ISRAEL IN TRANSITION

From Late Bronze II to Iron IIa (c. 1250-850 B.C.E.)

(A Conference Supported by
the Arts and Humanities Research Council)

edited by

Lester L. Grabbe
LIBRARY OF HEBREW BIBLE/OLD TESTAMENT STUDIES

491

Formerly Journal for the Study of the Old Testament Supplement Series

Editors
Claudia V. Camp, Texas Christian University
Andrew Mein, Westcott House, Cambridge

Founding Editors
David J. A. Clines, Philip R. Davies and David M. Gunn

Editorial Board
Richard J. Coggins, Alan Cooper, John Goldingay, Robert P. Gordon,
Norman K. Gottwald, Gina Hens-Piazza, John Jarick, Andrew D. H. Mayes,
Carol Meyers, Patrick D. Miller, Yvonne Sherwood
THREE SNAPSHOTS OF THE IRON IIA: THE NORTHERN VALLEYS, THE SOUTHERN STEPPE, AND JERUSALEM

Israel Finkelstein, Alexander Fantalkin, and Eliezer Piasetzky

The Iron IIA has been in the eye of the storm of archaeological research in Israel for the last ten years, with ramifications for the archaeology of Greece and Syria. New discoveries in the field and a growing number of published ¹⁴C measurements call for an updated overview of this period. In what follows we wish to deal with three different regions: the northern valleys, the southern steppe and Jerusalem.

The Northern Valleys

At all major sites in the northern valleys, the Iron IIA is represented by at least two phases. This is clearly seen in Table 1.

Table 1. Iron IIA Stratigraphy in the North

<table>
<thead>
<tr>
<th>Megiddo</th>
<th>Rehov</th>
<th>Hazor</th>
<th>Jezreel</th>
<th>Taanach</th>
<th>Yokneam</th>
<th>Dating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short gap</td>
<td>Lower mound</td>
<td>VIII</td>
<td>Decline</td>
<td>Decline</td>
<td>Pits</td>
<td>Late 9th century</td>
</tr>
<tr>
<td></td>
<td>abandoned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA–IVB Two palaces</td>
<td>IV</td>
<td>IX Continues</td>
<td>Compound IIB</td>
<td>XIV Fortified</td>
<td>First half of the 9th century</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stratum X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VB No monumental architecture</td>
<td>V</td>
<td>X Fortified</td>
<td>Fills</td>
<td>IIA</td>
<td>XV Unfortified</td>
<td>Late 10th/early 9th century</td>
</tr>
<tr>
<td></td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Those sites which had served as major urban centers in the late Iron I (Megiddo, Rehov, and possibly Taanach and Yokneam) were utterly destroyed toward the end of that period. This destruction may have been followed by a short occupational gap, after which people returned to the mounds and established new settlements, characterized by Iron IIA pottery. In most of the Iron IIA sites there is a gradual progression from a more sparsely, unfortified settlement in the beginning of the Iron IIA to a more elaborate one—in some cases fortified—town in the late Iron IIA. The late Iron IIA strata too came to an end in a conflation.
The accumulation of radiocarbon data from the late Iron I strata (Megiddo VIA, Tel Hadar, and Yokneam XVII) provide an average date of ca. 1005–925 for this phase in the Iron Age sequence in the north (Finkelstein and Piasezky 2006a; for Yokneam see Boaretto et al. 2005). Tel Rehov presented 14C evidence that the late Iron I pottery repertoire continued for a short while, into the second half of the 10th century B.C.E. Samples from five loci—all of them pits—from the last Iron I phase at the site (Stratum D–3) were sent to the laboratory. Mazar et al. (2005, 211) preferred to calculate the results of five of seven measurements from one locus only because “the two young dates are outliers, not in the classical sense as they are within the 2σ overlap range, but in comparative terms.” Yet, there is no reason to exclude the two additional readings and the other loci, from both the statistical (they are consistent with the rest of the measurements) and archaeological point of view. Regarding the latter, Stratum D–3 consists of “more than 30 small and shallow pits…the activity represented by these pits might have lasted quite some time” (2005, 208). In a situation like this results in the 2σ range must be included.

