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1 Problem

One of the simplest idealizations of a flexible polymer chain consists of replacing
it by a random walk on a cubic lattice in three-dimensional space or on a square
lattice in two-dimensional space. (This walk is allowed to self-intersect, and it has
no "bending energy", i.e. each step is independent of the previous one. Assume
that one end of the polymer is tied to a surface. The surface will be considered
adsorbing, i.e. every time the polymer (or the random walk) touches the surface its
energy decreases by V. A very long polymer will be either localized near the surface,
or will be delocalized, depending on the temperature T. Describe the temperature-
dependence of the "localization" of the polymer

2 The partition function

In this note we concentrate on the case of 2D polymers. Basically we deal with a special case
of weighted random walk on the lattice Z; x Z. Consider the partition function for a canonical
ensemble of such walks of a fixed length n

Z v
ZTL = 6m T ) (1)
over all walks of length n

where m counts the times a walk touches the wall (the starting point excepted). Denote %
by . Then the mean number of returns to the wall

1 m d
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™ over all walks of length n
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In the following we show that < m >7 may be obtained analytically for the number of steps
n S 20 (with a little help from Maple) and good asymptotics may be obtained for n > 1.

One of the most powerful tools in the theory of simple random walk on Z is the generating
function. As a counterpart in this Problem we introduce the generating function of partition
functions (GPF)

Gz(t) = Z Zit! (3)
i=0

(Zo := 1), which is a power series in some real ¢ > 0 and supposed to contain all the
information about {Z;}.

3 An alternative formulation

To take full advantage of the well-developed apparatus of generating functions for the random

walk on the line, it would be very convenient to reduce the dimension of the Problem to D = 1.
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Which is in fact possible for two-dimensional polymers and due to the translational invariance of
the potential along the wall. It is easy to observe that there is a bijection from the set of all 2D
random walks of length n restricted to the right-hand half-plane (random walk on Z4 x Z) to
the set of all random walks on Z, (simple random walk on Z restricted by the condition z > 0)
of length N = 2n. We identify a step in Z; x Z) walk with two steps in Z, walk as depicted in
the following table:

2D walk 1D walk

— step to the right ———— 2 steps to the right

+—— step to the left +——+«— 2 steps to the left

T step upward & step to the right then step to the left
| step downward &S step to the left then step to the right.

We also require that if the original walk starts on the wall, say at (0;0), then its image starts
at © = 1. Take, for example, the walk in Figure 1.
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The corresponding walk can be represented by the following series of non-negative integer

numbers:

1;2;1:2;1;2;3:4;3;4;3;2;1;0; 1;0; 1;0; 15 0; 15 2; 3; 2, 15, 0; 15 2; 3; 4, 5
or as a function of time (current step number) as in Figure 2. Note that, though under this
reformulation we loose information (in its obvious form) about the position of the polymer chains
along the wall, the information about the height is retained, e.g. the number of returns to the
wall of an original walk m equals to the number of returns of its image to x = 1.

Let us now explain the terminology used in Figure 2. A maximal connected part of a walk
confined in the strip 0 < x < 2 (shaded area in Figure 2) is called a saw. An excursion of a walk
to the half-plane = > 2 between two consecutive returns to x = 2 is called a loop. A walk on Z,
with origin at © = 1 starts with a saw of an odd length. Then follows a series of loops (no loops
is also possible). Each loop may have or have not a saw attached to it. If there is no saw after a
loop we can still consider it a loop-saw combination with a saw of zero length. If after the last
loop-saw combination we have some extra length then there is room for the ending, which is an
excursion from x = 2 upward with no return to z = 2.

4 GPF

In the reformulated problem (3) can be rewritten as

Gz(t) = Z Zoit', (4)
9=0



where Zo; is the partition functions for weighted Z, walks of length 2i. As follows from the
discussion above, a walk is weighted be the factor eT each time it returns to = = 1. Accordingly
to the presented description of the structure of the random walk on Z, (which we will also call
asymmetric random walk in contrast to the simple symmetric walk on Z), the GPF may be
decomposed with the help of much simpler GPFs associated with saw, loop and ending types of
paths.

