Prudent sessile feeding by the corallivore snail Coralliophila violacea on coral energy sinks

Uri Oren, Itzchak Brickner and Yossi Loya*

Department of Zoology, The George S.Wise Faculty of Life Sciences, and the Porter Super-Center for Ecological and Environmental Studies, Tel Aviv University, Tel Aviv 69978, Israel

Convergence of form and function has accompanied the evolution of modular growth in terrestrial plants and colonial marine invertebrates. Part of this convergence is related to the optimal exploitation of resources (space and light) and the ability to translocate energy products from sources to sink sites. Fueling on the energy pathways and energy sinks of terrestrial plants is a well-known phenomenon. Hermatypic corals, the major organisms constructing tropical reef environments, contain photosynthetic algae (zooxanthellae), energetic products of which are translocated towards sink sites located at the corals’ growing tips and regenerating areas. Despite the plant–coral convergence in energy pathways and sinks, there has been no evidence to date that coral energy sinks are exploited by coral predators. Gastropods of the genus Coralliophila are found feeding on coral margins, causing small and localized tissue damage. However, the ability of these snails to continue to feed without moving over a long period remains puzzling. Using a 14C labelling technique, we found that colony margins of the stony coral Porites function as major energy sinks. When snails inhabited these sites they incorporated significant amounts of 14C, indicating that they had fed on photosynthetic products translocated from the interior of the colony. Furthermore, when snails aggregate in the interior of the colony, thereby causing large surface injuries, they induce the development of significant new sink sites. This mode of prudent sessile feeding maximizes the efficiency of energy exploitation by the predatory snail, while minimizing tissue damage to the coral. The fact that energy sink sites occur in many coral species suggests that the strategy of sink exploitation for nutrition could also occur in many other marine host–symbiont relationships.

Keywords: Coralliophila violacea; energy sinks; feeding; integration; Porites sp.; Red Sea

1. INTRODUCTION

Carbon transfer between sources (sites that export assimilates) and sinks (sites that import assimilates) and its regulation within colonial organisms are critical aspects in their biology (Dyrynda 1986). In hermatypic corals, photosynthetic products are continuously translocated from the symbiotic zooxanthellae to the host tissue, thereby contributing to a variety of energetic requirements such as maintenance, synthesis of new cells, formation of skeletal matrix, mucus production, deposition of calcium carbonate, and storage of energy-rich compounds for coral reproduction (Muscatine & Cernichiari 1969; Crossland et al. 1980a,b; Muscatine et al. 1981, 1984; Rinkevich & Loya 1983, 1984; Kellogg & Patton 1983; Stimson 1987). In a pioneering study on coral–algae symbiosis, Pearse & Muscatine (1971) documented that in Acropora cervicornis, organic products, mainly in the form of lipids, glycerol and glucose, are translocated from the branch base to the tip (sink site), contributing to coral calcification. They found that both ethanol–methanol–chloroform-soluble and -insoluble tissue fractions were translocated upwards from the lower parts of the branches. Taylor (1977) further confirmed a strong preferential movement and accumulation of 14C-labelled compounds towards the tips in A. cervicornis, and Rinkevich & Loya (1983) recorded a similar pattern of translocation in the branching coral Stylophora pistillata.

The energy resources available to an organism are often limited and hence are differentially allocated according to a variety of biological demands (Kozlowski & Wiebert 1986; Oren et al. 1998). The paradigm for intracolonial transport of organic compounds within hermatypic corals is not new; Pearse & Muscatine (1971) suggested that intracolonial translocation occurs towards regions of maximal demand. This early hypothesis was recently supported by Oren et al. (1997a), who documented an orientated intracolonial transport of 14C-labelled photosynthetic products towards regeneration areas in the massive stony corals Favia fawsi and Platygrya lamellina in Eilat (Red Sea).