Taking into account five of seven readings from one locus, Mazar et al. (2005, 211) reached a calibrated date of 1001–971 (39.9%) or 971–958 (28.3%). Calculating the short-lived results of all five loci, one reaches a 1σ calibrated date of 945–905 B.C.E. (44%) (Finkelstein and Piasezky 2006b). Since we are dealing with pits, some of which may have been used for refuse, the result above should be taken as the oldest possible date. This result (for more details see Finkelstein and Piasezky, 2006b) complies with the date given by Boaretto et al. (2005) for the Iron I/Iron IIA transition based on many sites and the work of two laboratories.

To sum up this point, Stratum D–3 at Tel Rehov seems to be the latest late Iron I layer known so far. Incidentally, Pit 4830—the anchor in Mazar et al.’s calculation—was cut by a later pit, possibly also dating to Stratum D–3 (Mazar et al. 2005, 208).

For the late Iron IIA we have now obtained radiocarbon results from several sites in the north (Table 2). There can be no doubt that this phase should be placed in the first half of the 9th century B.C.E.

<table>
<thead>
<tr>
<th>Site</th>
<th>Dates</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazor IX</td>
<td>895–805/825–790</td>
<td>Boaretto et al. 2005</td>
</tr>
<tr>
<td>Rosh Zayit IIa</td>
<td>895–835/910–840</td>
<td>Boaretto et al. 2005</td>
</tr>
<tr>
<td>Rehov IV</td>
<td>877–840</td>
<td>Mazar et al. 2005</td>
</tr>
<tr>
<td>Dor 8b in Area D2</td>
<td>890–820</td>
<td>Gilboa and Sharon 2003</td>
</tr>
<tr>
<td>Aphek X–8</td>
<td>832–800</td>
<td>Gadot, pers. comm.</td>
</tr>
</tbody>
</table>

* The uncalibrated dates obtained in the measurements shown in Table 2 provided a well-defined result, with a small uncertainty of less than 10 years (2720±8 BP). Another Megiddo measurement, which reads 1005–925 B.C.E., is 4σ away from this determination and therefore may be treated as an outlier.
Since at Megiddo the ashlar palaces close the Iron IIA sequence, even their foundation—let alone destruction—cannot be dated in the 10th century B.C.E.

The only site which provided ^14^C dates for the earlier stages of the Iron IIA sequence is Tel Rehov. Three Iron IIA phases were identified in Area C and labeled VI, V, and IV. Mazar and his team (Bruins et al. 2003) had first argued that Stratum V was destroyed ca. 925 by Pharaoh Sheshonq I, but later opted for a somewhat later date (Mazar et al. 2005). They also dated Stratum VI to the first half of the 10th century B.C.E.

For Stratum VI, Mazar et al. (2005, 221) opted for the oldest 1σ date of 969–960 (only 12.4% probability) because in their view taking the highest probability would result in a too short period of time for Strata VI and V combined. Yet, in the case of domestic brick houses this is hardly an acceptable argument, and in any event, as we shall see below, the range for these strata is much wider. In addition, Mazar and his team calculated five measurements, four of which are not sufficiently safe short-lived samples (“fine charcoal” and a bone). Assuming that Stratum VI is an independent layer, as argued by Mazar (and not an early phase of Stratum V), the highest probability (49%) for the 1σ result of the short-lived (cereal grains) sample is 925–890 (Finkelstein and Piasetzky 2006b).

Regarding Stratum V, Mazar et al. (2005) opted for certain loci and for the Groningen laboratory results (excluding the results of the Arizona and Rehovot laboratories). We see no reason for this selection of data. Mazar (2004, 33–34; Mazar et al. 2005, 232) has repeatedly argued that the Rehovot results for Stratum V are too low; but in the same way, one can argue that the Groningen results are too high (contra Mazar’s claim see Sharon et al. 2005 comparing old and new Dor dates measured at Rehovot). And why exclude the Arizona results which fall between the two other laboratories? The only safe way to avoid bias is to include all short-lived consistent measurements, from all laboratories.

