plausible ways of accounting for this: either the conjunctive
alternative is present as well, in which case peeling can proceed using (2), as discussed
earlier, or the common-ground already excludes A ∧B (see Fox 2018).

For our second example, consider the possibility of infinite scales (a matter of some
debate in the literature). One central candidate is expressions denoting the natural
numbers. For example, for an assertion of “John has three children”, the alternatives,
one might claim, are all the sentences of the form “John has n children”, [[ n ]] ∈ N.
This set does not have a strongest element, so the peeling process based on (2) cannot
start. On the other hand, the mirror-image notion of cell identification, as stated in (4),
straightforwardly allows for peeling:16

• Step I: the message “John has one child(ren)” mirror-identifies the cell exactly-
one (since in that cell no other alternative is true)

• Step II: the message “John has two children” mirror-identifies the cell exactly-
two (since after peeling off the message “John has one child(ren)” in Step I,
there is no message other than “John has two children” that is true in the cell
exactly-two)

• Step III: the message “John has three children” mirror-identifies the cell exactly-
three (for the same reasoning as in Step II), and the SI for the assertion is com-
puted

So for cases such as the above, the original (2) fails and (4) succeeds. For natural
numbers in a downward-entailing context, on the other hand, it is the original (2) that
succeeds and (4) that fails. For example, “If John has three children, he is eligible for a
tax break” has a strongest alternative (namely, “If John has one child(ren), he is eligible
for a tax break”), from which peeling using the original (2) can start. However, there
is no cell in which just one alternative is true, so peeling using the mirror-image notion
in (4) has no starting point.

Given the above, it might seem reasonable to use both (2) and (4), perhaps going
back and forth between the two. As mentioned briefly in the introduction, the idea of
going back and forth between the perspective of the speaker and that of the hearer is
central to the IRMs in the literature. Based on our present discussion, we suggest infi-
nite scales as a possible empirical motivation for this choice. And since, as discussed
above, mirror-image identification receives its motivation from probabilistic reasoning,
we can take infinite scales to also indirectly support a role for probabilities in IRMs.17

16Above we illustrated a probabilistic motivation for the notion of mirror-image identification in (4) using
the case of ‘some’/‘all’ and assuming flat priors. For the countably infinite case we are currently considering,
a uniform distribution over cells is of course not possible. As mentioned in note 15, however, (4) itself makes
no mention of probabilities and does not depend on there being any particular kind of distribution over the
cells in the partition.

17Note that the putative support for probabilities and back-and-forth reasoning based on infinite scales
depends heavily on the basic setup: within alternative approaches to SIs, such as the neo-Gricean and the
grammatical approaches, discrete infinite scales do not require an appeal to probabilities or back-and-forth
reasoning. Dense scales, if they exist, would be problematic for both the neo-Gricean approach and the type
of IRMs we are discussing (see Fox and Hackl 2006).
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However, since it remains unclear whether SIs are ever truly based on infinite scales –
numeric scales such as the above, for example, might be based on finite scales resulting
from truncation of infinite ones – the support for both back-and-forth reasoning and for
probabilities based on such scales is weak. For probabilities, we will see potentially
stronger motivation below. As with the motivation for probabilities in the current sec-
tion, what we will see will be at best an argument for internal probabilities: in both
cases, actual probability assessments from outside of where SIs are computed will not
play a role. For mirror-image identification and back-and-forth reasoning we have not
been able to identify additional arguments: as far as we can tell, this remains one of the
arbitrary choices made by IRMs in the literature and highlighted by the unbundling in
the current paper. To keep the presentation simple, we now return to a one-sided notion
of cell identification.