The hermatypic role of scleractinian corals is obviously counteracted by the activities of coral predators. Compared with attacks by Acanthaster planci and Diadema sp., the harmful effects of the corallivorous gastropods are less widespread. Many gastropods of the genus Coralliophila are found feeding on the margins of the living tissues of coral colonies, causing small and localized tissue...
damage (Ott & Lewis 1972; Hayes 1990; Schuhmacher 1992). The tendency of the snails to feed on colony margins has been suggested as a protective strategy, because these basal areas exhibit algal colonization, which disguises the presence of the snail (Brawley & Adey 1982). Corallivores that feed on coral tissues expose the skeleton. Kitting (1975) suggested that molluscs, such as *Coralliophila*, feed without moving to decrease the rate of exposing the white coral skeleton and thus to prevent the ‘tracking’ of the snail by predatory fish. In addition, a ‘food-stealing strategy’ was suggested as an explanation for the sessile feeding of *Coralliophila*, because snails were seen with the proboscis inserted into the polyp coelenterons of *Agaricia agaricites* and *Montastrea annularis* (Hayes 1990).

The most common *Coralliophila* species in the northern parts of the Gulf of Aqaba (Red Sea) is *Coralliophila violacea* (Schuhmacher 1992). Like all members of the gastropod family *Coralliophilidae*, *C. violacea* lacks both jaws and a radula (Ward 1965; Brawley & Adey 1982), obtaining its food by a special mode of sucking with the proboscis that preserves the polyp for long-term exploitation (Ward 1965). Examining the impact of corallivorous snails on stony corals in the Red Sea, Schuhmacher (1992) found that *C. violacea* only feeds on colonies of *Porites* sp. and *Synarea* sp., often at the margin of the living tissue. The objective of the present study was to test the puzzling ability of *C. violacea* to feed without moving by examining a new feeding hypothesis, which suggests that *C. violacea* is a corallivore that feeds on the coral’s energy-sink sites.

2. MATERIALS AND METHODS

From June to November 1997 we examined the feeding behaviour of *C. violacea* (figure 1a) on 46 *Porites* colonies at a depth of 6–9 m opposite the Marine Biology Laboratory in Eilat (Red Sea). The surface areas of the lesions caused by the feeding of individual snails, as well as by aggregation feeding, were recorded by analysing underwater photographs of these lesions with a computerized image analyser (Olympus CUE-3). To

Figure 1. Photographs of *Porites* corals with *C. violacea*. (a) A single snail feeding at the margin of the colony (scale bar, 1 cm); (b) aggregation of snails feeding in the interior parts of the colony (scale bar, 1 cm); (c) close-up of a feeding snail (scale bar, 0.5 cm); (d) close-up of the tissue lesion caused by the snail (scale bar, 0.5 cm). The surrounding *Porites* tissue is swollen and pink in response to the injury.
examine possible energy transfer between the coral host and its snails, we labelled 17 additional Porites colonies (all approximately 20 cm² in diameter) with radioactive bicarbonate, as described below. Round transparent cylinders were constructed to enable ¹⁴C labelling of small (3 cm²) restricted tissue areas on the surface of the colonies examined (figure 2). The opening of each cylinder was glued to an artificial sponge, achieving a firmly sealed contact with the coral tissue. Each cylinder was tightly attached to the surface of the colony by three steel wires anchored to a hard substrate near the colony. After sealing the cylinder to the coral surface, ¹⁴C was injected through a hole, 3 mm in diameter and covered with rubber (figure 2). The injected radioactive carbon (final concentration 0.1 µCi ml⁻¹) left a volume of 10 ml of air for water stirring and the exchange of gas. Colonies were labelled at 07.00 to allow 10 h of daylight for active photosynthesis. At the end of this labelling procedure, the cylinders were carefully removed from the experimental colonies.