Calculating the 31 available readings for Stratum V results in a 1σ date of 880–840 (49.6%—Finkelstein and Piasetzky 2006b).

To conclude this issue, Table 3 compares the highest probability 1σ results of the Tel Rehov team (Mazar et al. 2005) with the results obtained by Finkelstein and Piasetzky (2006b). In order to work on safer grounds and to avoid the necessity to choose between close probabilities (e.g. 40% and 27%), we add a column for the full 1σ range for each stratum (for example, in a situation of 905–890 B.C.E. [18%] and 880–840 B.C.E. [49%], we opt for a date in the full range—905–840 B.C.E.).

Note, again, that the Tel Rehov team results include some long-term samples; unnecessarily excludes samples as “outliers” though they are consistent with other measurements in their relevant group; and excludes (in the case of Stratum V) two laboratories. Our results include all consistent short-lived results, from all laboratories.
Table 3. Two Systems of Interpretation for the Tel Rehov 14C Results

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Mazar, Bruins and van der Plicht (Stuiver et al. 1998)*</th>
<th>Finkelstein and Piaseczky (Reimer et al. 2004)*</th>
<th>Finkelstein and Piaseczky full 1σ range</th>
</tr>
</thead>
<tbody>
<tr>
<td>D–3</td>
<td>1001–971</td>
<td>945–905</td>
<td>975–905</td>
</tr>
<tr>
<td>VI</td>
<td>927–897 (they preferred the date 969–960—12.4%)</td>
<td>925–890</td>
<td>925–850</td>
</tr>
<tr>
<td>V</td>
<td>924–897</td>
<td>880–840</td>
<td>905–840</td>
</tr>
<tr>
<td>IV</td>
<td>877–840</td>
<td>925–845</td>
<td>925–845</td>
</tr>
</tbody>
</table>

* The differences between the two calibration curves are minimal and quite meaningless—a few years in each case.

The following conclusions can be drawn:

1. According to Mazar et al. the transition from the Iron I to the Iron II (Strata D–3 to VI) is fixed at ca. 970 B.C.E.; according to us it should be placed between 925 and 905 B.C.E.—in line with Boaretto et al. (2005).
2. For the Tel Rehov team the Iron IIA has a range of ca. 970–840 B.C.E.; according to us it covers the period 925–845 B.C.E.
3. According to Mazar et al.’s interpretation Tel Rehov provides earlier dates than other Iron I and Iron IIA strata in the north. Our interpretation makes it comply with the measurements from these strata (see, e.g., Boaretto et al. 2005). There is no need, then, for a “Modified Conventional Chronology” (Mazar 2005).

The Beginning of the Iron IIA in the South

In a recent article Herzog and Singer-Avitz (2004) identified two ceramic phases in Judah and the south, which they labeled Early and Late Iron IIA. They argued that Arad XII of the Early Iron IIA should be associated with the Sheshonq I campaign; accordingly they placed the beginning of the Iron IIA in the mid-10th century B.C.E. (also Mazar 2005, 19–20).

