Migration of Neurotrophic Factors-Secreting Mesenchymal Stem Cells Toward a Quinolinic Acid Lesion as Viewed by Magnetic Resonance Imaging

Ofer Sadan, Noam Shemesh, Ran Barzilay, Merav Bahat-Stromza, Eldad Melamed, Yoram Cohen, Daniel Offen

“Laboratory of Neurosciences, Felsenstein Medical Research Center, Department of Neurology, Rabin Medical Center, Sackler Faculty of Medicine, and School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel

ABSTRACT

Stem cell-based treatment is a promising frontier for neurodegenerative diseases. We propose a novel protocol for inducing the differentiation of rat mesenchymal stem cells (MSCs) toward neurotrophic factor (NTF)-secreting cells as a possible neuroprotective agent. One of the major caveats of stem cell transplantation is the fate post-transplantation. To test the viability of the cells, we tracked the transplanted cells in vivo by magnetic resonance imaging (MRI) scans and validated the results by histology. MSCs went through a two-step medium-based differentiation protocol, followed by in vitro characterization using immunocytochemistry and immunoblotting analysis of the cell media. We examined the migratory properties of the cells in the quinolinic acid (QA)-induced striatal lesion model for Huntington’s disease. The induced cells were labeled and transplanted posterior to the lesion. Rats underwent serial MRI scans to detect cell migration in vivo. On the 19th day, animals were sacrificed, and their brains were removed for immunostaining. Rat MSCs postinduction exhibited both neuronal and astrocyte markers, as well as production and secretion of NTFs. High-resolution two-dimensional and three-dimensional magnetic resonance images revealed that the cells migrated along a distinct route toward the lesion. The in vivo MRI results were validated by the histological study, which demonstrated that phagocytosis had only partially occurred and that MRI could correctly depict the status of the migrating cells. The results show that these cells migrated toward a QA lesion and therefore survived for 19 days post-transplantation. This gives hope for future research harnessing these cells for treating neurodegenerative diseases.

Key Words. Quinolinic acid • Huntington’s disease • Mesenchymal stem cells • Cell migration • Neurotrophic factors • Cellular magnetic resonance imaging • Cell tracking

INTRODUCTION

Stem cell-based therapy for neurodegenerative diseases has been widely investigated in two main directions: cell replacement and tissue support. The first approach aims at replacing the degenerated neurons. The second approach claims that stem cells might provide a better environment for damaged tissue and save the remaining neurons. The objective is to fight the common pathway of the neurodegenerative processes exhibited in many of these diseases, such as excitotoxicity, oxidative stress, and so forth. The trophic effect in the impaired tissue may be provided by cells that secrete neurotrophic factors (NTFs) [1].

Huntington’s disease (HD) is an autosomal dominant inherited disease that is clinically manifested by involuntary choreiform (dance-like) movements, emotional instability, and dementia. Increased amounts of quinolinic acid (QA), a tryptophan endogenous metabolite, are found in the striatum of HD patients at the early stages of the disease and also in the striatum and cortex of several transgenic mice models of the disease [2, 3]. When injected into the rat striatum, QA induces a striatal lesion that resembles the microscopic pathology viewed in HD patients: namely, a specific loss of medium spiny neurons (mostly GABAergic) and sparing of dopaminergic and cholinergic neurons and axonal damage, due to excitotoxicity [4].

Mesenchymal stem cells (MSCs) are a distinct population of cells in the bone marrow that have the potential to differentiate into bone, cartilage, and fat tissues [5]. These cells are considered as candidates for neurodegeneration therapeutics since they express neural markers at their basal level, a fact that probably contributes to their neural-like differentiation capabilities [6]. Two advantages of MSCs are that they can be easily obtained...
and autotransplanted. To date, MSCs have been transplanted as treatment in various animal models of neurodegenerative disorders, such as Parkinson’s disease [7], multiple sclerosis [8], and stroke [9]. These cells possess several additional qualities, such as immunomodulation and immunosuppression on their surroundings [10]. Moreover, they react to several chemotactic signals, displaying homing capabilities [11].

