THE EARLIEST GREEK IMPORT IN THE IRON AGE LEVANT: NEW EVIDENCE FROM TELL ES-SAFI/GATH, ISRAEL

AREN M. MAEIR, ALEXANDER FANTALKIN AND ALEXANDER ZUKERMAN

Abstract
This article presents a fragment of a late Submycenaean/early Proto-geometric wavy-band deep bowl found at the Philistine site of Tell es-Safi/Gath, Israel. Produced in the Argolid, this item appears to be, as of now, the earliest Iron Age Greek import to the Levant. This unique find presents an opportunity to review some problems relating to the chronological correlation between the Aegean and the Levant in the early 1st millennium BC, as well as the cultural contacts in the eastern Mediterranean during this period.

Introduction
Tell es-Safi/Gath is a large, multi-period site situated in Israel, on the border between the southern coastal plain (Philistia) and the Judean foothills (the Shephelah), approximately halfway between Jerusalem and Ashkelon (Fig. 1). Settled almost continuously from late prehistoric through to modern times, it is identified as Canaanite and Biblical Gath (‘Gath of the Philistines’), as Blanche Garde/Alba Specula during the Frankish period, and as Tell es-Safi during the late mediaeval and modern times. Although the site was excavated in 1899, little was known about this site prior to the current archaeological project, which commenced in 1996 (Fig. 2). The ongoing work has revealed extensive evidence from the 3rd–1st millennia BC,
Fig. 1: General map of the eastern Mediterranean with the location of major sites mentioned in text.
Fig. 2: General plan of the excavations of Tell es-Safi/Gath, Israel.
including remains of an Early Bronze III settlement, Middle Bronze fortifications, late Late Bronze finds, and a robust sequence representing the Iron Age I–IIB (ca. 1200–700 BC). The latter remains date to the period when the site was one of the five major cities (Pentapolis) of the Philistines, and as such, portray a vibrant and richly textured picture of the development of Philistine culture, from its earliest stages until the early 8th century BC. During the end of this period, in the mid- to late 8th century BC, the Philistine character of the site was much less pronounced, and it apparently was affiliated with the cultural realm of the kingdom of Judah.

While excavations in different areas throughout the tell have revealed various stages of the Iron Age, the predominant remains that have been excavated date to late Iron Age I and to Iron Age IIA (ca. late 11th–late 9th centuries BC). Based on the results of surface survey as well as the excavations in Areas A, D, E and F, during Iron Age IIA the site reached its maximum size in any period (ca. 45–50 ha; see Fig. 2). As such, it was most probably the largest settlement in Philistia during that period (and one of the largest in the entire Levant). The dominant role of Tell es-Safi/Gath may perhaps be mirrored in the biblical texts as well, where ‘Gath of the Philistines’ is portrayed as the principal Philistine polity during the early Israelite monarchy, in particular vis-à-vis the ‘Davidic cycle’ in the Book of Samuel. The impressive archaeological evidence dating to Iron Age IIA is aptly represented by the well-preserved stratum A3, as well as by a number of additional phases dating to late Iron Age I and early Iron Age IIA (strata A4 and A5). This period of prosperity is relatively short lived; in the mid- to late 9th century BC the site was destroyed, apparently by Hazael, king of Aram Damascus, as mentioned in 2 Kings 12:18. The devastating evidence of this destruction was seen throughout the site, in particular in area A. Subsequently, although the site continued to be settled, it never returned to being a dominant regional polity.

In addition to the impressive size of the site during Iron Age IIA, as well as its role as a dominant polity, there is evidence of inter-regional connections between Tell es-Safi/Gath and other parts of the Levant. For example, one finds pottery indicating trade and other types of relations with the Judean region (such as the so-called ‘pre-LMLK’ jars), bona fide imported Black-on-Red Cypriot pottery.

6 For example Maeir et al. 2002; Wimmer and Maeir 2007.
7 Maeir 2003; 2008.
8 Maeir 2003; 2004a; Zukerman and Shai 2006.
9 Uziel and Maeir 2005.
10 Maeir 2004b.
12 Shai and Maeir 2002.
13 Ben-Shlomo, Shai et al. 2008; Shai and Maeir 2008.
and local pottery which seems to have Phoenician-influenced shapes and decoration.14 It is with this background about the site and its role during late Iron Age I and early Iron Age IIA, that the sherd which is the subject of this study can be discussed.

The Sherd
The sherd (reg. no. 530208/1) is a rim of a deep bowl (Fig. 3). It has a horizontal wavy line on upper exterior and solidly painted interior; the paint is red-brown to dark-brown/black. There is a dense wheel-burnishing on both the interior and the exterior, creating shiny, polished surface. Macroscopic analysis of the sherd shows a uniform (no core) and well-levigated cream-coloured ware.

On account of its uniqueness, the sherd, like several other objects from the excavation, was subjected to Thin Section Petrographic Analysis (TSPA) and Instrumental Neutron Activation Analysis (INAA).15 According to these results, it is made of a very fine, well-levigated and well-fired clay with hardly any inclusions identifiable by the naked eye. Under the microscope, more numerous fine silty mica, as well as fine, silty rounded and sub-rounded quartz inclusions were observed in a thin section. An accurate provenance could not be determined by the TSPA. On the other hand, the INAA firmly correlated the chemical fingerprint of this sherd with the ‘MYBE’ chemical group, which is typical of Late Helladic pottery produced in the Mycenae-Berbati area of the Argolid.16 Thus, it is quite certain that this vessel was produced in the Argolid.