The linkage between Arad rbt of the Sheshonq I list and Stratum XII is not free of difficulties: (1) Only a small, marginal section of the settlement was unearthed; (2) The identification of the loci belonging to this stratum has been debated (Herzog 2002, 17); (3) The later forts cover the top of the hill and therefore could have eradicated not only the main part of the Stratum XII settlement, but earlier remains as well; (4) The pottery assemblage which can safely be attributed to Stratum XII is small (Singer Avitz 2002, 111–19); (5) The name Arad rbt (Great Arad) may have originated from the huge ruins of the Early Bronze city, which must have still been visible in the 10th century B.C.E.; in other words, Arad rbt of Sheshonq I was not necessarily a large settlement. These arguments mean that Arad cannot serve as the linchpin in this discussion. The spotlight should therefore be shifted to the broader phenomenon in the south, which one of the present authors labeled long ago the “Tel Masos chiefdom” (Finkelstein 1988; 1995, 103–26).
There can be no doubt that the Sheshonq I list, which includes a large number of toponyms in the Negev, should be associated with the Tel Masos chiefdom. Tel Masos was the largest settlement and probably the hub of this system, which consisted of sites in the Beer-sheba Valley, the Negev Highlands (Cohen and Cohen-Amin 2004), and the lower Nahal Besor area (Gophna and Singer-Avitz 1984; Gazit and Gophna 1993). These sites date to the same period—broadly speaking the Early Iron IIA. The richest pottery assemblage belonging to this settlement system is that of Stratum II at Tel Masos (Fritz and Kempinski 1983).

Yet, relating the end of the Tel Masos chiefdom to the Sheshonq I campaign faces two problems:

1. Archaeologists identified destruction layers in the Negev Highlands sites (e.g. Cohen 1976, 36–38) and associated them with the Sheshonq I assault. Evidence for destruction at Masos II is reported by Fritz and Kempinski (1983, 9). Yet, the southern settlement system did not produce even a single piece of evidence for a wholesale or meaningful destruction. Patches of ashes found in the Negev Highlands sites can be explained as remains of fire places that were spread across the rooms, and evidence for destruction at Tel Masos is limited to collapse of structures in Area A, which should not necessarily be interpreted as the result of a military assault on the settlement. There can be little doubt, therefore, that the Iron IIA sites in the south were abandoned, not destroyed.

2. Dating the beginning of the Iron IIA in the south to the mid-10th century contradicts recent 14C results from the north, which put this datum in the late 10th century (Boaretto et al. 2005).

Indeed, a close look at the pottery of the sites which constitute the Tel Masos system shows that at least some of them were probably established earlier, in the late Iron I. In order to define the beginning of activity in the relevant sites, one needs to look at the earliest items in their assemblages. Certain forms that appear at Masos II seem to indicate that its early days should be placed in the late Iron I. We refer, for example, to S-shaped bowls (Fritz and Kempinski 1983, Pls. 134:7, 136:2, 137:1, 156:3–5), Phoenician Bichrome vessels (Pls. 145:1, 146:1), and late Iron I cooking pots (Pls. 145:8, 156:9). This is not surprising, as Tel Masos had already been inhabited in the Iron I (Stratum III). But the same can be said about the single-layer Besor-area settlements (e.g. Gophna and Singer-Avitz 1984, Figs. 41:8, 42:3, 7; see also Herzog and Singer-Avitz 2004, 225) as well as the Negev Highlands sites: a few types in their repertoire may hint that activity in at least some of them commenced in the late Iron I (e.g. Cohen and Cohen-Amin 2004, 133 and Figs. 37:8, 40:4, 55:9; for Midianite pottery see p. 141). Other vessels found at Tel Masos and the Negev Highlands sites—such as certain kraters and cooking pots—can be dated to either the late Iron I or the Early Iron IIA.

It is noteworthy that charcoal samples from the lower stratum of Kadesh-barnea and the site of Elah in the Negev Highlands provided dates in the 11th
and early 10th century B.C.E. respectively (Bruins and van der Plicht 2005)—too early for the Early Iron IIA even according to Mazar’s “Modified Conventional Chronology” (2005).

Thus far we have offered two observations: (1) Sites belonging to the Tel Masos chiefdom were not destroyed by force. (2) At least some of the sites were already established in the late Iron I. These observations cut the Gordian knot between the Sheshonq I campaign and the end phase of the Early Iron IIA, including the end of Arad XII. In fact, there are strong reasons to suggest that the main phase of prosperity in the south followed the Sheshonq I campaign.