In our laboratory, we developed a protocol for inducing bone marrow-derived MSCs into cells that express mainly astrocytic but also neuronal markers and secrete NTFS. In this study, these cells are used as part of our attempt to follow the tissue support and neuroprotection strategy. One of the main drawbacks in stem cell research is the lack of information regarding the fate of the transplanted cells in the host tissue [12–14]. As the stem cells are transplanted, they may encounter numerous obstacles that may limit their survival, ranging from the immune response to possible death by lack of nutrients and tissue stress. Another important determinant is the ability of the cells to migrate toward the damaged areas. Therefore, we decided to use magnetic resonance imaging (MRI) as a noninvasive and efficient method of determining the fate of the transplanted cells.

MRI is the most important imaging modality for studying central nervous system (CNS) disorders in a noninvasive manner. The high spatial resolution of MRI, coupled to its ability to portray diverse anatomical features of the brain by various contrast mechanisms, has made it the most suitable imaging modality for studying the CNS and diagnosing its disorders. However, due to the inherent low sensitivity and limited specificity of MRI, it is difficult to delineate transplanted cells from a host tissue without the use of contrast agents [15, 16]. The use of contrast agents has been shown to increase the sensitivity of MRI up to single-cell detection when micrometer-sized magnetic particles were used as contrast agents [17, 18].

Cell migration occurs in the CNS in developmental neurogenesis processes and also in the adult brain. Neural progenitors have been shown to express chemokine receptors and react to chemotactic stimuli in mouse embryo and mature brain [19]. Neurodegeneration induces changes in the migration capacity of progenitor cells [20]. In particular, an increase in migration was demonstrated in the QA-induced striatal lesion model of HD [21, 22]. Moreover, the upregulation of migration was shown under the influence of brain-derived neurotrophic factor (BDNF) [23]. The migration phenomena are now harnessed in the stem cell research field, especially in the MRI context, and there are accumulating data that demonstrate how exogenous stem cells of various origins migrate in the CNS [7, 8, 24], and specifically toward QA-induced lesion [25].

Histology-based studies provide end-point snapshots of the cells in the transplanted tissues. The advantage of in vivo imaging studies over end-point histology is that they enable longitudinal studies simultaneously demonstrating the progression of the pathology and the migratory capabilities of the stem cells [26]. By combining these two methodologies, we can deduce the migration properties and, consequently, the viability of the transplanted cells.

In the current study, we demonstrated autologous transplantation of rat MSCs following in vitro induction that upregulated production and secretion of NTFS. Furthermore, we transplanted superparamagnetic iron oxide (SPIO)-labeled induced cells into the brains of QA-lesioned rats, followed them in vivo using time-course high-resolution magnetic resonance (MR) images, and found that they survived and migrated toward the lesion. Finally, we assessed the histological pertinence to MR images and quantified the number of cells phaged by the host immune system.

www.StemCells.com

MATERIALS AND METHODS

Induction Protocol of Neurotrophic Factor-Producing Cells

MSCs were replaced with step 1 medium containing Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 100 mg/ml streptomycin, 100 U/ml penicillin, 12.5 units/ml nystatin (SPN, Biological Industries, Beit Haemek, Israel, http://www.bioindom.com), 2 mM l-glutamine (Biological Industries), 20 ng/ml human epidermal growth factor (R&D Systems Inc., Minneapolis, http://www.rndsystems.com), 20 ng/ml human basic fibroblast growth factor (bFGF) (R&D Systems), and 10 μg/ml N2 supplement (5 μg/ml insulin, 20 μg progestrone, 100 μg retinace, 30 mM selenium, 100 μg/ml transferrin [Invitrogen, Carlsbad, CA, http://www.invitrogen.com]). After 72 hours in the step 1 medium, cells were placed in step 2 medium, which consisted of DMEM supplemented with SPN, 2 mM l-glutamine, 1 mM Dibutyryl cyclic AMP (Sigma-Aldrich, St. Louis, http://www.sigmaaldrich.com), 0.5 mM 3-isobutyryl-1-methylxanthine, 20 ng/ml bFGF, 50 ng/ml human neurogenin1-β1 (R&D Systems), and 5 ng/ml platelet-derived growth factor-AA (PDGF; Peprotech, Rocky Hill, NJ, http://www.peprotech.com). As a control we used untreated MSCs that were grown in a serum-free medium containing DMEM, glutamine, and SPN.