3 Non-scalar alternatives, conjunctive readings of dis-
junction, and a second motivation for internal prob-
abilities

3.1 Conjunctive readings of disjunction
In the cases of SI discussed earlier, there was always either a message that was true
in just one cell or a cell in which just one message was true, so peeling could always
proceed using at least one of (2) or (4). In other cases, however, neither of the two no-
tions of identification above are of help. A particularly relevant configuration in which
no message is true in just one cell (so the original notion of cell identification fails)
and in which mirror-image identification is unhelpful as well is that of disjunctions in
the absence of a conjunctive alternative. In this case, the alternatives are {A or B, A,
B}, and the induced partition is the same as in the case of {A and B, A, B} and of
{A, B} discussed earlier: {¬A ∧ ¬B,A ∧ ¬B,¬A ∧ B,A ∧ B}. Instantiations of
this schematic setting have been argued to exist and to give rise to conjunctive read-
ings for disjunctive sentences, with examples including Warlpiri connectives (Bowler
2014), or-else disjunction (Meyer 2015), and disjunctions in child language (Singh
et al. 2016). Somewhat more broadly, conjunctive reading of disjunctions has been ob-
served for embeddings under particular environments such as existential operators, as
in so-called Free Choice disjunctions: a sentence such as “You may eat the ice cream
or the cake” has the implication that you may eat the ice cream and you may eat the
cake. Moreover, this implication has been argued to be an SI (see Kratzer and Shi-
moyama 2002, Alonso-Ovalle 2005, and Fox 2007) and to be generated by a general
mechanism that also derives the conjunctive SI in the case of {A or B, A, B} (see Fox
2007, Franke 2011, and Bar-Lev and Fox 2017). Other cases that have been argued to
follow a similar logic include the further embedding of Free Choice disjunction under
a universal operator (argued to be an SI in Bar-Lev and Fox 2017) and the embed-
ding of disjunction in the antecedent of conditionals (see van Rooij 2010 and Franke
2011). Based on these works, we can formulate the following desideratum for theories
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of Scalar Imlicatures:18

(7) DESIDERATUM FOR THEORIES OF SCALAR IMPLICATURES: In certain cases
(depending on the properties of φ), when a disjunction of the form φ(A or B)
has φ(A) and φ(B) as alternatives but not [φ(A) and φ(B)], the theory must
provide the means for generating [[ φ(A) ]] ∧ [[ φ(B) ]] as an SI.

However, the procedures of iterative peeling that we have seen fail to account for
such conjunctive interpretations of disjunction. The reason for this is that no message
is true in just one cell, so no message will identify a cell by the simple notion of cell
identification in (2). And the same holds for mirror-image identification since there is
also no cell in which just one message is true.

3.2 A role for internal probabilities in cell identification
To see how the challenge of conjunctive readings of disjunctions might be addressed
within an IRM, imagine that there was a way for ‘A’ and for ‘B’ to be strengthened
so that they would each identify a different cell. Suppose, more specifically, that ‘A’
identifiedA∧¬B, and ‘B’ identifiedB∧¬A (as in the simpler case that involves just the
two messages {A,B}). If that were possible, ‘A or B’ (after peeling) would identify the
third cell in which it is true, namely A∧B, thus accounting for the conjunctive reading
of disjunction in this case. The question, of course, is how to strengthen the messages
‘A’ and ‘B’ in the first place so that they can identify the relevant cells. Franke (2011)’s
insight is that this can be done through the use of probabilities. In particular, while
we just saw that the notion of mirror-image identification in (4) does not solve the
problem of strengthening ‘A’ and ‘B’ (once the disjunctive message is added to the set
of alternatives), the probabilistic components used to provide the motivation for (4) do
allow the relevant messages to be strengthened once one further assumption is made,
as we now show.

To facilitate the discussion, we start by restating the probabilistic motivation for (4)
as an actual probabilistic criterion for cell identification. Recall that in the probabilistic
setting under consideration, the hearer asks if there is a t that is more likely than any
other cell t′ given the message m: P (t|m) > P (t′|m) for all t′ 6= t. Using Bayes’
Rule, this amounts to comparing P (m|t)P (t)

P (m) and P (m|t′)P (t′)
P (m) , which, since the denomi-

nator is the same for both elements, amounts to comparing the numerators P (m|t)P (t)
and P (m|t′)P (t′). The criterion, then, can be stated as follows:19

18We will not attempt here to characterize either the kinds of environments φ in which such strengthening
occurs or the precise sets of alternatives that are involved. Different proposals in the literature make different
predictions based on the choices of φ and the alternatives, and we will frame the discussion in terms of cases
such as the simple {A or B, A, B} and Free Choice disjunction where both φ and the alternatives seem
straightforward.

19While (8) and (4) are conceptually related, neither is stronger than the other, even if we assume flat
priors. Below we will focus on cases in which a message m identifies a cell t according to (8) but not
according to (4). But in principle there can be cases in which a message m identifies a cell t in the sense
of (4) but not in the sense of (8). This is so since there might be another cell t′ in which only m is true. In
this case, m identifies both t and t′ according to (4), but it identifies neither according to the probabilistic
(8) (since P (m|t) = P (m|t′) = 1, so on the assumption of flat priors P (m|t)P (t) = P (m|t′)P (t′)).
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(8) MIRROR-IMAGE CELL IDENTIFICATION (final version, revised from (4)): Mes-
sage m probabilistically mirror-identifies a cell t given a set of cells Π and
messages M if for any other t′ in Π, P (t|m) > P (t′|m) (or, using Bayes’
Rule, P (m|t)P (t) > P (m|t′)P (t′)).