The Archaeological Context
Locus 53023, in which the sherd was found, was excavated in area A (in the 2001 season), and is located in the western part of square 223/89B (Fig. 4).17 This locus is a construction fill for the southern part of the stratum-A3 building 23033, and includes occupation debris of the underlying stratum (possibly stratum A4, as defined elsewhere on the tell). This fill, composed of nondescript light-brown earth and small unrestorable sherds, was only partially sealed: its northern part underlies stratum-A3 floor 32040 (at 176.67 m),18 but no clear surface was identified sealing its southern part, where the sherd here discussed was found, as this area was disturbed by modern mole burrows. However, the southern part of fill 53023 is sealed

14 For example Ben-Shlomo \textit{et al.} 2004; Maeir and Shai 2007.
15 Ben-Shlomo, Shai \textit{et al.} 2008, 5, 8–9, sample SF105.
16 For example, see Mommesen \textit{et al.} 1988.
17 For the full description of stratigraphy and architecture of area A, see Zukerman and Maeir forthcoming.
18 All heights mentioned in this discussion are above sea level.
Fig. 3: Drawing and photograph of the fragment of the Iron Age Greek bowl (reg. no. 530208/1) from Tell es-Safi/Gath (photograph: V. Naikhin).

Fig. 4: Tell es-Safi/Gath, area A. Schematic plan of building 23033, stratum A3, Tell es-Safi/Gath, with the find-spot of the Greek sherd.
by a massive, and very distinct, layer of the stratum-A3 destruction debris (locus 22037), which contained a lot of fallen bricks and a large number of restorable pottery vessels, typical of the stratum-A3 assemblage. The bottom level of this layer was defined as 176.64 m. Two additional, adjacent stratum-A3 floors (33038 and 43506) were defined at 176.51 m. The level of basket 530208, in which the Greek sherd was found, is 176.31 m, thus being 0.2–0.36 m lower than the stratum-A3 floors in its immediate vicinity. Underneath locus 53023, the upper part of the earlier (pre-stratum A3, possibly A4) wall system was uncovered, but no floor has been reached so far.

As mentioned above, the destruction of stratum A3 is dated to the mid- to late 9th century BC, that is to the late Iron Age IIA period, and is most probably related to the military campaign of Hazael, the king of Aram Damascus. This dating was recently confirmed by 14C radiometric dating. The remains found beneath stratum A3, so far, do not create a coherent architectural layout, and their nature is still being studied. However, several conclusions can already be formulated on basis of the existing data. First, the pottery that characterises these levels (strata A5–A4) belongs to earlier ceramic horizons, that is late Iron Age I and early Iron Age IIA, and is significantly different from that of stratum A3. So far unpublished 14C samples, taken from various contexts of strata A5–A4, yielded 11th–10th-century BC dates. Unfortunately, through the partial exposure of the pre-stratum-A3 levels, the radiocarbon dating of these contexts to a narrower time span is, at this stage, impossible, and their precise stratigraphic connection to the find-spot of the sherd is still unclear. Nevertheless, the typological analysis of the ceramic assemblage that accompanies this piece is quite straightforward: the latest ceramic type in the fill where the sherd was found can provide a terminus post quem of its deposition, and suggest (but, of course, not prove) the latest possible date of this piece, shortening the above-mentioned two-century-long chronological range.

19 It should be mentioned additionally that no Greek imports have so far been identified among the hundreds of vessels retrieved from stratum A3, and no ceramic types characteristic of stratum A3 were found in locus 53023. This data indicates that, although the context of the sherd under discussion is not sealed, it is highly unlikely that it originated in stratum A3. Rather, it originated in one of the pre-stratum-A3 levels.
20 Following the most recent subdivision of Iron Age IIA into the two definable stages: early Iron Age IIA and late Iron Age IIA (see, for example, Herzog and Singer-Avitz 2004).
21 Sharon et al. 2007, tables. 7–8.
22 See Zukerman forthcoming.
23 These dates, analysed at the Centre for Isotope Research, University of Groningen, will be published in the future in collaboration with H.J. Bruins and J. van der Plicht. Likewise, additional dates from the Rehovot 14C laboratory will be published in the future as well (in the meantime, see Sharon et al. 2007).
The Accompanying Ceramic Assemblage and its Date

As noted above, the ceramic material retrieved from locus 53023 is unrestorable. Its is composed primarily of the common Iron Age I types, such as rounded and cyma-shaped bowls (Fig. 5.1–2), plain jars with thickened rims (Fig. 5.6–7), as well as Philistine Bichrome types, such as a krater at Fig. 5.5.24 The collared jar fragment (Fig. 5.10, not to be confused with the collared pithos type) and a decorated jar (Fig. 5.9) have an even longer chronological range, including the Late Bronze and Iron Age I.25 The small amount of early red slip pieces (Fig. 5.4, 8) and the two examples of small deep bowls with low carination (Fig. 5.3–4) represent the latest forms in the assemblage. Red slip emerged during late Iron Age I, and became common in Iron Age II A,26 while deep bowls with low carination are attested in very small numbers in both late Iron Age I and early Iron Age IIA contexts, and disappear in the following period.27 Many common early Iron Age IIA forms, such as bowls with grooved or incurved rims, kraters with bulbous rims, as well as ‘Late Philistine