Four different ¹⁴C-labelling treatments (i.e. labelling locations) were used to determine the possible transfer of photosynthetic products from the Porites tissues to their host snails. In the first treatment we labelled five Porites colonies with no snails. The labelling cylinders were attached to the surface of these colonies at a distance of 5 cm from the colony margin (CM, figure 3). The second treatment labelled four additional Porites colonies, each bearing one to two snails at its margin. Again, the cylinders were attached to the surface of the colonies at a distance of 5 cm from their margins and 5–7 cm from the margin snails (MS, figure 4). The third treatment labelled four Porites colonies, each bearing one snail in its interior. The cylinders were attached 5 cm from each interior snail (IPS, figure 5). This labelling treatment was additionally used to determine possible energy translocations towards margins located at distances greater than 5 cm. The fourth treatment labelled four Porites colonies bearing aggregations of snails (8–13 snails in each patch) in their interiors. The cylinders were attached to the coral surface 5 cm from the border line of the lesion caused by the aggregating snails (AS, figure 6).

Coral fragments (tissue + skeleton) were taken from the experimental colonies 48 h after labelling, by means of a round stainless steel corer, enabling collection of similarly sized fragments (1 cm²). From each labelled colony we sampled 5–6 tissue fragments (sampling locations in each treatment are presented in figures 3–6, respectively). For controls we sampled fragments and snails from ten unlabelled Porites colonies. The samples were placed individually in plastic vials and brought to the laboratory. The sea water was drained from each vial and 8 ml of hydrogen peroxide (30%) was added to digest the tissues. After complete digestion (24 h), the remaining skeletons were removed and two replicates of 0.5 ml from each vial were sampled. Five millilitres of Biodegradable Counting Scintillation cocktail (BCS, Amersham) were added to each sample. Activity of ¹⁴C in Porites

Sessile feeding by Coralliophila violacea · U. Oren and others 2045

Figure 2. A diagram of the transparent cylinder used to label a restricted tissue area (3 cm²) with radioactive carbon on the surface of the experimental Porites colonies.

Figure 3. A schematic diagram of the labelling and sampling locations in Porites colonies that had no snails (n=5). The labelling cylinder was attached 5 cm from the colony margin (CM). White dots represent the locations from which the tissue fragments were taken. L, labelled area; CM, colony margin; IP, interior parts of the colony. Activity of ¹⁴C in the tissues of these fragments was determined by liquid scintillation counter.
3. RESULTS

Eighty-six per cent of the snails examined in this study (total number of snails = 156) fed on colony margins (figure 1a) or on the borderlines of injuries caused by snail aggregations (figure 1b). All these snails remained permanently attached to their feeding sites throughout the four-month study period. Only 14% of the snails examined fed on the interiors of the colonies examined. The total shell length of *C. violacea* ranged between 6 mm and 18 mm and the size of the tissue lesion caused by the feeding activity of an individual average-sized snail was less than 0.25 cm² (figure 1d). However, snail aggregations in the interior parts of the colony were found to cause relatively larger tissue lesions since in these cases the small individual lesions were combined. *Porites* tissue surrounding the feeding snails frequently became swollen and pink (figure 1c, d).

Forty-eight hours after the four different ¹⁴C labelling treatments, the labelled areas (L) in all experimental colonies (see tables 1–4) demonstrated high ¹⁴C activity compared with the natural ¹⁴C activity of *Porites* tissues (¹⁴C activity in unlabelled randomly sampled *Porites* colonies, i.e. control colonies = 23.1 ± 3.63 cpm cm⁻², n = 10). The high ¹⁴C activity of *Porites* tissues confined within the labelled areas indicates that our method of restricted tissue labelling was efficient.

(a) *Porites colonies with no snails*

Coral tissues taken from the CM in the five *Porites* colonies that had no snails (see figure 3) exhibited significantly high ¹⁴C activity compared with the interior tissues (*p* < 0.01, one-way ANOVA, Fisher LSD; Sokal & Rohlf 1969; see CM and IP, table 1). Moreover, the ¹⁴C activity of the tissues taken from the interior parts of these colonies did not differ significantly from the ¹⁴C activity of tissues taken from the unlabelled control colonies (*p* > 0.05, one-way ANOVA, Fisher LSD). The results of this labelling treatment indicate that colony margins function as energy sinks even in the absence of snails and, furthermore, that the translocation of photosynthetic products from the labelled area towards the margin is orientated.