The original notion of cell identification in (2) corresponds to certainty: when a
message m is only true in cell t, the hearer who receives m knows (on the assumption
of truthfulness, (1d)) that the speaker’s cell is t. From the current probabilistic perspec-
tive, this means that P (t|m) = 1 and that for any t′ 6= t, P (t′|m) = 0. Mirror-image
cell identification in (4) does not rely on certainty but still guarantees, once various
additional assumptions were made (in particular, (6a), (6b), and flat priors), that for
any t′ 6= t, P (t|m) > P (t′|m) in cases where (a) only m is true in t, and (b) there is
no other cell t′ in which only m is true. For the case of conjunctive readings of dis-
junction, these assumptions are insufficient, since none of the speaker’s probabilities is
1, as summarized in the following table (where ? stands for an unknown value that is
greater than 0 but less than 1):

(9) Speaker’s probability assignment (A/B/A or B):
P (m|t) ‘A’ ‘B’ ‘A or B’
¬A ∧ ¬B 0 0 0
A ∧ ¬B ? 0 ?
¬A ∧B 0 ? ?
A ∧B ? ? ?

There is a simple way to ensure that P (‘A’|A∧¬B) > P (‘A’|A∧B) (so that, with
the assumption of flat priors, we will have P (A ∧ ¬B|‘A’) > P (A ∧ B|‘A’), and ‘A’
will be strengthened to A ∧ ¬B as desired) and that P (‘B’|¬A ∧B) > P (‘B’|A ∧B)
(so that ‘B’ will be strengthened to ¬A ∧ B). This way involves counting: of the two
states that make ‘A’ true, A ∧B makes three messages true while A ∧ ¬B makes only
two messages true; similarly for the cells that make ‘B’ true. On its own, this does not
give us enough information to compare P (‘A’|t) for its two relevant cells (or P (‘B’|t)
for its two cells), but it does if we make the further assumption that the speaker has
no preference among the messages that are true in their cell, so that each is used with
equal probability. That is, we add the following assumption, which following the IRM
literature we refer to as that of a naive speaker and which subsumes (1d), (6a), and
(6b):20

One can bring the two notions closer by demanding only P (m|t)P (t) ≥ P (m|t′)P (t′), as done by Franke
(2011), but this complicates the empirical derivation of conjunctive readings of disjunction, so we do not
adopt this move here.

20As in our earlier discussion of (4), we could treat the probabilistic setting – now also including (10) – as
motivating background but state a non-probabilistic identification criterion for the actual peeling process. In
the present case, we would need to incorporate the idea of comparing how many messages each relevant cell
makes true. We could do so by saying thatm identifies t if it is true in t and if any other t′ that makesm true
makes more additional messages true than t does. Note, however, that differently from (4), such a statement
makes reference within the IRM itself to a comparison of cardinalities, a notion that is quite different from
those typically used in accounts of SIs in the literature. For space considerations, we have chosen to skip
the intermediate cardinality-based statement and to state the discussion here and below directly in terms of
probabilities.
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(10) Naive speaker: if cell t makes n different messages true, the speaker will
choose each of them with probability 1

n .

With (10), the unhelpful table in (9) becomes the following:

(11) Naive speaker’s probability assignment (A/B/A or B):
P (m|t) ‘A’ ‘B’ ‘A or B’
¬A ∧ ¬B 0 0 0
A ∧ ¬B 1

2 0 1
2

¬A ∧B 0 1
2

1
2

A ∧B 1
3

1
3

1
3

Table (11) allows us to obtain the desired conjunctive reading of disjunction. Thanks
to (10), P (‘A’|A ∧ ¬B) = 1

2 >
1
3 = P (‘A’|A ∧ B). On our earlier assumption of flat

priors, this means that, according to (8), ‘A’ is an identifier for the cell A ∧ ¬B (ulti-
mately, since P (A ∧ ¬B|‘A’) > P (A ∧ B|‘A’)). Similarly, ‘B’ becomes an identifier
for the cell ¬A ∧ B. No further identification is possible in the first stage, but after
peeling, we have only the message ‘A or B’ and the cells ¬A∧¬B and A∧B, so ‘A or
B’ becomes an identifier for the cell A ∧ B as desired. The same holds in appropriate
environments φ such as embedding under an existential operator or in the antecedent
of a conditional. We can conclude that (8) allows our IRM to meet the desideratum in
(7).