24 For the dating of these types see, conveniently, Panitz-Cohen 2006, 36–37, 44–47, 62–64, 86–87.
25 For painted jars, see Panitz-Cohen 2006, 81–86; for Late Bronze and Iron Age I collared jars, see Arie 2006, figs. 13.61.4, 13.64.2; Panitz-Cohen 2006, pls. 30.1–2, 31.1, 41.2–3, etc.
26 Mazar 1998, with references.
27 For parallels, see Mazar 1985, fig. 29.19; Mazar and Panitz-Cohen 2001, pl. 79.7.
Decorated Ware', 28 are missing from this context. Taking into consideration the limited size of the assemblage (ca. 50 indicative Iron Age sherds) and its secondary context, it can be suggested that it was deposited in late Iron Age I, with a possible extension into the very beginning of the following period. In the absolute terms, this would indicate a late 11th-/early 10th-century BC date according to the ‘Modified Conventional Chronology’, 29 or a mid- to late 10th-century BC date according to the ‘Low Chronology’. 30 Below, this chronological conclusion will be compared with the dating of the sherd itself.

Stylistic Attribution
The piece in question is a fragment of ‘a wavy-band deep bowl’, very popular in the area of the Argolid during the Late Helladic (LH) IIIC, Submycenaean and Proto-geometric periods. This stylistic regional classification is corroborated by the INAA (see above). Despite a clear continuity in the development of this type, the decoration on the exterior of the bowl appears to be at home in what is often called a Submycenaean stage, though the difficulties with describing the exact meaning of this term are notorious. 31

Although the LH IIIC Late stylistic attribution can not completely be ruled out, 32 we are inclined to believe that the reserved band with a freely painted wavy line falls right between the LH IIIC Late and early Protogeometric decorative techniques, consisting of wavy lines on reserved bands on deep bowls and skyphoi. P.A. Mountjoy, based on the evidence from Mycenae, has noted that the wavy line on the LH IIIC Late examples is loosely flowing, whereas in the Submycenaean versions the wavy line is drawn so tightly that it resembles a Protogeometric zigzag. 33 This is exactly what one observes on the piece from Tell es-Safi/Gath. Its wavy line, while resembling the LH IIIC prototypes, is closer to the Protogeometric zigzag. However, it is not yet a fully developed Protogeometric zigzag motif, which is in most cases enclosed between bands. 34

The comparative material is abundant in the Argolid, and is especially common in Tiryns and Asine during the Submycenaean phase (or the ‘Final Mycenaean’, according to B.S. Frizell’s terminology). 35 Despite these parallels, the possibility that

28 Ben-Shlomo et al. 2004.
29 Mazar 2005.
30 Finkelstein 2005.
31 Ruppenstein 2003; Dickinson 2006, 14–16, with references, and see also below.
32 For example Podzuweit 2007, pl. 13.12.
33 Mountjoy 1988, 4.
34 Lemos 2002, 13–14, 40.
35 See Frizell 1986. Comparisons can be found at: Tiryns (Papadimitriou 1988, 228–30, fig. 1), Asine (Frizell 1986, 78–79, with examples on figs. 13.97, 21.185; 22.188, 57.504–507), and Mycenae
the Tell es-Safi/Gath sherd may belong to the earliest stages of Protogeometric should not be ruled out. It is quite clear that despite the popularity of these bowls during the Submycenaean phase, the continuity that is attested in the Argolid from the time of the palatial collapses to Late Protogeometric,36 does not permit a clear division between the Submycenaean and the Early Protogeometric. Moreover, the relatively thick walls and a possible shallowness of this bowl, and especially the relatively high position of the decorated band, may provide additional corroboration for attributing this piece to the beginning of the Protogeometric. Therefore, the best we can say with regard to the typological attribution of the sherd in question is that despite a certain possibility of being considered as a part of the LH IIIC Late milieu, it most probably belongs to the Submycenaean phase, with a possible continuation into the earliest stages of Protogeometric.37

Chronology
Having established a typological attribution of the sherd, we can turn now to the problem of its chronological attribution, bearing in mind V. Hankey’s words of caution that:

the search for absolute chronology is like crossing a minefield with hidden dangers, among them legendary events, relics of records, preconceived expectations and archaeological misinterpretations. One may attempt, but not necessarily expect to reach the other side and safety.38

It should be stated at the outset that we are working with the assumption that despite certain vagueness, the Submycenaean phase, even if it is not a culture in itself, reflects a definable chronological stage, at least in the areas of Attica and the Argolid. J.B. Rutter’s well-known plea to abandon the term ‘Submycenaean’ altogether,39 appears to be outdated in light of discovery and publication of settlement deposits with so-called Submycenaean characteristics, stratified above LH IIIC Late levels, mainly in the area of the Argolid.40 However, even if this phase is simply to

(Mountjoy 1988, fig. 2, with a couple of possible exceptions in the lowest row). It seems that comparable deep bowls and skyphoi found outside the Argolid (for example at Athens [Frizell 1986, 78–79, fig. 62], Lefkandi [Desborough 1980, 297–98, fig. 8A–B, pls. 92.S.3.2, 107.S.55.2] and Kalapodi [Nitsche 1987, 39, fig. 60]) are in fact imported from the Argolid (Lemos 2002, 40, n. 43, with further references).