Immunocytochemistry

Cells grown on coverslips were fixed with 4% paraformaldehyde for 10 minutes, washed with phosphate-buffered saline (PBS), and then incubated in a blocking and permeabilization solution (5% normal goat serum, 1% bovine serum albumin, and 0.5% Triton X-100 in PBS) for 1 hour at room temperature (RT, 20°C) with a primary antibody overnight at 4°C. After being washed with PBS, cells were incubated with either biotinylated secondary antibody or an Alexa-conjugated secondary antibody. Samples incubated with biotinylated antibody were further incubated for 1 hour at room temperature (RT, 20°C) with streptavidin conjugated to an Alexa fluorophore. The nuclei were counterstained with 4,6-diamidino-2-phenylindole (DAPI; 1:500; Sigma-Aldrich). The following primary antibodies were used (asterisk [*] indicates that the secondary antibody used was biotinylated): rabbit α-glial fibrillary acidic protein (GFAP; 1:200; Dako, Glostrup, Denmark, http://www.dako.com), rabbit α-BDNF (1:100; Santa Cruz Biotechnology Inc., Santa Cruz, CA, http://www.scbt.com), mouse α-S100β (1:100; Sigma-Aldrich), rabbit α-vasculoendothelial growth factor (VEGF; 1:100; Santa Cruz Biotechnology), mouse α-anti-B-tubulin III (1:1,000; Sigma-Aldrich), rabbit α-glial-derived neurotrophic factor (GDNF; 1:100; Santa Cruz Biotechnology), rabbit α-nerve growth factor (NGF; 1:100; Santa Cruz Biotechnology), and rabbit α-glutamine synthetase (GS; 1:200; Sigma-Aldrich). Secondary antibodies were biotin-conjugated goat α-mouse IgG (ready-to-use; Zymed, Invitrogen), biotin goat α-rabbit IgG (1:200; Invitrogen), streptavidin-Alexa Fluor 488 (1:200; Invitrogen), and streptavidin-Alexa Fluor 568 (1:200; Invitrogen). The quantification of positive cells was performed on five random fields photographed at a magnification of ×200, as a percentage of the positive cells from the number of total DAPI-positive nuclei.

Western Blot Analysis

Cell supernatant postdifferentiation was collected, frozen, and quantified. The supernatant was concentrated using Centricron Centrifugal Filter Units (Millipore, Billerica, MA, http://www.millipore.com) to 5%–10% of the original volume, filtering out any substance lighter than 10 kilodalton (kDa). Fifty microliters of each sample was separated by 12% SDS-polyacrylamide gel electrophoresis gels and transferred to a nitrocellulose membrane. The membranes were blocked in 5% nonfat milk for 1 hour at RT, incubated overnight at 4°C with a primary antibody followed by horseradish peroxidase-conjugated secondary antibody (1:10,000; Sigma-Aldrich), and developed with the ECL Plus detection system (GE Healthcare, Uppsala, Sweden, http://www.gelifesciences.com).
Cell Proliferation Assay
We used the 5-bromo-2′-deoxyuridine (BrdU) cell proliferation assay (Chemicon, Temecula, CA, http://www.chemicon.com) to compare the proliferation rate of the rat MSCs versus the induced MSCs. This enzyme-linked immunosorbent assay (ELISA) kit quantitates detection of newly synthesized DNA of actively proliferating cells. The assay was conducted according to the manufacturer’s protocol in quadruplicate, and results were read at wavelengths of 450/550 using an ELISA reader (Powerwave X; Biotek Instruments, Winnoski, VT, http://www.biotek.com). The sum of the two controls (cells without BrdU exposure, and growth medium with BrdU exposure but without cells, measured in triplicate) was deducted from the average results. Results were normalized to the untreated MSCs.