Before proceeding, note that the move to probabilistic identification in (8) supports
simpler identification in finite scalar cases. For example, consider again the case of
M = {‘some’, ‘many’, ‘all’}, where the partition is Π = {¬∃,∃ ∧ ¬many,many ∧
¬∀,∀}. We have the following probabilities for the naive speaker:

(12) Naive speaker’s probability assignment (some/many/all):
P (m|t) ‘some’ ‘many’ ‘all’
¬∃ 0 0 0
∃ ∧ ¬many 1 0 0
many ∧ ¬∀ 1

2
1
2 0

∀ 1
3

1
3

1
3

Given the probabilities in (12), and assuming flat priors (that is, P (t) = 1
4 for all t),

we can see that ‘some’ identifies ∃ ∧ ¬many, ‘many’ identifies many ∧ ¬∀, and ‘all’
identifies ∀. Note that, while the earlier notions of identification in (2) and (4) require
three steps to complete cell identification in the present case, (8) accomplishes this in
a single step and does not require peeling.

3.3 Interim discussion
As mentioned, the use of probabilistic IRMs to derive conjunctive readings of dis-
junctions (when a conjunctive alternative is absent) is due to Franke (2009, 2011) and
originally presented within his particular system (see also van Rooij 2010). And as we
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just saw, the same solution is available within our simplified IRM.21 Other IRMs in the
literature, however, have not been able to derive conjunctive readings of disjunctions.
In particular, IRMs from the Rational Speech Act family (such as Bergen et al. 2016)
have not been able to derive such readings and thus fail with respect to the desideratum
in (7). Given the evidence in the literature that these readings are SIs, the challenge
for such IRMs is to either find a modification that succeeds in deriving the relevant
readings or to offer an argument against the analysis of these readings as SIs and in
favor of an alternative account of them.

Before proceeding, let us briefly review how the grammatical approach derives con-
junctive readings of disjunctions.22 Recall from the introduction that on this approach,
SIs are derived via a covert exhaustivity operator, akin to ‘only’ and sometimes written
as Exh, that can attach to various positions in the parse tree.23 Here we will focus on
the recent variant of the grammatical approach in Bar-Lev and Fox 2017, where the
SIs discussed in the current paper are derivable using a single instance of Exh attached
at the root and where exhaustification follows a two-step procedure. In the first step,
those alternatives that can be safely negated while affirming the assertion are negated.
This is done using the notion of innocent exclusion (Fox 2007): an alternative m is
innocently excludable given an assertion S and a set of alternatives M if m is in all
maximal sets of alternatives that can be negated without contradicting S. This ensures
that alternatives that are negated do not lead to arbitrary entailments. In the case of
M = {A or B, A, B}, for example, if S=‘A or B’ then negating ‘A’ would entail that
‘B’ is true, which seems arbitrary; similarly, negating ‘B’ would entail ‘A’, which again
seems arbitrary. Innocent exclusion formalizes this sense of arbitrariness: the maximal
sets of alternatives that can be negated consistently with an affirmation of the assertion
are {A} and {B}, and no alternative is a member of both, so no alternative is innocently
excludable in this case. After the negation of some or all of the innocently excludable
alternatives, a second step of innocent inclusion (Bar-Lev and Fox 2017) determines
which of the remaining alternatives can be affirmed consistently with the assertion,
again while avoiding arbitrary choices (which here, too, is done by considering maxi-
mal sets of alternatives that can be affirmed consistently and choosing those that appear
in all such sets). In our current example, both ‘A’ and ‘B’ can be asserted consistently
with the assertion ‘A or B’, so both are affirmed, and the result is the desired conjunc-

21As stated, the procedure for strengthening disjunctions to conjunctions overgenerates (both as stated by
us and Franke). For example, assuming that artists can be musicians or painters (possibly both), strengthening
along the lines just discussed incorrectly predicts that “John is an artist” will be strengthened to imply that
John is both a musician and a painter. However, this prediction is shared among all current proposals that can
derive conjunctive meanings of disjunctions in cases where this is needed. Moreover, similar ways seem to
be open to all such proposals to avoid the overgeneration problem, for example by making SIs blind to world
knowledge (as has been argued in Fox and Hackl 2006 and Magri 2009 for reasons that are independent of
the current matter). If the computation of SIs cannot see the contextual relations between ‘artist’, ‘painter’,
and ‘musician’, all the relevant theories of SIs will be able to avoid the empirically unattested strengthening
of ‘artist’ to mean both painter and musician. (We note, however, that a solution in terms of blindness does
seem at odds with an interpretation of IRMs in terms of general, non-modular reasoning, a point that we
discuss in section 5.)