36 Papadimitriou 2006.
37 It seems to be of particular significance that according to Mountjoy’s most recent analyses (2005), the true Wavy Line style on Cyprus appeared only in the later phase of Level IIIB at Enkomi, and continued through Level IIIIC, making it contemporaneous with the later stage of LH IIIC Late and Submycenaean.
38 Hankey 1988, 34.
40 Lemos 2002, 7–8, with references.
be seen as the last stage of the LH IIIC period, it is not necessarily important for
the purpose of establishing the absolute chronology, since, even in this case, one has
to calculate an approximate life span and possible chronological anchors for this
distinguishable phenomenon. On the other hand, it is also clear that the Submycene-
aean phase, linking the latest LH IIIC and the earliest Protogeometric, was not very
long-lived.\(^{41}\) It is generally assumed that this phase may be allowed two generations,
that is some 50 years of existence.\(^{42}\) However, given the paucity of the so-called
Submycenaean material, there is no reason whatsoever not to make it even shorter.
I.S. Lemos’s recent suggestion, which allows the Submycenaean two generations of
25 years in length, with an additional generation allowed for the transition from Sub-
mycenaean to Early Protogeometric,\(^{43}\) is hardly defensible, since it turns a relatively
insignificant short-lived local phenomenon, without much internal variety, into one
of the major phases of historical development in Iron Age Greece.\(^{44}\)

Given the confronting opinions on the absolute chronology of the Submyce-
aean period,\(^{45}\) it is not an easy task to establish its duration in absolute terms.
The upper anchor, that is to say the transition between LH IIIC Late and Submyce-
aean, is far from clear on account of the lack of genuine LH IIIC Late imports to
the Levant.\(^{46}\) The lowest anchor, that is the transition between the Submycenaean
and Early Protogeometric, is no less problematic. Moreover, because of the
astonishing regionalism that characterised the LH IIIC in general and its final phase
in particular, we cannot say with certainty for how long, for example, the
so-called ‘Final Mycenaean’ at Asine co-existed with the Attic Submycenaean; there
is no doubt that they were partially contemporaneous,\(^{47}\) but the possibility that the
Protogeometric characteristics had already started in the Argolid during the latest
stage of the Attic Submycenaean, should not be ruled out.\(^{48}\) Be that as it may, the
real problem begins when one is forced to offer absolute dates.

In 1952, Desborough suggested that the Attic Protogeometric started at \(ca.\ 1025\ BC,\)
while later on, although with hesitation, he preferred a slightly earlier date of
\(ca.\ 1050\ BC.\)^{49} This latter dating has something to do with a canonical date of \(ca.\ 1050\ BC\) for the beginning of the Cypro-Geometric Iron Age and assumed Cypriot

\(^{41}\) For example Coldstream 2003, 252.
\(^{42}\) For example Warren and Hankey 1989, 168; Whitley 1991, 83.
\(^{43}\) Lemos 2002, 26.
\(^{44}\) Coldstream 2003, 252; Dickinson 2006, 14–16, 21; \(cf.\), however, Ruppenstein 2007.
\(^{45}\) \(Cf.\) for example, Whitley 1991, 83–84, with references; Papadopoulos 2007, 96.
\(^{47}\) Frizell 1986, 86.
\(^{48}\) Wells 1983, 124.
\(^{49}\) Desborough 1952, 294; 1972, 55.
influence on Aegean pottery at the time of transition between the Submycenaean and Early Protogeometric periods. Thus, according to this commonly held view:

...the links between Attic Submycenaean and early Protogeometric on the one hand, and Late Cypriote IIIB and Cypro-Geometric I on the other, point to the transition of styles in western Attica having taken place not very long after the date at which it happened in Cyprus; and that date is placed at c. 1050 BC by the most widely accepted chronology for Cyprus.

However, what is often not realised, at least on the Aegean side, is that the date of ca. 1050 BC for the beginning of the Cypro-Geometric IA is in fact based on E. Gjerstad's calculations concerning the presence of a Cypriot White Painted I bowl in what is now termed Megiddo stratum VIA. Gjerstad deduced this dating on basis of oral communication he received from W.F. Albright that the time span of Megiddo stratum VIA should be set at ca. 1050–1000 BC. Although numerous scholars still refer to 1050 BC as a secure chronological anchor, this is 'no more than a conventional date'. Thus, it seems that even before one relates the current controversies of Palestinian chronology (see below), the initial date of ca. 1050 BC for both the beginning of the Protogeometric and of the Cypro-Geometric I, is certainly too high.

The present authors are not unanimous in their view of the current debate over the chronology of Iron Age Palestine. Maeir and Zukerman side with the Modified Conventional Chronology, while Fantalkin supports the Low Chronology. According to the perspective of the former, the Iron Age I/II transition occurred sometime during the first half of the 10th century BC; according to that of the latter, the late Iron Age I phase accommodates the better part of the 10th century BC. Accordingly, the Low Chronology assumes that in both northern and southern Palestinian sites, the Iron Age I/II transition occurred toward the end of the 10th century BC.

