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Knowledge structures called “ontologies” (as an abuse of good philosophical terminology) have become
increasingly important in modern knowledge systems. Characterized generally as “machine representations of
a domain of knowledge”, they have many different technical realizations, and ontological concepts have leaked
into everything from simple function typologies to database schemata to object-oriented data structures to
full-up agent-based AI. Famous general ontologies include Cyc and Wordnet; ontological capability forms
one of the foundations of the nascent Semantic Web through technologies such as DAML+OIL [2] and OWL
[9]; and ontologies are becoming increasingly important in knowledge-based sciences.

Despite recent excitement, ontologies have had relatively limitted penetration into mainstream computer
science and systems. An exception to this is computational biology, where ontological concepts have escaped
the laboratory and come into their own. The computational biological revolution has meant that for some
biologists, the use of large databases, including such ontological structures such as the Gene Ontology (GO)
[1], the Enzyme Commission Database (EC) [3], the MEdical Subject Headings (MeSH) [8], and others, is
now a standard part of the work day.

To the extent that there is a common technological realization of ontological systems, they can be cast as
large, taxonomically organized data objects over which automated inference and reasoning (for example using
description logics) is performed. But what distinguishes the succesful ontologies in computational biology is
that they are of an intermediate level of technical complexity. By avoiding the use of the inference engines,
and instead existing as large collections of hierarchical, taxonomic, categorizations of biological objects such
as genes and proteins, they come closer to being specially structured databases.

Most significantly for us here, such bio-ontologies are well cast as large relational objects, which then begs
questions about their combinatorial properties. In particular, our fundamental thesis is that bio-ontologies
such as the GO, the EC, and MeSH, share with object-oriented type hierarchies the formal structure of a
multi-poset: a union of partially ordered sets (posets), each one representing a different semantic relation.

The GO in particular is a collection of three disjoint sets of categories (biological process, molecular
function, and cellular location), with annotations assigning genes and proteins to sets of these categories.
Each set of categories is then equipped with one partial order representing is-a inheritance, and another
representing has-part composition, so that more general categories are towards the top, and more specific
categories are towards the bottom. As shown in Table 1, the GO posets are relatively large objects, and
more importantly, continue to grow exponentially as their collective authors continue to update them.

The computational biology community has recently seen work by groups using the GO for various tasks such
as drug discovery, protein function inference, and automated annotation. One of the most fundamental such
tasks is that of categorization: given a large list (on the order of hundreds) of genes of interest, analyze
their distribution over the GO, and decide which node(s) best “summarize” the gene list. This then begs
questions such as: are the genes concentrated in one place? in multiple places? if not, how dispered as they?
what value should be placed on general vs. specific posible categorizations? and how is that measured?

We found existing work in this area insufficient, as it either did not take into account the specific properties
of posets, as opposed to general networks [10], or relied on supplementary statistical information whose
presence we did not want to assume [7, 11]. Also, posets were structures about which we had few good
intuitions, compared to more familiar structures such as trees, networks, or Euclidean spaces.
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Total Nodes Leaves Interior Nodes Edges Height Width
Molecular Function 7.0K 5.6K 1.3K 8.1K 13 ≥ 3.5K
Biological Process 7.7K 4.1K 3.6K 11.8K 15 ≥ 2.9K
Cellular Location 1.3K 0.9K 0.4K 1.7K 13 ≥ 0.4K
GO 16.0K 10.6K 5.4K 21.5K 16 ≥ 5.9K

Min Max Mean Median
# Children/node 0 310 1.35 0.75
# Parents/node 0 6 1.35 1.71

Table 1: Summary statistics of the Gene Ontology, version go 200309-assocdb.xml.
Most significantly, compared to other combinatoric structures such as graphs, lattices, and trees, poset
theory seemed to be relatively undeveloped (for example, the first textbook appeared in 2003 [12]). Most
of the central questions we needed to answer, such as measures of “level” and “distance” in posets, were
not obvious. While this was surprising, on the other hand the existence of such large-scale combinatorial
structures as data objects, and the need to discover and measure such things about them, is relatively novel.

To date we have brought our work on categorization in the GO primarily to the computational biology
community [5, 6], and now relish the opportunity to share our ideas and questions with the combinatorial
scientific computing community. In particular, this talk will address the following:

• Our approach to the categorization task based on scoring functions which balance coversage and speci-
ficity by using pseudo-distance measures between comparable nodes.

• Recent positive validation achieved by comparing our results to Interpro [4] annotations.

• Potential generalizations of our pseudo-distance measures to involve interval-valued rank, height and
width of intervals between bounds of noncomparable nodes, and Markov processes on poset intervals.

• Development of analytical methods for large posets (e.g. finding embedded sub-trees and sub-lattices).

• Measurement of coherence among different semantic orderings on the same node set.

• Weighting mechanisms to account for relative density and sparsity in portions of the ontology.

• Methods to regularize mappings and measure similarity among different ontologies (e.g. between GO
and EC) in terms of order preservation and poset homomorphisms of both poset nodes and annotations.
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