One needs to bear in mind that there is no way precisely to date the Sheshonq I campaign. We do not know his exact accession date (to the best of our judgment Shortland [2005] is still Bible-oriented), and it is not clear in which stage of his reign he carried out the campaign (Redford 1992, 312). The widely accepted date of 926 B.C.E., which is based on the biblical account, is questionable; all one can say is that the campaign took place sometime in the first half of the 10th century B.C.E. (Wente 1976, 276). Against this background, and taking all the above evidence into consideration—mainly the observation that the Sheshonq I campaign did not seal the history of the Tel Masos chiefdom—we would date the beginning of the Iron IIA in the south to the late 10th century, in accordance to the date suggested by Boaretto et al. (2005). Accordingly, the assemblage of Masos II, which probably represents the end days of the Early Iron IIA cannot be placed before 900 B.C.E.

At this point we wish to turn to a short historical survey, which illuminates the archaeological results (for more see Fantalkin and Finkelstein 2006). Most, if not all, periods of prosperity in the arid zones of the Levant in proto-historical and historical times were caused by improved economic conditions that were initiated, in turn, by demand in the sedentary lands for desert commodities (Finkelstein 1995). Recent investigation at Kh. en-Nahas in the Wadi Feinan area has revealed evidence for strong mining and smelting activity in the Iron I and Iron IIA (Levy et al. 2004, 2005; also Fritz 1996; Hauptmann 2000). 14C results show that this activity commenced in the 12th century—possibly in the later part of that century—peaked in the 11th century, and continued, probably at the same pace, until late in the 9th century B.C.E. (Higham et al. 2005; Levy et al. 2005, 134–36).

The sizeable copper industry at Kh. en-Nahas must be related to the Tel Masos chiefdom phenomenon (Fritz 2002; Finkelstein 2005). Tel Masos emerged in Stratum III of the Iron I, with the beginning of mining and smelting at Kh. en-Nahas, and reached its peak prosperity in the days of Stratum II, in the Iron IIA; and it revealed clear evidence for copper industry (Kempinski et al. 1983, 21; Crüsemann 1983; Lupu 1983, 202–3; Fritz 2002). The strong mining activity at Kh. en-Nahas should be understood, as first suggested by Knauf (1991, 185; 1995, 112–13), against the background of the secession and resumption of copper-trade relations between Cyprus and the Levant: Kh. en-Nahas emerged with the breakdown of the trade networks in the eastern Mediterranean.
in the 12th century and was weakened by the revival of contacts with Cyprus in
the 9th century B.C.E.

The pastoral nomads of the south must have participated in this activity—in
mining, smelting, and the transportation of the copper to the coastal plain—and
hence benefited from the copper prosperity. This was probably the prime mover
behind the sedentarization of the pastoral nomads and the rise of a nomadic
desert polity with its gateway community at Tel Masos. Sedentarization and
nomadization are always gradual and relatively slow, commencing a while after
the beginning of the economic and social processes which instigate them.
Accordingly, the onset of Kh. en-Nahas copper production in the 12th century
brought about the beginning of sedentarization as early as the Iron I—at Tel
Masos III and Beer-sheba IX. The process intensified in the late Iron I and then
even more so in the early Iron IIA.