51 Snodgrass 1971, 123.
52 Loud 1948, pl. 78.20.
53 Gjerstad 1944, 85, n. 10.
54 For Cyprus, for example, see Schreiber 2003; Demand 2004; Sherratt 2006. For the Aegean, see French 2007, 530, fig. 3.
55 Iacovou 2004, 64.
56 For example, see Schreiber 2003; Demand 2004; Sherratt 2006. For the Aegean, see French 2007, 530, fig. 3.
57 For example Mazar 2005.
58 For example Finkelstein 2005.
59 For example Ben-Tor and Ben-Ami 1998; Ben-Shlomo et al. 2004; Mazar 2005; Bruins et al. 2007.
60 Finkelstein 2005; Finkelstein and Piasetzky 2006a; Fantalkin and Finkelstein 2006; Sharon et al. 2007.
Although these differences of opinion may be explained away by differences in the length of existence of the relevant strata, they do not necessarily matter for establishing the beginning of the Attic Protogeometric, since, in our view, a date closer to ca. 1020/1000 BC may fit both the modified and low chronologies in Palestine. Such a date would be in line with Desborough’s initial guess, but also with Hankey’s lowering of the beginning of Protogeometric, accepted most recently by Lemos.

This date, however, will contradict some recent suggestions to raise the beginning of Protogeometric by almost a century. Although such a dramatic revision for the

62 Thus Megiddo VIA, a key site for establishing the beginning of Cypro-Geometric I, is contempor-ary, more or less, with Tel Kinsrot stratum V, Tel Hadar stratum IV, Dor stratum D2/10–9, Tell Keisan stratum 9a-b and Tell Qasile stratum X (cf. Mazar 2005, 24, tabl. 2.2; Arie 2006, 229–31), and this late Iron I ceramic horizon, if started in the 11th century BC, can easily accommodate the first half of the 10th century BC, even according to the Modified Conventional Palestinian Chronology (Mazar 2005). For instance, in Mazar’s opinion, both the local and Phoenician pottery from Tel Hadar stratum IV can be dated to the first half of the 10th century BC (Mazar 2004, 29). With this in mind, the late Iron Age I context of the Middle Protogeometric Euboean bowl from Tel Hadar (Kopcke 2002) would fit in with either chronological system – whether the first half of the 10th century BC according to the Modified Conventional Chronology, or the second half of the same century by the Low Chronology. The Tel Hadar vessel represents a later developmental stage of Greek pottery than the Tell es-Safi/Gath fragment (as well as belonging to a different mechanism of Aegean-Levantine relations – see below). Typologically, the Tell es-Safi/Gath sherd must be dated earlier (even if it too was found in a late Iron Age I context). On this issue, see as well Gilboa and Sharon 2003, 68; and n. 94 below.
63 It should be remembered that the commonly accepted Aegean dates for both the Protogeometric period and the lion’s share of the Geometric were based on Greek pottery that had been excavated at Tell Abu Hawam, Megiddo and Samaria in the 1920s and 1930s in what have since turned out to be inadequate archaeological contexts (Fantalkin 2001). Moreover, the Greek chronology, as estab-lished by Desborough and J.N. Coldstream, was based on a Low Palestinian chronology held by K.M. Kenyon for some time, but when Kenyon subsequently changed her mind, joining in 1971 most Palestinian archaeologists in raising the absolute dates for so-called Solomonic strata, this was ignored by Aegean specialists. For Tell Abu Hawam and the absolute dating of the notorious stratum III, see, most recently, Aznar et al. 2005; for a dismissal of the evidence from Samaria, see Forsberg 1995, and most recently Tappy 2001, who fully validates S. Forsberg’s pessimistic conclusions (contra Coldstream 2003, 249, who still holds that one can trust the results of Kenyon’s excavations in Samaria).
64 Hankey 1988, based on Mountjoy’s (1988) estimation for Submycenaean; and see the useful comments in Warren and Hankey 1989, 167–69.
66 Previous attempts to do so were not accepted by the majority view on the Aegean side; the rea-sons for this were brilliantly outlined by Desborough in 1957 (and see, most recently, Coldstream 2003; Coldstream and Mazar 2003). Thus, for instance, Saltz’s (1978) dissertation aimed to correlate Aegean chronology with the High Palestinian Chronology; despite its undeniable logic some 30 years ago, this is no longer valid (Fantalkin 2001), since one of Saltz’s ‘secure points de repère’, which is the date of 926 BC for the end of Tell Abu Hawam III, is totally unacceptable in the present state of research. The same holds true for additional attempts to raise Aegean absolute dates based on assumed correlations with High Palestinian Chronology (for example Yannai 1982; Kopcke 2002). Although J.K. Papadopoulos, in his critical review of Lemos 2002, believes that ‘the challenges posed in Daniella Saltz’s 1978 dissertation – on a general updating of Greek Early Iron Age pottery in the East – are
beginning of Attic Protogeometric, based on a combination of dendrochronological and radiocarbon datings from Assiros, is already accepted as possible by some scholars, there are serious doubts about the conclusions of the Assiros team.