4.1 Saw -type GPFs

Let us consider random walks on the interval [0,2] (in other words on the set of three points
{0,1,2}) of length 2i. Each of such walks returns to the point z = 1 exactly [ times and there
are 2/=1 of them. The partition function, which is just a sum over all such saw-type walks each
taken with the same weight e'?, for any [ > 1 is 2 "1e!?. We need a saw with [ = 0 to insert it
between two consecutive loops, so ZS““’ = 1. Then the GPF is

N =

e
Gsaw(t) = 1+ ZelBQI_ltl =
=1
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The GPF for the starting saw is quite similar except for the fact that its length 20 —1 (I > 1)
is odd and as a result Z§'" = 0.
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Gstart (t) = Z 6(1—1)521—1tl (6)
=1
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4.2 Loop-type GPFs

Note that we have already isolated all the weight factors in G, (t) and Ggiert(t). This done,
the only problem with the loop-type GPF is asymmetry. The partition function for a canonical
ensemble of loops of length 2/ in the symmetric random walk is just the well-known probability
of a first return to the origin at time 2[ (see any good book on Probability theory) multiplied by
22l The generating function of the latter is 1 — /T — ¢ so the generating function of the former
is 1 — /1 — 4t. Our loops are asymmetric, i.e. only loops above z = 0 are allowed, which gives
a factor % Finally requiring Gjeep(0) = 0, we have

Gloop (t) = % (1-V1-—4t). (7)

\/% of another
well known class of simple walk probabilities, namely the probabilities of no return to the origin.
What should be taken into consideration here is that an ending-type walk has an odd length
2] + 1 and that the last step (if [ > 1, see discussion in 4.3) gives a factor 2 into the partition
function and thus compensate for the asymmetry factor % If there is no ending (I = 0) the last

step is still there and we require Ge,g(0) = 2, which yields

Similarly the ending-type GPF is connected with the generating function

1
V1—4t

Gend(t) =1+ (8)



4.3 Decomposition

We have chosen the above GPS’s values at ¢ = 0 the way that allows us to decompose Gz(t) as
follows:

GZ (t) = Gstart(l + Gloostaw + (Gloostaw)2 + (Gloostaw)3 + )Gendv (9)

where 1 in the brackets accounts for all walks without any loop, GioopGsaw — for all walks
with a single loop and so on. Using (6), (7), (5) and (8) we can compute

2t 1
G2 = T 3m T i (1 — eht) (1 i 4t> ' (10)

It should be admitted that (10) in a way ignores boundary effects. One could notice that
obtaining (8) we supposed that the final position of a walk lies outside the interval [0, 2], since
if it does not the factor of the last step into partition function will not be 2 but rather 1 + e°
or 2¢# depending on whether the walk ends in a loop or a saw. The exact formula for Gz (t) is
still possible to compute and we just state it here for the sake of completeness:

Gz(t)

260 N 1 L) (s VI —4t(ef +1 —2¢Pt)
T 1-26Pt 1 —3ePt+ T —4t(1 —eBt) \ VI — 4t 1 — 2Pt ‘
(11)

But since it gives the same asymptotics as (10) (for example, the singularity t = ﬁ is always
farther from 0 than the other singularities of both (10) and (11) ) being much more complicated,
in the following we use (10).

At this point we can already compute < m > for some relatively large n. The GPF Gz(t)
may be expanded in Taylor series, the coefficients of which and the coefficients of (3) coincide:

1
7, = mG(Z")(o).

Then (2) reads as

d (n)
<m >p= %lnGZ” (0). (12)
Maple can analytically compute < m >7 using (10) and (12) for up to n = 20 and the
corresponding curves for n = 5,10 and 20 are depicted in Figure 3 with thin solid lines.

