Uses of solid electrochemical cells in energy related fields

I. Riess

Physics Department, Technion, Haifa 32000 riess@tx.technion.ac.il

Outline:

- 1. Two types of electrochemical cells
- 2. Solid oxide fuel cells
- 3. High temperature electrolyzers for water
- 4. High temperature electrolyzers for CO₂
- 5. Oxygen generators for coal gasification
- 6. Oxygen sensors for fuel consumption control

1. Two types of electrochemical cells:

1a. In an <u>electronic device</u> only electrons are transferred in the electrode process:

Metal semiconductor Metal

2a. "Regular electrochemical cells": an electrolyte between two electrodes, as in batteries and fuel cells.

• e.g.,

SE = solid electrolyte

- The reaction at the cathode $O_2 + 4e^- \rightarrow 2O^{2-}$ represents a transfer of both charge and matter and is therefore an electro+chemical one.
- So is also the one at the anode: $H_2 + O^{2-} \rightarrow H_2O + 2e^{-}$.

1b. Second type of electrochemical cells:

- It is possible only in <u>solid</u> cells because it requires the presence of electrons beside ions in the ionic conductor.
- MIEC- Thus the solid is a mixed-ionic-electronic-conductor.
- e.g.

- No solid electrolyte is involved
- No additional electrodes.
- Obviously, the reactions on both sides of the MIEC are electrochemical ones, i.e. involve both mater and charge transfer.
- •3 We shall discuss devices based on both types of cells

2. Solid oxide fuel cells (SOFCs):

2a. Those based on oxygen ion conductors.

Schematics:

How does a solid conduct ions?

2b. Realization of SOFCs based on oxygen conductors:

• Planar cells (most popular):

- •Tubular design of different types:
- Simple tubular (Westinghouse/Siemens):

• Other tubular designs:

A proof-of-concept HPD Delta 9 stack (picture courtesy of Siemens)

Flattened tubular (Simens):

MHI:

Fig. 9 Structure of MOLB Type SOFC

2c. SOFCs based on proton conductors:

- Proton conductor SOFCs have certain advantages (mainly: H₂ is not diluted by the exhaust gas).
- •The SE is: $BaCe_{0.9}Y_{0.1}O_3$ (or Sr based).
- Unfortunately, these materials are unstable in the presence of CO₂ and decompose while forming the carbonate BaCO₃ or SrCO₃.
- More R&D is required in this direction.

3. High temperature electrolyzers for water (for generating H₂ as fuel e.g. in nuclear facilities):

Regular electrolysis decompose the water at room temperature:

$$H_2O + \Delta G \rightarrow H_2 + \frac{1}{2}O_2$$

where ΔG is the free energy of formation of water and fixes the minimum energy <u>required</u> to decompose the water.

- $\Delta G(T)$ depends on temperature and is considerably reduced at elevated T.
- At a T > 2000 °C Δ G vanishes and water decomposes spontaneously.
- This high temperature is above practical. What can one do to take advantage of the decrease in $\Delta G(T)$ with T?
- Answer: electrolyze the water at elevated T. This requires a lower energy investment (assuming that the energy of heating the gases is mostly recovered through a heat exchanger).

- Electrolysis at elevated T (~1000 °C) can only be done using ceramic solid oxide cells.
- They have the structure of a SOFC but operate under an applied voltage and in the reverse direction:

4. High temperature electrolyzers for CO₂ (for removing and turning it into a useful product CO):

- CO₂ also tends to decompose at elevated T.
- One can electrolyze in a manner discussed before for electrolyzing water at elevated T.
- Alternatively one can go to higher T where spontaneous decomposition occurs with a small ΔG.
- However, at T > 1000 °C there are no known SEs and all known oxides are MIECs.
- Yet CO₂ can be electrolyzed by using a MIEC replacing the driving force of the electrical field with a pressure gradient:

5. Oxygen generators for coal gasification

- Coal as a solid is not so convenient for use.
- There are processes that use coal to produce valuable gases.
- E.g.

$$C + H_2O = CO + H_2$$

which is syngas.

- Both CO and H₂ can serve as fuel and CO is valuable for the chemical industry.
- Unfortunately this process is endothermic and heat has to be supplied.
- For heating some oxygen is introduced to allow oxidation (burning) of coal.
- The practice prefers adding oxygen to the reaction. Thus one cannot use air as the nitrogen will dilute the gas products.

• Integrated solution: the use of MIEC for directly introducing pure oxygen into the reaction chamber:

- Alternatively, oxygen can be filtered separately and then fed into the reactor.
- Device for oxygen separation:

6. Oxygen sensors for fuel consumption control

- Control of proper combustion is achieved using a solid electrochemical cell in the SOFC configuration.
- The difference is only that no fuel is supplied and no power is withdrawn, only open circuit voltage is measured.
- Thus the detection of proper combustion by measuring P(O₂) in a car exhaust gas (Lambda sensor) is schematically:

Thank you