In Assiros, large portions of Protogeometric amphora, classified as H.W. Catling’s Group I amphorae with compass-drawn concentric circles, were found in a secure context of what is termed Phase 3. The absolute dates achieved by means of dendrochronology and 14C have yielded a number of secure dates from Phase 3 and Phase 2 (which was constructed shortly after the structures of the Phases 3 were destroyed by fire). The date of breakage of the amphora was therefore set between 1080 and 1070 BC. Since, according to Catling’s classification, this amphora should post-date the beginning of the Protogeometric in Attica by several decades, it was suggested that the start of Protogeometric should be set at ca. 1100 BC, if not earlier.

Despite the claims of the Assiros team that such a dating supports A. Mazar’s ‘Conventional chronology’, from the Levantine point of view, such an upward revision appears to be unacceptable since it contradicts not just the Low Chronology but also the Modified Conventional Chronology, and it appears to be too high even for the now obsolete ‘Conventional Palestinian Chronology’.

Although blaming an old-wood effect might be tempting, the same discrepancy between expected conventional Protogeometric dates and the radiocarbon ones was attested at the neighbouring Macedonian site of Kastanas. The best explanation therefore would be to claim that contrary to Catling’s suggestion, his Group I amphorae did not develop from Athenian Protogeometric prototypes but were a stylistically independent product of the northern Aegean. Indeed, these amphorae are not attested in Attica, but mostly in northern and east-central Greece (Elateia, Kalapodi, Agnanti, Kastanas, Mende, and the T oumba at Lefkandi), as well as in Asia Minor (Troy VIIb3). However, as J.D. Muhly rightly observes, the precise dating of this pottery is most difficult to determine, since in many sites it was found together overlooked and continue to go unanswered’ (Papadopoulos 2004; for the same approach, see also Morris 1998), from a Levantine point of view, these challenges belong solely within the framework of the history of the research.

References:

68 Newton et al. 2005b, 112.
70 Newton et al. 2005a, 185–86; Jung and Weninger 2004.
71 Fantalkin 2006, 200, 206, n. 43.
72 Newton et al. 2005b, 112.
73 Newton et al. 2005a, 185–86; Jung and Weninger 2004.
74 Fantalkin 2006, 200, 206, n. 43.
75 Newton et al. 2005a, 185–86; Jung and Weninger 2004.
76 Catling 1998; Lenz et al. 1998.
with LH IIIC or Submycenaen wares. It appears, therefore, that if the absolute dates from Assiros are trustworthy, it would not imply raising the start of the Attic Protogeometric, but rather provide additional corroboration for a well-known assumption that the technique of compass-drawn concentric circles was developed in northern and east-central Greece prior to Attica, and that perhaps the Thessalian or Macedonian Protogeometric styles developed quite independently (at least at the beginning) from the Attic style.

In addition to the suggested upward chronological revision at Assiros, we may mention some recent suggestions to raise the beginning of Early and Middle Geometric styles by some 50 years, which consequently will lead to raising the beginning of the Protogeometric period. This is not the place for a detailed discussion of this particular suggestion, since it is based on a number of observations. Suffice to say, that once again, the evidence supplied by the Levantine side appears to be crucial, and that such an upward revision will contradict the lower range of the Modified Conventional Palestinian Chronology, and certainly the basic premises of the Low Chronology. Likewise, in too many cases, the suggested upward revision for the Aegean Geometric sequence is based on extremely problematic data, such as on a few radiocarbon dates obtained from secondary mixed deposits in Carthage or Huelva.

To sum up, based on our understanding of the absolute chronology of the Aegean world, the best we can say with regard to the absolute dating of the Submycenaen (or Early Protogeometric) sherd from Tell es-Safi/Gath is that it might be dated broadly to the second half of the 11th century BC, with a possible continuation into the very early 10th century BC. Such a dating corresponds to the dating of the local ceramic assemblage discovered in the associated archaeological contexts.

Cultural/Historical Implications

Following the discussion of the context, stylistic attribution and dating of the Greek sherd from Tell es-Safi/Gath, it is necessary to discuss the possible cultural/historical implications of this find. Several interesting aspects can be related to this, including: 1). Should this sherd be seen as the latest of the Aegean imports relating the Late Bronze Age ‘World System’, or as a beginning of a new, Iron Age trade structure, one that came into being only well after the collapse of the palatial societies of Late Bronze Age Canaan and the LH IIIB Aegean? 2). What is the relationship between

77 Muhly 2003, 28.
79 For example Whitley 1991, 82; Sherratt 2005, 117, both with further references.
81 In detail, see Trachsel 2004, whose upward chronological revision is even more drastic.
82 Nijboer 2005; Nijboer and van der Plicht 2006.
83 In accordance with the Modified Conventional Chronology, rather than the Low Chronology (see above); but one should keep in mind the nature of this context (a fill).
this sherd and the apparent Aegean/Anatolian origin of the Philistines?; 3). How does this sherd relate to later Iron Age Aegean finds in the Levant?