Quinolinic Acid-Induced Striatal Lesion
Male Wistar rats (n = 12; Harlan, Jerusalem, http://www.harlan. com) weighing 230–250 g were used. They were placed under 12-hour-light/12-hour-dark conditions and grown in individually ventilated cages (IVC) with ad libitum access to food and water. All experimental protocols were approved by the University Committee of Animal Use for Research and Education. Every effort was taken to reduce the number of animals used and to minimize their suffering.

QA (Sigma-Aldrich) was dissolved in 1 M NaOH solution and then titrated with phosphate buffer to pH 7–7.4. Using a stereotactic frame under chloral hydrate anesthesia, 250 nmol was injected in 1 μl. The injection was aimed to the left midstriatum according to the rat brain atlas [27] at the following coordinates (relative to the bregma and dura): anterior, +0.7 mm; lateral, +2.7 mm; ventral, −4.8 mm. The injection rate was 0.5 μl/minute, and the inserted needle was withdrawn after 5 minutes.

Cell Proliferation

Rat MSCs were labeled using the PKH26 fluorescent dye (Sigma-Aldrich) according to the manufacturer’s protocol. A day after labeling, the cells underwent the induction protocol as described above. The last day of step 1 medium, cells were labeled with SPIOs (5 μg/ml; Feridex; Bayer HealthCare, Leverkusen, Germany, http://www.berleximaging.com) and found PKH26-positive cells in adjacent sections. Quantification of PKH26- and ED1-positive cells. The results are presented as the percentage of cells positive for each marker, we found that S100 was expressed in 74.13% of MSCs, GS in 33.45% in the untreated group (p < 0.01), and GFAP in 24.39% of the treated group (p < .0001).

MRI
Anesthesia was induced with 4% isoflurane in 95% O2 and maintained with 1–2% isoflurane (Vetmarket Ltd, Petah Tikva, Israel) at a flow rate of 1 l/minute. Respiratory rate was monitored throughout the entire set of experiments. Body temperature was maintained by circulating water at 37°C. MRI scans were performed on a 7.0-tesla (T)/30-cm Bruker Biospec (Bruker Biospin, Karlsruhe, Germany, http://www.bruker-biospin.com) equipped with a gradient system capable of producing gradient pulses of up to 400 mT/m. A body coil was used as the transmit coil, and a rat quadrature coil was used as the receiving coil. MRI experiments were performed on the day of the treatment (day 0) and 3, 8, and 18 days post-transplantation and QA injection. Scans included two-dimensional (2D) gradient echo (GE) images (fast low angle shot [FLASH]; Repetition time/echo time [TR/TE] = 750/20 milliseconds, flip angle = 30°) and T2 weighted images (WI) RARE8 (TR/TE = 3,500/75 milliseconds). For both scans, the field of view (FOV) was 2.56 × 2.56 × 0.48 cm, matrix size was 128 × 96 × 24 zero-filled to 128 × 128 × 32, resulting in a spatial resolution of 200 × 200 × 150 μm³, were collected. In some cases, the matrix size was enlarged to 256 × 128 × 64 zero-filled to 256 × 256 × 64, resulting in a spatial resolution of 100 × 100 × 75 μm³.

Immunohistochemistry
Animals were anesthetized with chloral hydrate, and ice-cold PBS was perfused intracardially for 5 minutes, followed by 15 minutes of 4% paraformaldehyde. Brains were removed and immersed in 4% paraformaldehyde for 48 hours at 4°C and cryoprotected in 30% sucrose for another 48 hours. After immersion, the tissues were frozen at −70°C until they were cryosectioned to 10-μm axial sections. Immunohistochemistry was conducted similarly to the immunocytochemistry protocols. Mouse a-rat CD68 (ED1; 1:500; Abcam) and GS (1:200; Novocastra) were used for labeling tissue macrophages. Quantification of ED1-positive and PKH26-positive cells was performed by measuring five different fields in each section analyzed and manually counting the number of PKH26- and ED1-positive cells. The results are presented as mean ± SD. For comparing the histological appearance with the MR images, we dyed selected sections from each animal with Prussian blue stain (according to the manufacturer’s instructions; Sigma-Aldrich) and found PKH26-positive cells in adjacent sections.

