
Mortimer and Raymond Sackler
Institute of Advanced Studies

 המכון ללימודים מתקדמים
ע”ש מורטימר וריימונד סאקלר

 Mortimer and Raymond Sackler Institute of Advanced Studies
http://www.tau.ac.il/institutes/advanced/

 Light refreshments will be served before each lecture | כיבוד קל יוגש לפני כל הרצאה

The Lecture will be held on Sunday,
14 May 2017, at 11:10,

Room 006, Schreiber Building,
 Tel-Aviv University, Ramat-Aviv.

The Lecture will be held on Sunday,
21 May 2017, at 11:10,

Room 006, Schreiber Building,
Tel-Aviv University, Ramat-Aviv

ההרצאה תתקיים ביום ראשון,
14 במאי 2017, בשעה 11:10,
בחדר 006, בניין שרייבר,
אוניברסיטת תל-אביב, רמת-אביב

ההרצאה תתקיים ביום ראשון,
21 במאי 2017, בשעה 11:10,
בחדר 006, בניין שרייבר,
אוניברסיטת תל-אביב, רמת-אביב

פרופסור ניל אימרמן
הקולג' למידע ולמדעי המחשב

אוניברסיטת מסצ'וסטס, אמהרסט, ארה"ב

Professor Neil Immerman
College of Information and Computer Sciences

University of Massachusetts, Amherst, USA

Lecture | הרצאה

Lecture | הרצאה

DESCRIPTIVE COMPLEXITY: USING
LOGIC TO UNDERSTAND COMPUTATION

EFFICIENTLY REASONING ABOUT PROGRAMS

Abstract
Most computational problems can be understood as computing a function from n-bit inputs to m-bit outputs. The bits
of the output are properties of the input. It is striking that the computational complexity of computing the function
in terms of time, space, number of processors, etc., can be completely understood via the expressive power of the
logical language needed to describe these properties. This will be an accessible talk explaining descriptive complexity
and the resulting insights gained. I will end by describing some of the progress achieved by many researchers over the
last 5 years.

Abstract
When Alan Turing defined his computing machines in his original 1936 paper, he proved that even the simplest problems
about their behavior, e.g., does a given machine when started on input 0 eventually halt, was not computable. Thirty-
five years later, Steve Cook presented SAT as the first NP-complete problem. The understanding was that SAT was
an inherently infeasible computational problem. Now that a large and increasing part of our world is organized and
controlled by computer programs, we need as much automatic help as possible to assure that our programs safely
and faithfully do what they should do.
In this talk, I will describe a language and methodology that has been built up to reason about properties of programs,
including the reachability of pointers in programs that destructively update data structures. We automatically define
correctness conditions for these programs. These are translated to SAT problems and then, in practice, efficiently
checked using SAT solvers.