(b) *Porites colonies bearing snails at their margins*

The coral tissues taken from the colony margins of four colonies that bore one to two snails at their margins (see figure 4) demonstrated significantly higher ¹⁴C activity compared with the interior tissues (*p* < 0.01, one-way ANOVA, Fisher LSD; see CM and IP, table 2). The tissues of the snails that inhabited these margins demonstrated significantly higher ¹⁴C activity (*p* < 0.01, one-way ANOVA, Fisher LSD; table 2) compared with the ¹⁴C activity of snails randomly sampled from unlabelled control colonies (¹⁴C activity of control snails = 25.2 ± 3.5 cpm cm⁻²).

Figure 4. Schematic diagram of the labelling and sampling locations in *Porites* colonies that bore 1–2 snails at their margins (n = 4). White dots represent the locations from which the tissue fragments were taken; black dots represent the snails. MS, marginal snails (for other abbreviations see figure 3).

Figure 5. A schematic diagram of the labelling and sampling locations in *Porites* colonies that bore one snail in the interior part (n = 4). White dots represent the locations from which the tissue fragments were taken and the black dot represents the snail. IPS, interior-part snail; IB, tissues taken from the border line of the lesion caused by the feeding activity of the snail (for other abbreviations see figure 3).
In a previous study, Oren et al. (1997a) recorded an orientated translocation of 14C-labelled materials towards large tissue lesions that were inflicted on the surface of the massive corals *Favia favea* and *Platygryra lamelina*. The results of that work were, to our knowledge, the first to show that massive corals transfer energy products towards regenerating areas, and that these injured sites function as strong energy sinks. The fact that *Porites* margins function as energy sinks even in the absence of...
was less than 0.25 cm². A previous study on coral the tissue lesion caused by the feeding of a single snail (table 4). However, it is important to note that the size of does not induce the development of a significant sink (table 3). Average background activity of Porites tissues = 23.1 ± 3.63 cpm cm⁻² (control colonies, n = 10).

Table 1. Average activity of ¹⁴C in Porites tissues (cpm cm⁻² ± s.d.) recorded in labelled colonies that had no snails

<table>
<thead>
<tr>
<th>coral no.</th>
<th>L</th>
<th>CM</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8508–8705 (1)</td>
<td>217 ± 14 (2)</td>
<td>24 ± 2 (3)</td>
</tr>
<tr>
<td>2</td>
<td>16 481–18 941 (1)</td>
<td>1265 ± 23 (2)</td>
<td>19 ± 6 (3)</td>
</tr>
<tr>
<td>3</td>
<td>32 563–35 523 (1)</td>
<td>170 ± 9 (2)</td>
<td>26 ± 8 (3)</td>
</tr>
<tr>
<td>4</td>
<td>2957–3147 (1)</td>
<td>111 ± 17 (2)</td>
<td>22 ± 4 (3)</td>
</tr>
<tr>
<td>5</td>
<td>5272–5412 (1)</td>
<td>409 ± 31 (2)</td>
<td>28 ± 7 (3)</td>
</tr>
</tbody>
</table>

Table 2. Average activity of ¹⁴C in Porites tissues (cpm per snail ± s.d.) recorded in labelled colonies that bore one to two snails at their margins

| MS, tissue of the snails taken from CM. For background activities and other notations see table 1. |
|---|---|---|---|
| no. | L | CM | IP |
| 1 | 21 445–24 659 (1) | 230 ± 38 (2) | 28 ± 3 (3) | 124 ± 16 (2) |
| 2 | 14 85–16 289 (1) | 156 ± 19 (2) | 21 ± 6 (3) | 231 ± 13 (1) |
| 3 | 16 567–16 849 (1) | 276 ± 8 (2) | 31 ± 3 (3) | 99 ± 11 (1) |
| 4 | 6 567–6 747 (1) | 403 ± 29 (2) | 18 ± 3 (3) | 421 ± 35 (2) |