Statistical Analysis
The results are expressed as means ± SD, unless otherwise stated. Student’s t test was used to compare two groups. Statistical calculations were performed using SPSS, version 13 (SPSS, Chicago, http://www.spss.com).

RESULTS

Characterization of NTF-Secreting MSCs
Using an immunocytochemical study, we assessed the protein expression of astrocyte and neuronal markers and neurotrophic and growth factors to test the induction protocol. We found that the induced cells had a strong positive dye for the astrocyte markers S100β, GS, and GFAP. When we quantified the percentage of cells positive for each marker, we found that S100β was found in 74.13% ± 6.50% of the treated cells compared with 24.39% ± 33.45% in the untreated group (p < .01), GS was positive in 54.47% ± 5.68% of the induced cells group versus 11.89% ± 8.66% of the untreated MSCs (p < .0001), and there was no significant change in the GFAP expression (57.26% ± 6.30% vs. 50.17% ± 13.90%). Similar to the GFAP expression, the neuronal marker β-tubulin III did not alter following induction (15.84% ± 5.09% vs. 21.03% ± 21.71%).
The induced MSCs were found to be positive when dyed for BDNF (41.19% ± 13.24% postinduction compared with 6.05% ± 6.72% in the untreated group; p < .001), NGF (39.32% ± 7.40% vs. 8.93% ± 15.74%; p < .01), and VEGF (45.00% ± 5.60% vs. 4.87% ± 7.38%; p < .0001) but not GDNF. We also demonstrated a double stain placing the NTFs within the S100-positive cells (Fig. 1A–1O).

The most important test for the functional result of the differentiation protocol was to prove the secretion of the neurotrophic and growth factors. Therefore, we concentrated the media of the untreated MSCs, the induced cells, and the induced cells after they were labeled with PKH26 dye and SPIOs as elaborated. (Q, R): The same analysis for vascular endothelial growth factor and NGF, respectively. (S): 5-Bromo-2′-deoxyuridine assay for cell proliferation demonstrated a complete halt of cell proliferation on the last day of differentiation. Scale bars = 50 μm. Abbreviations: BDNF, brain-derived neurotrophic factor; Cont., control; DAPI, 4,6-diamidino-2-phenylindole dihydrochloride; GS, α-glutamine synthetase; MSC, mesenchymal stem cell; NGF, nerve growth factor; S100b, S100.2545

Figure 1. Differentiated MSC characterization. (A–D): Coexpression of GS and S100b in the induced cells. (E): Untreated Cont. (F–I): Coexpression of S100b and BDNF in the differentiated cells. (J): Untreated Cont. (K–N): Coexpression of S100b and NGF in the induced cells. (O): Untreated Cont. (P): BDNF levels measured in the media of the cells in untreated Cont. cells (serum-free medium), induced cells, and induced cells that were labeled with PKH26 and SPIOs as elaborated. (Q, R): The same analysis for vascular endothelial growth factor and NGF, respectively. (S): 5-Bromo-2′-deoxyuridine assay for cell proliferation demonstrated a complete halt of cell proliferation on the last day of differentiation. Scale bars = 50 μm. Abbreviations: BDNF, brain-derived neurotrophic factor; Cont., control; DAPI, 4,6-diamidino-2-phenylindole dihydrochloride; GS, α-glutamine synthetase; MSC, mesenchymal stem cell; NGF, nerve growth factor; S100b, S100β.

Migration Tracking In Vivo: MRI Study

In vivo T2 WI of the rat brain on the day of QA and NTF-secreting MSC administration (day 0) and at 8 and 18 days post-transplantation are depicted in Figure 2. The axial and coronal images (Fig. 2) revealed an edema in the striatum extending slightly to cortical areas and the anterior parts of the thalamus on day 0 that progressed until day 3 (data not shown) and then gradually disappeared. On day 18, it was clearly visible that the damage was indeed confined mostly to the striatum.

Figure 3A–3C shows the corresponding 2D axial T2 WI, which are more sensitive to the magnetic field inhomogeneities that are induced by the SPIO particles in the labeled cells. On day 0, the deposition of labeled induced cells is clearly visible as a large hypointense region, posterior to the thalamus. The QA injection site exhibited a small injection mark that appeared as a small hypointense spot in the striatum. There were no additional hypointense marks in the striatum on day 0.