22For other (non-probabilistic, non-IRM) proposals for the derivation of conjunctive readings of disjunc-
tions see Klinedinst 2007 and Chemla 2009.

23See Fox 2007, Magri 2011, and Fox and Spector 2018 for proposals regarding the distribution of Exh,
all very much inspired by Chierchia (2004).
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tive reading.24,25

4 Challenge: more than two disjuncts
When there are more than two disjuncts, both Franke (2011)’s IRM and our own fail to
derive conjunctive readings of disjunctions.26 Consider the set of messages {A or B or
C, A or B, A or C, B or C, A, B, C}, and the induced partition {¬A ∧ ¬B ∧ ¬C,A ∧
¬B∧¬C,¬A∧B∧¬C,¬A∧¬B∧C,A∧B∧¬C,A∧¬B∧C,¬A∧B∧C,A∧B∧C}.
On the assumption of a naive speaker, as stated in (10), we have the following speaker
probabilities:

(13) Naive speaker’s probability assignment (three disjuncts):
P (m|t) ‘A’ ‘B’ ‘C’ ‘A or B’ ‘A or C’ ‘B or C’ ‘A or B or C’
¬A ∧ ¬B ∧ ¬C 0 0 0 0 0 0 0
A ∧ ¬B ∧ ¬C 1

4 0 0 1
4

1
4 0 1

4

¬A ∧B ∧ ¬C 0 1
4 0 1

4 0 1
4

1
4

¬A ∧ ¬B ∧ C 0 0 1
4 0 1

4
1
4

1
4

A ∧B ∧ ¬C 1
6

1
6 0 1

6
1
6

1
6

1
6

A ∧ ¬B ∧ C 1
6 0 1

6
1
6

1
6

1
6

1
6

¬A ∧B ∧ C 0 1
6

1
6

1
6

1
6

1
6

1
6

A ∧B ∧ C 1
7

1
7

1
7

1
7

1
7

1
7

1
7

Using the probabilities in (13), we can try to proceed by iterations of peeling as
before, but as we will now show, the process does not yield the desired results.

24The definition of Exh in terms of the two steps of innocent exclusion and innocent inclusion can be
seen as a grammatical way to support the speaker’s goal of conveying a cell in the partition, as stated in (1c)
above: assuming, as we do here, that the partition is induced by the set of alternatives, the cells are defined
by the different consistent truth-value assignments to the alternatives; Exh provides a non-arbitrary way to
set the truth value of a large number of alternatives, thus attempting to take an assertion close to a cell in the
partition.

25In earlier variants of the grammatical approach, Exh was defined in terms of innocent exclusion alone.
In the case of M = {A or B, A, B}, as we saw, no alternative is innocently excludable given S =‘A or
B’. That is, ExhM (A or B) = A ∨ B. For the other two alternatives we have ExhM (A) = A ∧ ¬B
and ExhM (B) = B ∧ ¬A. To obtain the conjunctive reading, a second occurrence of Exh is attached.
Assuming that for this higher Exh the alternatives are M ′ = {ExhM (A or B), ExhM (A), ExhM (B)},
we now have both ExhM (A) and ExhM (B) as innocently excludable alternatives to ExhM (A or B),
so when ExhM′ (ExhM (A or B)) is computed, both alternatives can be negated while ExhM (A or B)
is affirmed, which in turn amounts to the conjunctive reading. This accounts for conjunctive readings of
disjunctions in a variety of cases (see Fox 2007, Bowler 2014, Meyer 2015, and Singh et al. 2016), and it
does so in a way that resembles the direction followed earlier for cell identification: the first occurrence of
Exh provides a way to identify the cells A ∧ ¬B and B ∧ ¬A; and while this first occurrence does not
directly identify a cell for ‘A or B’, a second occurrence can eliminate the cells that were identified using
the first occurrence and leave only the conjunctive cell for the disjunction. In most of the cases discussed in
the present paper the choice between the two variants of the grammatical theory does not make a difference.
However, the variant that relies on innocent inclusion straightforwardly derives conjunctive readings for
disjunctions in the antecedent of a conditional (see Bar-Lev 2018), a case that, as Franke (2011) notes, is not
derived by the earlier variant that relies on innocent exclusion alone. See Bar-Lev and Fox 2017 for further
arguments in favor of innocent inclusion.