The World System of the Late Bronze Age collapsed sometime during the early 12th century BC. The commonly held opinion is that during this very period, one can see both a cessation of the trade contacts between the Aegean and the Levant that were so typical of the Late Bronze Age, and at the same time, the appearance along the eastern Mediterranean littoral of the so-called Sea Peoples, including the Philistines. The latter, who settle along the southern coastal plain of Canaan, have been archaeologically identified on the basis of a unique material assemblage. Most scholars assume that a major component of the Philistine culture derives from non-Levantine sources, most likely of Aegean, Anatolian and/or Cypriot origin. In fact, it is assumed that significant parts of the population of Philistia during the Early Iron Age derived from these regions. The foreign character of the early Philistine culture is manifested in numerous ways, including pottery, architecture, cult, language and other aspects. Of particular significance is the different character of the Late Bronze Age Aegean pottery that is imported to the Levant, as opposed to Aegean-style pottery that is seen in the early Philistine Iron Age I culture.

In light of the absence of LH IIIC Late imports in the local Iron Age I assemblages in Philistia and throughout the Levant, we strongly believe that the trade frameworks which enabled the import of LH Aegean pottery into Late Bronze Age Canaan ceased to exist during the early 12th century BC. The evidence for Aegean imports into the Levant (and Philistia) reappears in the late 11th/early 10th centuries BC (our suggested dating for the sherd from Tell es-Safi/Gath).

The lack of Aegean imports in the local Philistine and Levantine repertoire is mirrored in other aspects of the Philistine culture as well. While many of the earliest Iron Age I Philistine cultural facets do in fact appear to derive from the Aegean, Anatolian and/or Cypriot realms, following this initial stage, one sees a distinct and definite disconnection between the development of the Philistine culture and that of parallel and more or less contemporary Early Iron Age Aegean cultures. While a

84 See, for instance, various papers in Ward and Joukowsky 1992; Gitin, Mazar and Stern 1998; Oren 2000.
85 Dothan and Zukerman 2004; Maeir 2007.
86 Dothan 2000.
87 Dothan 2003.
88 Machinist 2000, 63–64; Maeir et al. 2008.
89 Dothan and Zukerman 2004; Maeir 2007; Mazar 2007. Although some have suggested that the Philistine culture is in fact a local development, related to the deep structural changes in the eastern Mediterranean during the Late Bronze/Early Iron Age transition (Drews 1998; Bauer 1998; Sherratt 1998), these views have been effectively rebutted by, for example, Barako 2000; Dothan and Zukerman 2004; Gilboa 2005.
significant component of the earliest Philistine pottery (as well as other types of finds), is clearly derived from the LH IIIC material culture, very soon after, the later Philistine Bichrome pottery witnesses a distinct and very different developmental trajectory in comparison with contemporary Aegean pottery assemblages.

Following this initial stage (LH IIIC Early and the early phases of LH IIIC Middle), a different picture emerges. Instead of a largely Aegean orientation, telltale evidence of connections with Cyprus is to be found. For instance, it should be noted that after the initial stage of the Philistine culture, once there is no direct evidence of contact with the Aegean, and the Philistine material culture develops in independent directions, there is evidence uniquely Cypriot influence on the Philistine pottery assemblage.

Significantly, unique aspects of Aegean cooking and feasting, such as the use of skewers/obeloi, which appears in Greece only during the Iron Age, do not appear in Philistia. This indicates that following the initial stage of Philistine settlement, the connection with the Aegean cultures was lost. For comparison one can look at Iron Age Cyprus, where the ongoing introduction of Aegean-oriented behavioural patterns throughout the Iron Age, is a clear indication of the constant and intensive bi-directional contacts between Cyprus and the Aegean during Late Cypriot III, and the continuous introduction of Aegean cultural facets into Cypriot society (whatever may be the relational dynamics behind this).

We believe that the Tell es-Safi/Gath sherd is to be seen as early (the earliest?) evidence for the renewal of the trade dynamics in the eastern Mediterranean that

90 For example, see Ben-Shlomo, Shai et al. 2008.
91 For a brief statement on such new forms and decorations as appear in Philistia for the first time at this stage, see Zukerman et al. 2007, 73–74, n. 31. Additional, though tentative indications of connections between Cyprus and the Levant following the very earliest Iron Age are the recently published provenance studies of the very rare LH IIIC Middle imports into Palestine (from Tell Keisan, Beth-Shean and Acco; although for some, it might seem as the latest stages of LH IIIC Early, see Mazar 2007) which indicate a Cypriot origin for these wares. It would seem that the 12th-century BC Aegean-style imports to the Levant were of Cypriot origin, instead of the primarily Argolid imports of the Late Bronze Age (D’Agata et al. 2005). It should be stressed that during the Late Bronze Age, most of the Mycenaean pottery found in the Levant and Egypt and analysed by INAA seems to have been produced in the area of the Argolid (Mommsen et al. 2005; D’Agata et al. 2005; Ben-Shlomo et al. 2008; etc.). In any case, no actual imported Cypriot ceramics of LC IIIA–B have been found in Philistia, perhaps indicating the different dynamics of interaction that existed during Iron Age I between Cyprus and Philistia on the one hand and Cyprus and the northern parts of the Land of Israel (at sites such as Tel Keisan, Tel Beth-Shean and Acco) on the other.
93 On the evidence for ongoing contacts between the Aegean and Cyprus during the early Iron Age, see Kourou 1997; Crielaard 1998; Iacovou 1999; 2006; Karageorghis 2002, 115–32.
94 A quite similar piece, consisting of the upper part of a deep bowl or skyphos coated in black paint but for a reserved line inside the rim, and a reserved band enclosing a wavy line outside, was discovered in Tyre stratum XIV. In the excavation report, this piece was defined as belonging to a Mycenaean IIIIC cup, paralleled at Enkomi in a stratum dated to 1150’ (Bikai 1978, 65, pl. 39.20). Coldstream, on
enabled the arrival of objects of Greek origin in the Levant. In all likelihood, during late Iron Age I and early Iron Age IIA (ca. late 11th/10th centuries BC), there were no direct contacts between the Aegean and the Levant. Rather, these connections were based on middlemen, probably of Cypriot origin.