How can one understand this vis-à-vis the Sheshonq I campaign?
Several scholars suggested that the Sheshonq I campaign was no more than a
raid (e.g. Noth 1958, 240; Redford 1973, 11). This idea was probably formu-
lated by accepting the biblical description of a great United Monarchy in the
10th century B.C.E. Yet, empires—even the weakened Egypt of the 10th cen-
tury—do not conduct raids; they almost always have long-term policies. It is
reasonable to assume that the Sheshonq I involvement in the Levant was aimed
at re-establishing the Egyptian political and economic grip in the region
(Drioton and Vandier 1962, 525–26; Ussishkin 1990). Low-profile Egyptian
involvement in Canaan may have commenced in the late 21st Dynasty, in the
days of Siamun (Mümger 2005, 398–99), but it certainly intensified in the early
days of the 22nd Dynasty. Egyptian long-term impact on Canaan at that time is
attested by several finds: the erection of a Sheshonq I stele at Megiddo (Ussish-
kin 1990, 71–74); renewed connections with Byblos (Kitchen 1986, 292); possibly,
the widespread appearance of post-Ramesside mass-produced stamp-seal
amulets (Mümger 2003, 2005); and random finds such as the alabaster vase
carrying the name of Osorkon II from Samaria and the fragment of a faience
vessel from Buseirah. From the documentary point of view, one needs to bear in
mind that an Egyptian contingent may have participated in the battle of Qarqar
in 853 B.C.E. (for the possibility that the Wan Amun tale reflects Egyptian inter-
ests in the days of Sheshonq I, see Sass 2002). Indeed, these traits—together
with the Karnak relief—are similar to some of the manifestations of Egyptian
interests (and rule) in Canaan in the Late Bronze Age (Weinstein 1981, 1998).

Under these circumstances, Egyptian destruction of the lucrative Kh. en-
Nahas–Tel Masos network would be an unimaginable, indeed unparalleled step.
The opposite was probably the case: the Egyptian interest in the south must have
been to take-over the Kh. en-Nahas–Tel Masos system, to preserve, and to pro-
mote it. Unlike the rest of the Mediterranean, where iron production increased
during the early 1st millennium B.C.E., Egypt appears to have moved to the
widespread utilitarian usage of iron only a few centuries later (Ogden 2000,
168). With the cessation of contacts with Cyprus, and with no evidence for Iron
Age activity in Timna, the north Arabah copper may have been the major source
of copper for Egypt. It seems to us that rather than annihilating the Tel Masos chiefdom, the Egyptian campaign brought about an increased prosperity in the south. In other words, regarding the main phase in the southern desert copper prosperity, the Sheshonq I campaign should be seen as a beginning, not an end.

Certain Egyptian influence may be seen at Tel Masos—in architecture (Conrad and Crüsemann 1983, 64–65) and pottery (Kempinski 1983, 78). But the method of controlling southern trade must have been through the services of the Philistine cities in the southern coastal plain. The latter are not mentioned in the Sheshonq I list (for a summary, see Finkelstein 2002, 116). Though one could claim that their names appeared in the damaged part of the relief, it is more reasonable to propose that they cooperated with the Pharaoh (Na’aman 1998, 266). The southern coastal plain was always the springboard for Egyptian involvement in Canaan, and, had Sheshonq I aimed at reviving the Ramesside Empire, cooperating with the Philistine cities would have been his best strategy. It seems, then, that Egypt and the Philistine cities took over the copper trade in the same way that Assyria and the Philistine cities did several centuries later in regard to Arabian trade. And similar to the Assyrian case, this means that prosperity in the south accelerated after the Sheshonq I campaign. Control over the lucrative Levantine copper trade could have been a significant target for the Egyptian interests of that time.

The reasons for the decline of the Tel Masos chiefdom, and somewhat later Kh. en-Nahas, is beyond the scope of this presentation (see Fantalkin and Finkelstein 2006).

The Iron IIA in Judah and Jerusalem

The clearest evidence for Iron IIA public architecture in Judah comes from Strata IIa at Beth-shemesh and IV at Lachish in the Shephelah; and from Strata XI at Arad and V at Beer-sheba in the Beer-sheba Valley. They all date to the late Iron IIA (Mazar and Panitz-Cohen 2001, 273–76; Herzog and Singer-Avitz 2004). These sites supply the earliest evidence for state-formation in Judah. Until recent years Jerusalem came short of providing parallel evidence, a fact which drove Herzog and Avitz-Singer (2004) to propose that the hub of Judah may have been located at that time in the lowlands rather than in Jerusalem. We cannot accept this idea on historical grounds, and in any event, Jerusalem seems to supply several pieces of evidence for an early phase of state formation in the Iron IIA.