5 Asymptotics

It is quite easy to find singularities of the expression (10) for G4 (t). For e” < 3 we have a single

singularity in the complex ¢-plane: t = g = § of the form Gz(t) ~ \/ti_—t For e/ > % there is

to and
14 /2B — B
t=—1+ +€—/36 (13)
e
(which is always closer to the origin than ¢,) of the form Gz(t) ~ tl—l_t If e = %T, t1 and tg
coincide but the singularity is still a pole Gz(t) ~ to%t. Note that Gz(t) may be analytically

continued on C\ [min(tp,?1),00). It enables us to employ Singularity analysis [P. Flajolet and A.
Odlyzko. Singularity analysis of generating functions. SIAM Journal on Discrete Mathematics
3, 2:216-240, 1990] to derive the asymptotics of Z,, for n > 1, which using (3) yields:

o for eﬁ<%:
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where F(t) = Gz(t)\/to-t; 4



o for eﬁ>%:

F(t
I = n(+11)7 (1)
th
where F(t) = Gz(t)(t1-1);
e for e = %:
F(t
VRS t£+ﬂ), (16)
0

where F(t) = Gz(t)(to_t).

e In general, Singularity analysis gives asymptotic Taylor coefficients for functions of the

form H(t) = %, where f(t) is supposed to be ‘good enough’:

1y L 1 ft)
a0 = Ty e ()

4
51 ¢° > 3

In this case F'(t1) happens to be quite complicated but luckily we can do without it if we just
want to compute the asymptotic of < m >z for n > 1. Using (2),(15) and (13) and keeping
only the leading term we have

< mo>pe % (InF(t1) — (n+1)Inty) (18)
R e P2Vl —e P —1)
T B T2 e e PV eP 1)

or for the mean number of returns to the wall per step

<m>r 1 e P2V —eP —1)
n S 2V1—eBleB+V1I—eB-1)

<m>r
n

(19)
As the temperature (7' = ¥) decreases, asymptotically approaches 1.(see Figure 3).
This asymptotic apparently does not work at § = ln% but for any positive € it works for
8> ln% + ¢ for all n starting from some V..

Similar procedure may be applied to calculate the heat capacity

d?InZ d<m>r
2 n 2
= = ) 20
c=p dp? p dg (20)
For the heat capacity per step using (18) we have
c ,d?Inty
-~ — . 21
n b dﬁQ (21)



4
52 ¢ < 3

Formula (14), where

1
F(ty) = ———=
() = 750"
and (2) yield
3e?
<m >peo— e (22)
and
12¢°
c~ 52—. 23
(4 — 3e8)> (23)

Note that for V =0 we have < m >= 3.
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This case is aggravated by the fact that we cannot compute the derivative of Z,, with respect to
5. Note, instead, that

L7, £GP(0)

< m>p= Z - G(Zn)(O) (24)
(G2 ™(0)
EaI)
and
LG y)m 2 Gy d v V) ()2
e () G5(0) (G5(0))2
52 M_<m>%

a3’ (0)

The n > 1 asymptotics (17) and the expression (10) for Gz lead to the following results:

<7n>T23M;, (26)

c 9(r—2) 4
E__—3;—4mgﬁ. (27)

One interesting feature of (26) is that it differs from < m > for the simple symmetric 1D
walk by a factor % This is due to the fact that we do not have the symmetric walk here but

rather the Z walk weighted at x = 1 by the factor % and at x = 0 by %

6 Discussion

Let us now discuss what happens at e = % in the limit n — oo. We have already mentioned
that we expect our two asymptotic branches to work very close to e® = % for large enough n.
This means that for any small positive ¢ we can use (21) and (23) to calculate the limits of £
at = (In% +¢) and (In 3 — €) respectively. Tl%us we have
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Figure 1: The mean number of returns to the wall per step <";L1>T as a function of 5. With
points the two asymptotic branches (18) and (22) are depicted for n = 2000. They should be
glued together at the asymptotic (26) (cross). The thin lines are Maple generated analytical

solutions for n = 5, 10,20 (the closest to the asymptotic branches is n = 20 and so on).
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Figure 2: The heat capacity per step < as a function of 3. With points the two asymptotic
branches (21) and (23) are depicted for n = 2000. The thin lines are Maple generated analytical
solutions for n = 5,10, 20 (the closest to the asymptotic branches is n = 20 and so on).



lim — =0
n—oo n
forﬂzln% — ¢ and
. c
lim — ~ 0.372 (28)
n—oo 1N

for g = ln§ +e.
At the same time (27) gives £ ~ 0.135 exactly at 8 = In4. This shows that at 3 =1In3 we
have a transition of second order with the jump of £ given by (28).