26As mentioned, other IRMs in the literature fail already with two disjuncts.
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• Step I. Assuming (8), message A probabilistically identifies the cellA∧¬B∧¬C,
and both are peeled off. This is so since P (‘A’|A ∧ ¬B ∧ ¬C) = 1

4 , which is
greater than P (‘A’|t′) for all t′ 6= A∧¬B∧¬C, so assuming flat priors we obtain
P (‘A’|A∧¬B∧¬C)P (A∧¬B∧¬C) > P (‘A’|t′)P (t′) for all t′ 6= A∧¬B∧¬C.
Similarly, message B probabilistically identifies the cell B ∧¬A∧¬C and both
are peeled off, and message C probabilistically identifies the cell C ∧ ¬A ∧ ¬B
and both are peeled off. No further messages identify cells at this step.

• Step II. At this point, all remaining messages are compatible with all remaining
cells (other than ¬A∧¬B∧¬C), so no further identification is possible, and the
process of identification stops.The remaining messages – {A or B or C, A or B,
A or C, B or C} – can perhaps be treated as indicating uncertainty, or they might
just lead to an anomaly. In any event, these messages do not get strengthened to
conjunctive readings.

The inability of the peeling process to derive a conjunctive reading for ‘A or B or
C’ is problematic since conjunctive readings of disjunctions are empirically attested
regardless of the number of disjuncts. For example, (14), with three disjuncts, can be
read as giving permission to choose between cake, ice cream, and fruit (rather than
indicating uncertainty about the allowed choices).

(14) You are allowed to eat the cake, the ice cream, or the fruit
(Possible reading: You may choose between the three)

We presented the problem within our simplified system, but as Franke (2011) notes,
a similar problem holds for his version of IRM.27 The same problem arises already for
two disjuncts in the presence of additional alternatives:

(15) Which of these three desserts (cake, ice cream, and fruit) are we allowed to
eat?
a. You are allowed to eat the cake or the ice cream

In the given context, the answer in (15a) leads to the inference that we are allowed
to eat the cake, we are allowed to eat the ice cream, and we are not allowed to eat the
fruit. Within the peeling system, this – seemingly straightforward – extension of the
basic free-choice case is not derived: the message in (15a) fails to identify a cell for the
same reasons as in the discussion of three disjuncts above. Again, the problem carries
over also to Franke (2011)’s system.28

We do not mean to imply that this problem cannot be addressed. In fact, Franke
(2011) makes some preliminary suggestions that we believe deserve closer scrutiny.

27While both systems fail to obtain the correct strengthening of ‘A or B or C’, the actual outcome in the
two systems is different. In our system, as we just saw, ‘A or B or C’ does not get strengthened at all.
In Franke (2011)’s system, the outcome depends on whether the back-and-forth iterations start with a naive
hearer or a naive speaker: for the former, ‘A or B or C’ becomes a surprise message that a speaker is expected
not to use (and that a hearer can interpret as compatible with any of the different cells), while for the latter it
gets strengthened to mean that two of the three disjuncts are true but not all three.

28In this case, the same incorrect prediction is made in Franke’s system regardless of whether iterations
start with a naive speaker or a naive hearer: in both cases, a disjunction such as ‘A or B’ is incorrectly
predicted to be strengthened to mean that two of the three disjuncts are true but not all three.
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We note, however, that under the grammatical approach, the problem does not arise in
the first place: the same system that was designed to handle two disjuncts also derives
the case of more than two disjuncts. Using the proposal of Bar-Lev and Fox 2017,
strengthening proceeds as follows. First, none of the alternatives to ‘A or B or C’ is
innocently excludable (there is no alternative that is in all maximal sets that can be
negated consistently with ‘A or B or C’), so none are excluded and all remain as possi-
ble alternatives for inclusion. Next, the alternatives are all innocently includable – that
is, they can all be affirmed together consistently with ‘A or B or C’ – so all of them
are affirmed, which yields the conjunctive reading that A, B, and C are all true. For
the case of two disjuncts in the presence of a third alternative, the difference is that in
the first step, the third alternative – for example, ‘C’ if ‘A or B’ is asserted – is inno-
cently excludable and is therefore negated. The other alternatives remain innocently
includable, which yields the reading that A and B are true (because of inclusion) but C
is false (because of exclusion in the first step).29