Snails (table 1) provides an indication that energy transfer may also occur in unjured coral colonies. Space for settlement on a coral reef has been shown to be one of the most important limiting factors in this ecosystem (Chornesky 1989). The CMs of Porites colonies, as in many other massive corals, are the sites most involved in the competition for space (Chornesky 1989). In addition, Porites margins are frequently shaded owing to the spherical shape of the colony (Highsmith 1980), resulting in a lower photosynthetic ability of these sites. The tips of many branching forms of stony corals are white, indicating that they are free of zooxanthellae (Fang et al. 1989). Nevertheless, these tips still have a very high calcification rate, indicating that they are fuelled energetically by the lower parts of the branches (Fang et al. 1989). In Porites, the margin tissues are also whiter than the inner colony tissues, probably owing to their having fewer zooxanthellae, and thus, like the tips of branching forms, they are likely to have lower photosynthetic abilities. We assume that the orientated energy translocation recorded towards the Porites margins occurs continually so as to maintain the energetic requirements of these particular sites. In other words, Porites margins, like tissue injuries in other massive corals, function as significant energy sinks.

An individual snail, feeding from the IP (figure 5), does not induce the development of a significant sink (table 4). However, it is important to note that the size of the tissue lesion caused by the feeding of a single snail was less than 0.25 cm². A previous study on coral regeneration found that large tissue lesions (over 3 cm²) inflicted on the surface of the massive corals F. favus and Platygyra lamellina induced the development of significant sinks, in contrast to lesions smaller than 1 cm² (Oren et al. 1997a,b). This may explain why the relatively small tissue lesions located in the interior parts of the Porites colonies (figure 5) do not act as sinks (table 3). The significant energy sinks located at the margins of the Porites colonies (figure 3; table 1) and the fact that snails that fed at these sites incorporated significant amounts of ¹⁴C products

Some of the colonies bore snails that fed in aggregations located in the IPs. This feeding behaviour caused relatively large tissue lesions resulting from the merging of several small individual lesions. When these interior lesions were greater than 2 cm² (an aggregation of more than eight snails) they functioned as significant energy sinks (table 3). This interesting finding indicates that C. violacea is able to induce the development of new sink sites by inflicting large tissue lesions in the interiors of the colonies. The fact that large tissue lesions on the surface of Porites colonies act as significant sinks, unlike small ones (compare table 4 with table 3) indicates that the size of the lesion reflects the strength of the energetic sink, as previously found for the massive stony corals F. favus (Oren et al. 1997a,b) and Platygyra lamellina (Oren et al. 1997a). Many members of the genus Coralliophila were documented feeding in aggregation (Ward 1965; Miller 1981; Hayes 1990; Soong & Chen 1991). The ability of C. violacea to induce the development of major sink sites through aggregation feeding reveals the energetic benefit of this sessile feeding behaviour.

In addition to the previously suggested advantages of the sessile feeding behaviour of Coralliophila, which mainly address protective strategies (Kitting 1975; Crawley & Adey 1982; Hayes 1990), the current study indicates that C. violacea may be regarded as a prudent predator (Slobodkin 1961). Such sessile feeding maximizes the efficiency of energy exploitation by the predatory snail, while minimizing tissue damage to the coral.