On days 8 and 18, two major changes in the signal from the brain were noted: the path of the NTF-secreting MSCs toward the striatum and the accumulation of these cells in various places inside it. The hypointense regions intensified on day 18, showing a marked accumulation in the striatum. The induced

www.StemCells.com
MSCs migrated along the internal capsule, according to an anatomical analysis [27]. The trail of the transplanted cells occurred in all three dimensions, first inferiorly, then medially and anteriorly, and finally laterally arriving at the striatum. No particular MRI section can visualize the complete trail because of the 3D nature of the movement.

To investigate the local distribution of cells in the damaged area, 3D axial gradient echo images with a resolution of 100 × 100 × 75 μm3 were acquired (Fig. 3D; four slices are shown). Several sites of accumulation were obvious in these images. The accumulation of the migrating cells at the end of the pathway was clear. However, other, smaller areas where NTF-secreting MSCs accumulate were noted in the striatum. Some of these accumulation sites were found close to hyperintense regions, suggesting that, indeed, these cells gather close to areas that are more severely damaged (Fig. 3E). The pathway and the various accumulation sites were apparent in the axial spatial sequence of day 18 (supplemental online data).

In one case, accumulation of NTF-secreting cells was not confined to the striatum. Figure 4 depicts the time-course 2D axial T2 WI of a rat suffering extensive cortical damage in addition to the striatal lesion (Fig. 4A–4C). In these images, such a marked accumulation in the cortex had occurred by day 18 that the T2 WI provided sufficient contrast for viewing the accumulation (Fig. 4C). Indeed, the 200 × 200 × 150 μm3 high-resolution 3D-GE images clearly showed that the accumulation in the cortex occurred mostly in more hyperintense areas, again suggesting that the induced MSCs can sense the areas that are probably more severely damaged (Fig. 4D, 4E). Importantly, all six rats that were treated by both QA and NTF-secreting stem cells showed migratory capabilities of the NTF-secreting cells.

Figure 5 shows the control groups of this study. The first control group consisted of animals that were injected with QA and SPIOs only, at a dose similar to the dose to which the 2.5 × 107 cells were exposed. Figure 5A shows the anatomical features and lesion in T2 WI on day 0. Figure 5B demonstrates the effect of SPIOs on T2 WI on day 18. Even though the influence of the SPIOs on the signal was very large at the deposition site, no hypointense signal could be found in the striatum on days 8 (data not shown) and 18. This was also confirmed by the high-resolution 3D-GE images (Fig. 5C) collected on day 18 post-transplantation. These results were consistent for all three rats in this control group, and none showed any hypointense signals in the striatum or at any area between the SPIO deposition site and the QA lesion site except the QA injection mark.

The second control group was treated with SPIO-labeled cells and PBS (i.e., without inducing a striatal lesion). Figure 5D demonstrates the anatomical features by T2 WI on day 0, and Figure 5E shows the T2 WI sensitive to the transplanted cells on day 18. Again, no hypointense signal could be found in the striatum on day 18, as the high-resolution 3D-GE images of day 18 (Fig. 5F) confirmed. These results were consistent for all three rats in this control group.

Migration Tracking: Histological Study

To coordinate the histological and imaging results, we dyed six different tissue sections (axial sections, comparable to the MRI; Fig. 6A, 6B) of three animals of the treated group with a Prussian blue stain to detect iron deposits. We found a clear correlation between the MRI hypointense signals and the Prussian blue- and PKH26-positive sites (in adjacent sections) in all the sections, at all of the sites searched (Fig. 6). We found fewer Prussian blue-positive cells than PKH26-positive cells in adjacent sections, probably as a result of asymmetric uptake of the SPIOs.

To quantify cell phagocytosis, we dyed six different sections with the macrophage marker ED1 (CD68) of the rat, with a fluorescein secondary antibody. We searched for PKH26-positive cells (the transplanted cells) that coexpress ED1, as a sign for cell phagocytosis. We located macrophages mainly in the lesion site, but also at the transplantation area and all along the migration route. This latter distribution was not found in the controls treated with SPIO alone. To assess the proportion of the phagocytosed cells of the total surviving cells, we quantified them. We found out that only 23.07% ± 7.31% of the surviving transplanted cells were positive for ED1 and hence phagocytosed.

