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One Observation behind
Two-Envelope Puzzles

Dov Samet, Iddo Samet, and David Schmeidler

1. TWO PUZZLES ON THE THEME “WHICH IS LARGER?” In two famous
and popular puzzles a participant is required to compare two numbers of which she is
shown only one. Although the puzzles have been discussed and explained extensively,
no connection between them has been established in the literature. We show here that
there is one simple principle behind these puzzles. In particular, this principle sheds
new light on the paradoxical nature of the first puzzle.

According to this principle the ranking of several random variables must depend on
at least one of them, except for the trivial case where the ranking is constant. Thus, in
the nontrivial case there must be at least one variable the observation of which conveys
information about the ranking.

A variant of the first puzzle goes back to the mathematician Littlewood [7], who
attributed it to the physicist Schrödinger. See [6], [3], [2] and [1] for more detail on the
historical background and for further elaboration on this puzzle. Here is the common
version of the puzzle, as first appeared in [5]:

To switch or not to switch? There are two envelopes with money in them.
The sum of money in one of the envelopes is twice as large as the other
sum. Each of the envelopes is equally likely to hold the larger sum. You are
assigned at random one of the envelopes and may take the money inside.
However, before you open your envelope you are offered the possibility of
switching the envelopes and taking the money inside the other one. It seems
obvious that there is no point in switching: the situation is completely symmetric
with respect to the two envelopes. The argument for switching is also simple.
Suppose you open the envelope and find a sum x . Then, in the other envelope
the sum is either 2x or x/2 with equal probabilities. Thus, the expected sum is
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(1/2)2x + (1/2)x/2 = 1.25x . This is true for any x , and therefore you should
switch even before opening the envelope. Should you or should you not switch?

The second puzzle is due to Cover [4], but the gist of it had already appeared in [2]
(see footnote 6).

Guessing which is larger. Two different real numbers are each written on a slip
of paper facing down. One of the two slips is chosen at random and the number
on it is shown to you. You have to guess whether this is the larger or the smaller
number. How can you guarantee that the probability of guessing correctly is more
than half, no matter what the numbers are?

Unlike the first puzzle this one is not paradoxical. There is indeed a method, dis-
cussed in the last section, guaranteeing a probability larger than one-half of guessing
correctly. But this is somewhat surprising. How can we learn anything about the order
of the two numbers by observing one of them?

The surprise caused by this puzzle can be expressed in probabilistic terms. We could
imagine that the two numbers are selected according to some probability distribution
such that the probability that the chosen slip has the larger number is 1/2, no matter
what number we observe. If the two numbers are chosen this way, we would not have
any way of guessing with probability higher than 1/2 which is the larger number. The
fact that we can do so shows that such a probability distribution does not exist. We
make this statement more precise in the last section.

Consider now the first puzzle. On observing any amount x in her envelope, the
participant believes that it is equally likely that the other envelope contains the larger
amount 2x or the smaller one x/2. But as the second puzzle shows, such beliefs are
not consistent with any prior probability distribution on the sums in the envelopes.

We demonstrate here that the principle that lies behind these puzzles is more gen-
eral. It applies to any n real-valued random variables the ranking of which is not fixed.
It states that at least one of the variables must depend on the ranking. Thus, observing
this variable alone conveys information about the ranking.

2. RANKING BY ONE OBSERVATION. Let X = (X1, . . . , Xn) be a vector of n
real-valued random variables on some sample space. Denote by W the set of weak
orders over {1, . . . , n}.1 The ranking of X is a random variable r(X) with values in W.
For W in W, r(X) = W whenever, for all i and j in {1, . . . , n}, Xi ≥ X j if and only
if i W j .

Proposition 1. If the random variables Xi and r(X) are independent for each i , then
r(X) is constant almost surely.