5 External probabilities
We are now ready to return to the question of modularity with which we began. Our
discussions in sections 2–4 was stated in terms of internal probabilities and was ag-
nostic to the modularity question pertaining to the source of the probabilities used for
cell identification. Under a non-modular approach, those would be related to real as-
sessments of probabilities of cells and messages – that is, to external probabilities. But
they could also be thought of as an entirely formal construct that is used within the
IRM, a possibility that would support a modular approach. Recall from section 1.2 that
the difference between these two possibilities can be thought of as a difference in the
type of input that the IRM needs to take. On the view that probabilities are a formal
construct that is used modularly within the IRM, the input to the IRM would be just a
message and a set of alternatives – that is, the same as with more traditional approaches
to SIs – and the IRM itself would derive the probabilities from the alternatives and the
cells that they induce according to some recipe (for example, using something like the
assumptions of flat priors in (5) and naive speaker in (10)). On this view, IRMs would
look very much like traditional approaches to SIs in terms of their input and output.

If, on the other hand, the probabilities are real assessments of likelihood (deter-
mined in a non-modular way, externally to where SIs are computed), the mapping
from inputs to outputs would be quite different from what it is in traditional accounts.
Specifically, it would take as input not only a message and a set of alternatives (as in
traditional accounts) but also a probability distribution over cells. Of course, adding
another input – especially one that has the potential to make the theory more expressive
– requires justification. But if it can be shown that external probability assessments in-
teract in interesting ways with SIs (and perhaps related phenomena), this would provide
justification for the probabilistic input parameter and, moreover, will give IRMs an ad-
vantage over traditional accounts in which only logical relations (such as entailment)

29The correct result is obtained for both cases also if we use the proposal of Fox 2007, in which exhaus-
tification uses only the negation of innocently excludable alternatives and in which conjunctive readings of
disjunction are derived using the recursive application of the exhaustivity operator.
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are used for deriving SIs while probabilities do not play a role.30

As we show in the present section, however, this is not the case: when the proba-
bilities in IRMs are allowed to reflect general cognitive probabilistic assessments, they
lead to the incorrect prediction that as the prior probability of the cells varies, so do the
SIs of various messages.

5.1 Do priors affect SIs?
Consider again the case of M = {‘some’, ‘many’, ‘all’}, where the partition is Π =
{¬∃,∃ ∧ ¬many,many ∧ ¬∀,∀}. Earlier we showed how probabilistic cell identi-
fication as stated in (8) derives the correct results in this case on the assumption of
flat priors. If priors are a real input to the system, however, we need to examine other
possibilities.

First, recall the naive speaker’s probabilities from (12), repeated here:

(16) Naive speaker’s probability assignment (some/many/all):
P (m|t) ‘some’ ‘many’ ‘all’
¬∃ 0 0 0
∃ ∧ ¬many 1 0 0
many ∧ ¬∀ 1

2
1
2 0

∀ 1
3

1
3

1
3

Suppose now that, differently from our earlier discussion of this example, the cell
many ∧ ¬∀ is more than twice as likely as any of the other cells, all of which have the
same prior probability. That is, P (¬∃) = P (∃∧¬many) = P (∀) < 1

5 and P (many∧
¬∀) > 2

5 . If those are the priors, ‘some’ will identify the incorrect many ∧ ¬∀ rather
than the correct ∃ ∧ ¬many. To see why, recall that we are looking for the cell t that
maximizes P (t|‘some’), or, equivalently (given Bayes’ Rule) the cell that maximizes
P (‘some’|t) · P (t). Recall further that we are assuming naive speaker’s probabilitieis,
as summarized in (16). Suppose now a sufficiently biased prior such as P (¬∃) =
P (∃∧¬many) = P (∀) = 1

6 and P (many∧¬∀) = 1
2 . Then P (‘some’|many∧¬∀) ·

P (many∧¬∀) = 1
2 ·

1
2 = 1

4 while P (‘some’|∃∧¬many)·P (∃∧¬many) = 1· 16 = 1
6

(and P (‘some’|∀) · P (∀) = 1
3 ·

1
6 = 1

18 ). In other words, while the assumption of
naive speaker gives an advantage in the case of ‘some’ to the correct cell, ∃ ∧ ¬many,
over the alternative cells, this advantage is too small to overcome a sufficiently biased
prior such as the one considered here. Other biased priors lead to additional incorrect
identifications. For example, if P (¬∃) = P (∃ ∧ ¬many) = P (many ∧ ¬∀) < 1

6 ,
both ‘some’ and ‘many’ will incorrectly identify ∀.