We cannot state with certainty how this sherd (and what we assume was originally a complete bowl) of Argolid origin made its way into the assemblage of Tell es-Safi/Gath, sometime in the second half of the 11th century BC (or, possibly, very early in the 10th century BC). Undoubtedly it was a rare and exotic item; it could have been brought to the city of Gath by a traveller, a merchant or a diplomatic envoy, either as a present or as merchandise. We prefer to suggest that it reached Philistia in a roundabout manner. As noted above, Greece and Cyprus had ongoing connections from the early stages of the Iron Age onwards; at the same time, we have seen that already in mid-Iron Age I, there is evidence of Cypriot connections with the Levant, and more specifically with Philistia. During late Iron Age I and early Iron Age IIA (ca. late 11th/10th centuries BC), the contacts between Philistia and the outside world expanded, and there is evidence of relations with Egypt and, in particular, with the Phoenician and Cypriot realms. Thus, we suggest that the Greek sherd discussed here belongs to a vessel which first arrived on Cyprus, and subsequently, as part of the Cypriot connections with Philistia, reached Tell es-Safi/Gath.96

the other hand, compared it with counterparts from Asine variously termed LH IIIC Late or Submycenaean (Coldstream 1988, 38, n. 31). Although accepting Coldstream’s comparison, Gilboa and Sharon have noted that, based on the poor-quality illustration, it is not easy to substantiate a provenance and dating for this piece (Gilboa and Sharon 2003, 44, n. 7). Lemos (2005, 33) on the other hand suggests that this piece should be dated to Late Protogeometric. Most recently, however, Sherratt has suggested that the piece from Tyre should be attributed to Early Protogeometric rather than to the derivative ‘Granary Style’ (Sherratt forthcoming). If this bowl indeed belongs to Tyre stratum XIV, Coldstream’s Submycenaean attribution will suit it better. In addition to this piece, we might note a group of deep bowls, quite similar to the example from Tell es-Safi/Gath in their profile, found at Tell Afis, in levels 9a–7 (Bonatz 1998, 213–15; Venturi 2000, 1717–19). Yet, according to Bonatz, none of these pieces could be assigned to the wavy-line decorated group with certainty and, in any case, he considers this group to be of Cypriot origin.

95 Dothan 1998; Ben-Shlomo et al. 2004, 30.

96 While a direct connection between the Argolid and Philistia during late Iron Age I and/or early Iron Age IIA is tantalising, it is hard to accept. Besides the Tell es-Safi sherd, the earliest evidence of Greek imports to the Levant is to be seen in the Euboean Middle and Late Protogeometric ceramics. During this period, the island of Euboea established itself as a major trade centre with the East (Crielaard 2006, 285–91, with references). Significantly, the Middle–Late Protogeometric Euboean imports discovered so far in the southern Levant, all come from the northern Israel, Lebanon and coastal Syria (from the sites of Tel Dor, Tel Rehov, Tel Hadar, Tyre and Ras el-Bassit: see Gilboa and Sharon 2003, 68, with references). The even earlier (Early Protogeometric) beginnings of these connections are hinted at by the (meagre) Levantine finds in the Skoubiris cemetery at Lefkandi (Popham 1994; Crielaard 2006, 286). Note that although Lemos (2005, 34, n. 32) believes that it is very likely that direct Euboean connections with the Levant commenced during the Submycenaean period, it is important
Bibliography

Ben-Shlomo, D., Shai, I. and Maeir, A.M. 2004: ‘Late Philistine Decorated Ware (“Ashdod Ware”): Typology, Chronology and Production Centers’. BASOR 335, 1-35.

Bikai, P.M. 1978: The Pottery of Tyre (Warminster).

to stress, as she herself admits, that at present there is no evidence of this. In contrast, the sherd under discussion, found at a site in Philistia, does not come from this new centre of international trade, but rather from the Argolid, the region which was the source of the lion's share of the Late Helladic pottery which reached the Levant during the Late Bronze Age, and thus represents a mode of contact quite different from the Iron Age Euboean one. This is an additional argument that the Tell es-Safi/Gath sherd did not arrive directly from the Aegean but rather through a Cypriot intermediary.

Uziel, J. 2008: The Southern Coastal Plain of Canaan During the Middle Bronze Age (Dissertation, Bar-Ilani University, Ramat-Gan).

Aren M. Maeir (corresponding author)
Institute of Archaeology
Bar-Ilan University
Ramat-Gan 52900
Israel
maeira@mail.biu.ac.il

Alexander Fantalkin
Department of Archaeology and Ancient Near Eastern Cultures
Tel Aviv University

Alexander Zukerman
W.F. Albright Institute of Archaeological Research, Jerusalem, Israel