The control groups demonstrated the same high correlation to the MR images as did the group that was treated with both QA and cells (Fig. 6). Specifically, in the control group treated with QA and SPIOs without any cellular therapy, we found a Prussian blue-positive stain only around the SPIO deposition site (Fig. 6H), and not in the striatum. In the control group that was treated with cells and PBS, without QA, we found the injected cells only around the transplantation site of the cells in a radial distribution, using both the fluorescent marker and Prussian blue stain (Fig. 6J, 6K).
DISCUSSION

In this paper, we have described a protocol for inducing rat bone-marrow-derived MSCs into NTF-secreting cells. We have also demonstrated the migratory capabilities of these cells toward a QA-induced lesion, applying two different and reciprocal modalities: the in vivo tracking of the cells by MRI and the histological study with two separate markers.

MSCs hold a promising future for neurodegenerative disease therapy [29, 30]. Whether MSCs can differentiate into nonmesodermal cells and tissues remains controversial [30]. Normally, mature stem cells are supposed to be committed to their lineage. However, several recent reports have shown the differentiation capabilities of MSCs toward the neural lineages under specific medium conditions [31–37]. Our group has previously shown [6], as have others [38, 39], that MSCs basally express several neural markers and NTFs. We have also shown that under specific conditions, MSCs can differentiate into dopamine-producing cells that express neuronal markers [40–42].

As cited, most of the earlier studies have tried to differentiate MSCs into neuronal cells, as part of the cell replacement strategy. Glia and astrocytes are responsible for tissue support, and more importantly in this nexus, astrocytes produce and secrete NTFs, thus becoming promising candidates for the tissue protection strategy. For this purpose, we developed a novel two-step protocol that induces MSCs toward the NTF-secreting astroglial lineage as opposed to the neuronal lineage. The induction protocol included growth factors known to induce neural differentiation in MSCs, such as epidermal growth factor, basic fibroblast growth factor, and PDGF [33, 43], and N2...
Cocktail, which is reported to have increased survival of neural primary cultures and differentiation [44]. Cyclic AMP, an important intracellular secondary messenger, is also linked to this process [39, 45]. We excluded retinoic acid, a substance we previously used for neuronal differentiation and not astroglial differentiation. Using our distinct protocol, cells expressed several neural markers, mainly astrocytic (GS, S100β) and, to a certain extent, neuronal markers as well, since S100β is considered an astrocytic marker, can be found in distinct neuronal populations [46]. The process of differentiation induced a significantly larger production of certain NTFs, such as BDNF, NGF, and VEGF, compared with untreated cells. Furthermore, we demonstrated that the expression of NTFs was colocalized with the expression of S100β. More importantly, we showed that not only do the cells produce NTFs, as seen by immunostaining, but they also secrete them, as shown by a Western blot analysis of the conditioned cell media.

Another issue in the field of stem cells is tumorigenesis of cells, particularly embryonic and fetal-derived stem cells [47]. Therefore, we examined the proliferation rate of the cells postinduction and revealed that our differentiation protocol inhibits proliferation, as indicated by the BrdU proliferation assay. This result is important in the context of our study, as a recent article has shown that proliferation of stem cells in vivo induces SPIO dilution in prelabeled cells along the migratory route [48]. We have also shown that labeling the cells with SPIO and PKH26 does not alter the NTF secretion postinduction. This is not
Other studies have tried to delineate cells with different relaxation mechanisms in MRI, using gadolinium-based contrast agents that accumulate in the grafts because of a blood-brain barrier compromise [50]. In our study, we circumvented the low sensitivity of MRI by labeling stem cells with SPIOs and transplanting them far from the lesion. Thus, we could demonstrate cell viability, albeit indirectly. The MR images have provided a clear-cut case regarding the migration and clearly showed the path of migration, from the site of deposition to the lesion, in an 18-day course. Several accumulation sites of cells were exhibited in the lesion site. The histology findings correlated the hypointense spots to the presence of MSCs along the pathway and in the accumulation sites. In these cases, the correlation was so powerful that the histology failed to detect PKH26-labeled cells in brain areas that were not hypointense in the MR images. It is further implied that the differentiated MSCs are capable of navigating themselves to the areas that have been most severely impaired, as seen in the high-resolution T2 WI. This concept has been shown for stem cells in stroke models, where there is extensive damage to the brain [16, 26, 51]. In the present study, we have shown that our induced NTF-secreting MSCs reacted to a much smaller lesion, proving that not only did the cells survive the implant but they were able to sense the smaller chemotactic signal gradient.