The first is the Stepped Stone Structure, which one of us has already discussed in the past (Finkelstein 2001). This structure should be seen as a support system, or a revetment on the steep slope, for a building which stood on the eastern side of the ridge above it. This is the narrowest part of the ridge and therefore such a support system—in the form of terraces—existed continuously from the second millennium until late in the Iron Age. The Stepped Stone Structure is the more elaborate element in this system. Kenyon (1963, 14) dated it to the 10th century B.C.E. according to material found between its stones, and
Shiloh (1984, 17) gave it a similar date according to pottery ostensibly found on top of it, though a clear connection of this material to the structure has not been established. The only way to date the Stepped Stone Structure is according to the latest sherds that were retrieved from between its courses. Steiner describes them in the following words: “Many bowls have a crisscross burnishing on their inside, but almost none bear the dark red slip layers traditionally ascribed to the tenth century B.C.E.” (2003, 357–58). In other words, sherds retrieved from the Stepped Stone Structure date to the Iron IIA. According to Cahill (2003, 56–66) the earliest phase in the Burnt Room House which was built into the lower part of the structure also dates to the Iron IIA. If this is the case, the Stepped Stone Structure is “trapped” into the Iron IIA—a long enough period which covers a time-span of over a century, from the late 10th century to ca. 800 B.C.E. (Fantalkin and Finkelstein 2006).

The second piece of evidence may come from the ridge, immediately above and to the north of the Stepped Stone Structure. In the summer of 2005 Eilat Mazar unearthed the foundations of a massive building there, which she dated to the 10th century BCE (E. Mazar 2006a, 2006b). Her dating of the building can be challenged on several grounds.

This is a classical case in which one needs to make a distinction between what can safely be argued and what can be proposed as an interpretation. So far no floor which can be associated with the building has been found. Since the building had been constructed over an earth fill, the latest pottery in which dates to the late Iron I (possibly even to the early Iron IIA—see the cooking pot with a ridged rim in E. Mazar 2006b, 12, figure, top left), and as it was disturbed by Roman construction (E. Mazar 2006a, 23), the only safe statement is that the building post-dates the late Iron I (or even early Iron IIA) and pre-dates the Roman period. Several broken Iron IIA vessels found in a narrow slot between walls of the building (figure in E. Mazar 2006b, 14) were presented as evidence for dating a second phase of construction in the edifice. But there is no way safely to associate these vessels with such construction.

In order to try to date the building more precisely, one needs to turn to circumstantial evidence. It is logical to assume that the large building on the ridge is part of the system that was aimed to be supported by the Stepped Stone Structure on the slope (also E. Mazar 2006b, 13). If this is the case, the building unearthed by Mazar may date to an advanced stage of the Iron IIA, that is, to the 9th century B.C.E. Yet, the data are so fragmentary that one needs to be cautious, and a later date for the construction of the building cannot be brushed aside.

The third piece of evidence is the large group of bullae which has recently been found near the Gihon Spring by Reich and Shuqron (Reich and Shuqron 2006; Reich, Shuqron, and Lernau forthcoming). These bullae are associated with very late Iron IIA (or transitional Iron IIA/Iron IIB) pottery. Though they were probably made in the place from which commodities were sent to Jerusalem, they reflect some sort of advanced administration in the capital of Judah ca. 800 B.C.E.
These clues are highly important for understanding the history of Jerusalem in particular and Judah in general. They supply evidence for the earliest public architecture, administrative apparatus, and significant growth of Jerusalem (possibly along the entire ridge of the City of David), as early as the 9th century B.C.E. This evidence accords well with what we know about the Late Iron IIA from the sites in the Shephelah and the Beer-sheba Valley. This phase in the history of Jerusalem could have taken place when Judah was dominated by the prosperous Omride Dynasty of the Northern Kingdom, or immediately after the fall of the Omrides, in the second half of the 9th century, when Judah was under Damascene hegemony.

References

(Submitted February 2007)