Convergence of form and function has accompanied the evolution of modular growth in terrestrial plants and colonial marine invertebrates (Dyrynda 1986). Part of this convergence is related to optimal exploitation of resources (space and light) and the ability to translocate energy products from sources to sinks. In plants, the sink organs are lateral meristems, developing buds, young leaves, fruits, roots and storage organs (see the review in Ho 1988). Feeding on the energy pathways and energy sinks of terrestrial plants is a well-known phenomenon, demonstrated by various organisms such as pathogenic
Table 3. Average activity of 14C in Porites tissues (cpm cm\(^{-2}\) ± s.d.) and snail tissues (cpm per snail ± s.d.) recorded in colonies that bore one snail in the interior part of the colony

(L, coral tissue from labelled area located 5 cm from the interior snail; IB, coral tissue from the border line of the injury caused by the interior snail; IPS, tissue of the interior part snail. For background activities and other notations see table 1.)

<table>
<thead>
<tr>
<th>coral no.</th>
<th>L</th>
<th>IB</th>
<th>IP</th>
<th>IPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3033–3323 (1)</td>
<td>24±3 (2)</td>
<td>28±7 (2)</td>
<td>28±5 (1)</td>
</tr>
<tr>
<td>2</td>
<td>1818–2724 (1)</td>
<td>27±5 (2)</td>
<td>25±4 (2)</td>
<td>24±3 (1)</td>
</tr>
<tr>
<td>3</td>
<td>2999–3123 (1)</td>
<td>20±2 (2)</td>
<td>21±5 (2)</td>
<td>33±6 (1)</td>
</tr>
<tr>
<td>4</td>
<td>3596–3764 (1)</td>
<td>25±4 (2)</td>
<td>26±2 (2)</td>
<td>21±2 (1)</td>
</tr>
</tbody>
</table>

Table 4. Average activity of 14C in Porites tissues (cpm cm\(^{-2}\) ± s.d.) and snail tissues (cpm per snail ± s.d.) taken from labelled colonies that bore snail aggregations in the interior part of the colony

(L, coral tissue from labelled area located 5 cm from the aggregating snails; IB, coral tissue from the border line of the injury caused by the aggregating snails; AS, aggregating snails from which tissue samples were collected. For background activities and other notations see table 1.)

<table>
<thead>
<tr>
<th>coral no.</th>
<th>L</th>
<th>IB</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15 183–15 403 (1)</td>
<td>383±19 (2)</td>
<td>19±2 (2)</td>
</tr>
<tr>
<td>2</td>
<td>25 418–27 124 (1)</td>
<td>488±31 (2)</td>
<td>29±7 (2)</td>
</tr>
<tr>
<td>3</td>
<td>4939–5063 (1)</td>
<td>161±35 (2)</td>
<td>25±5 (2)</td>
</tr>
<tr>
<td>4</td>
<td>4596–4764 (1)</td>
<td>473±43 (2)</td>
<td>26±2 (2)</td>
</tr>
</tbody>
</table>

viruses (Burdon 1987), bacteria (Mani 1964), fungi (Hall et al. 1992), parasitic plants (Seel et al. 1992) and many gall-forming invertebrates (Mani 1964; Larson & Whitham 1991; Inbar et al. 1995). These organisms compete with host-plant sinks and may also alter carbon allocation (Inbar et al. 1995). Despite the convergence of plants and hermatypic corals in form and function, the present study is thought to be the first to show a convergence between phloem-feeding insects and a corallivore snail. The ability of the aggregating snails to induce the development of new energy sinks, by forming aggregating snails; IB, coral tissue from the border line of the injury caused by the aggregating snails; AS, aggregating snails from which tissue samples were collected. For background activities and other notations see table 1.)

feeding on energy pathways and energy sinks by various organisms in terrestrial plants suggests that this feeding method may also be typical of many other marine host–symbiont relationships.

We thank the staff of the Interuniversity Institute of Eilat for diving facilities and hospitality. We are grateful to N. Paz for her editorial assistance. This research was supported by the Israel Science Foundation (Israel Academy of Science and Humanities) and the Porter Super-Center for Ecological and Environmental Studies at Tel Aviv University.

REFERENCES

As this paper exceeds the maximum length normally permitted, the authors have agreed to contribute to production costs.