In this study, it was imperative to show that the migration was not caused by leaking of the injected volume or by inherent affinity of the NTF-secreting MSCs toward the striatum. By using two control groups, we were able to demonstrate that it is improbable that the cells arrived at the striatum and accumulated there merely by a leaking effect, as no pathway or accumulation could be detected in any of our control animals that were treated with QA and SPIOs only. Furthermore, it seems that the cells do not have any inherent bias toward migrating to the striatum, as all of our control animals that were treated with cells and PBS (but not QA) did not exhibit migratory properties. Moreover, the cells guided themselves toward a cortical lesion in one animal. The results were consistent; that is, all of the animals treated with QA and NTF-secreting MSCs exhibited migration properties (n = 6), whereas all of our controls (n = 6) failed to show migration pathways or accumulation sites.

Our dual labeling scheme, targeted for validating the MRI study, has also offered a better opportunity to visualize the cells in histology, as colocalization was possible. Using both stains, we validated the location of the cells as the MRI had predicted. Several dozen cells were found to be positive for iron dye in a given accumulation site. As cited, there were more PKH26-positive cells than Prussian blue-labeled cells, probably because of the low dosage of SPIO labeling or, perhaps, the asymmetric uptake of the cells.

The reaction of the innate immune system to the cells, despite the allogenic transplantation, has also been tested. Previous studies showed that this could pose a problem and demonstrated up to 100% phagocytosis of the transplanted MSCs, injected into a myocardial infarct scar [52]. Moreover, a recent study has claimed that rat-derived MSCs cannot survive more than 14 days, even in a naive rat brain [53]. In our study, we dyed the sections for the macrophage marker ED1 and proved that only a minority of the cells had been actually attacked by the immune system after 18 days. However, although MSCs are known to induce immunosuppression on their surroundings [10, 54], the cells definitely induced the immune response since ED1-positive aggregations were witnessed all along the migration path from the transplantation spot (data not shown). This was not found in SPIO-only-injected control animals.
We have presented a novel protocol that induced MSCs into NTFs secreting cell in a Huntington’s disease model. Optical neuroimage tracking of brain-grafted cells. Gene Ther 2007;14:118–128.

Arnhold S, Klein H, Klinz FJ et al. Human bone marrow stroma cells display certain neural characteristics and integrate in the subventricular to the locations where they are most needed and exert their positive effect there. Future experiments will examine the efficacy of the NTF-secreting cells in the QA model of HD.

CONCLUSION

The authors indicate no potential conflicts of interest.

49 Kostura L, Kraitchman DL, Mackay AM et al. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed 2004;17:513–517.

53 Coyne TM, Marcus AJ, Woodbury D et al. Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. STEM CELLS 2006;24:2483–2492.

Migration of Neurotrophic Factors-Secreting Mesenchymal Stem Cells Toward a Quinolinic Acid Lesion as Viewed by Magnetic Resonance Imaging
Ofer Sadan, Noam Shemesh, Ran Barzilay, Merav Bahat-Stromza, Eldad Melamed, Yoram Cohen and Daniel Offen

Stem Cells 2008;26;2542-2551; originally published online Jul 17, 2008;
DOI: 10.1634/stemcells.2008-0240

This information is current as of January 11, 2009

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high-resolution figures, can be found at: http://www.StemCells.com/cgi/content/full/26/10/2542</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Material</td>
<td>Supplementary material can be found at: http://www.StemCells.com/cgi/content/full/2008-0240/DC1</td>
</tr>
</tbody>
</table>