A possible response to the problem just noted might be to say that when simple,
non-probabilistic identification (or mirror-image identification) is possible, that is the
notion that is used rather than the probabilistic one in (8). This would be useful for
M = {‘some’, ‘many’, ‘all’} since, as we saw earlier, this case is handled straight-
forwardly by non-probabilistic identification. Unfortunately for the idea of external

30Recall from the introduction that the relevant interactions must go beyond the observation that proba-
bilities can affect the presence or absence of an SI, an observation that is handled by all accounts of SIs.
To provide support for IRMs, probabilities should not just be relevant for the question of whether or not
strengthening of a message applies, they should also affect the nature of strengthening.
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probabilities, however, biased priors are a problem for probabilistic identification also
in the case of conjunctive readings of disjunctions, where non-probabilistic notions of
identification are of little help. Consider again the naive speaker’s probabilities for this
case, repeated here from (11):

(17) Naive speaker’s probability assignment (A/B/A or B):
P (m|t) ‘A’ ‘B’ ‘A or B’
¬A ∧ ¬B 0 0 0
A ∧ ¬B 1

2 0 1
2

¬A ∧B 0 1
2

1
2

A ∧B 1
3

1
3

1
3

Suppose that, rather than flat priors as in our earlier discussion of disjunctions, the
priors are instead P (¬A∧¬B) = P (¬A∧B) = P (A∧B) = 1

5 and P (A∧¬B) = 2
5 .

If this is the case, we have ‘A or B’ incorrectly identifying the cell A ∧ ¬B. If, on the
other hand, P (¬A ∧ ¬B) = P (¬A ∧B) = P (A ∧ ¬B) = 1

5 and P (A ∧B) = 2
5 , we

have ‘A’ incorrectly identifying A ∧B.

5.2 Other IRMs and biased priors
Above we illustrated the sensitivity to priors of the IRM developed in the present paper.
As far as we can tell, however, the problem extends to other IRMs in the literature.
For example, Franke (2009, pp. 71–6) notes the sensitivity of his IRM to priors in
scalar cases such as ‘some’/‘all’.31For IRMs of the Rational Speech Act family, such
as Bergen et al. 2016, biased priors can also lead to incorrect predictions in the scalar
case, as discussed in Spector 2018, though the precise predictions depend on further
intricacies of that family of models.32

Sensitivity to biased priors has not, to our knowledge, been discussed for non-scalar
cases such as M = {A or B, A, B}. As in our own system, however, IRMs in the
literature make incorrect predictions in this case as well. In Franke (2011)’s IRM, for
example, if P (A∧¬B) = P (¬A∧B) < 2

3 ·P (A∧B), both ‘A’ and ‘B’ will incorrectly
be strengthened to mean A∧B. More dramatically, the slightest bias in favor of either
A ∧ ¬B or B ∧ ¬A can lead to an incorrect strengthening of ‘A or B’ to mean the
favored cell. For example, if P (A ∧ ¬B) = P (A ∧ B) and each was just a little bit
smaller than P (¬A ∧B) – perhaps P (A ∧ ¬B) = P (A ∧B) = 0.9999 · P (¬A ∧B)
– the message ‘A or B’ will be strengthened to mean ¬A ∧ B.The Rational Speech
Act family, too, is sensitive to biased priors in this case, though again the predictions
depend on additional parameters within that approach.

We conclude that giving IRMs access to external probabilities is problematic. Not
only do we not seem to see any meaningful interactions between such probabilities and
SIs (which, if found, could have provided an argument in favor of IRMs) but in cases
such as those seen above, external probabilities lead to incorrect results. This argues

31See Rothschild 2013 for further discussion of prior sensitivity of this IRM in the case of ‘some’/‘all’.
32In particular, the implications of biased priors within the Rational Speech Act approach depend on a

so-called rationality parameter that determines the relative weights of the hearer’s beliefs when incorporated
into a more sophisticated speaker’s probabilities. See Spector 2018 for pertinent discussion.

22



for a more modular approach, where probabilities are simply not part of the input to
the mechanism that computes SIs.

6 Conclusion
In this paper we presented the strongest argument we are aware of for the introduction
of probabilities to the system that computes SIs. We saw that the argument, if suc-
cessful, is incompatible with external probabilities and thus requires a highly modular
approach to the computation. As such it is conceptually on a par with other modular
approaches and its evaluation will have to based on overall theory comparison. We
focused a very narrow dimension of comparison pertaining to the theory of the con-
junctive interpretation of disjunction and its insensitivity to the number of disjuncts
involved. But the comparison will have to be broadened to touch on the full range of
phenomena that have been argued to bear on the correct theory of SIs.33
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