Proof. We first prove the proposition for n = 2. Let D = {x : x1 = x2} be the diagonal
of R

2, A = {x : x1 < x2} be the set above the diagonal, and B = {x : x1 > x2} be the set
below it. Denote by P the probability distribution on R

2 induced by X .
Suppose that r(X) is not constant almost surely. Hence, at least two of the sets A,

D, or B have positive probability. Assume that P(B) > 0 and P(A ∪ D) > 0, and
denote C = A ∪ D (if P(B) = 0 then P(A) > 0 and P(B ∪ D) > 0 and the proof is
similar). Suppose now that, contrary to the proposition, Xi and r(X) are independent
for i = 1, 2.

1A weak order is a transitive and complete binary relation. Completeness here means that for each i and j
either iW j or jWi holds. Thus reflexivity is implied.

348 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111



Fix a point a of R, and let H1(= H a
1 ) and H2(= H a

2 ) be the two half-planes H1 =
{x : x1 ≥ a} and H2 = {x : x2 ≥ a}. Note that B ∩ H1 can be written as the disjoint
union (B ∩ H2) ∪ (H1 \ H2). Thus

P(H1 \ H2) = P(B ∩ H1)− P(B ∩ H2).

By the independence assumption,

P(H1 \ H2) = P(B)P(H1)− P(B)P(H2).

Analogously,

P(H2 \ H1) = P(C)P(H2)− P(C)P(H1).

Multiplying the first equality by P(C), the second by P(B), and adding them yields

P(C)P(H1 \ H2)+ P(B)P(H2 \ H1) = 0.

As P(C) and P(B) are positive, this implies that P(H1 \ H2) = P(H2 \ H1) = 0.
Thus, for all a in R,

P((H a
1 \ H a

2 ) ∪ (H a
2 \ H a

1 )) = 0.

Hence, the set ∪a(H a
1 \ H a

2 ) ∪ (H a
2 \ H a

1 ), where a ranges over all rational numbers,
has probability zero.2 But this union coincides with A ∪ B, contrary to our assumption
that P(A ∪ B) > 0.

Assume now that n > 2. Note that the algebra of events generated by r(Xi , X j )

for i �= j is contained in the algebra generated by r(X). Since by assumption Xk is
independent of r(X) for all k, it follows that Xi and X j are independent of r(Xi , X j )

for all i and j . By the proof for n = 2, r(Xi , X j ) is constant almost surely. This implies
that r(X) is constant almost surely.

3. APPLICATION TO THE PUZZLES.

To switch or not to switch? Denote the sums in envelopes 1 and 2 by X1 and X2,
respectively. The puzzle assumes that the events X1 = 2X2 and X1 = (1/2)X2 are
equally likely. In particular, the ranking r(X1, X2) has two values that are equally
likely. The puzzle stipulates that for any observation of X1 or X2 these two events are
still equally likely. Thus it assumes that each of the variables X1 and X2 is independent
of the order of these variables. By Proposition 1, no such random variables exist.3

Guessing which is larger. It is helpful to present this puzzle as a two-person, zero-
sum, win-lose game. The first player C chooses the numbers, while the second
player G makes the guess after observing the number on one of the slips that was
chosen at random. Player G wins if and only if she guesses correctly.

2This is the only place in the proof that requires countable additivity of the probability on the sample space.
3A standard argument for the nonexistence of the required prior in the switching puzzle relies on the nonex-

istence of a uniform probability over a countable set. A similar argument can be made when the support is a
continuum and the random variables have densities [8]. The argument here does not require any of these re-
strictions. More importantly, it is formulated in general terms of learning from an observation, which seems to
lend new insight into this problem.
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The pure strategies of C are pairs (x1, x2) of distinct real numbers. A mixed strategy
of C is a pair of random variables (X1, X2) such that P(X1 �= X2) = 1.4 We restrict
G’s pure strategies to threshold strategies. Each t in R represents the threshold strategy
at which the player guesses that the observed number x is the larger if x ≥ t and is the
smaller otherwise, independently of which slip she observes.5 Mixed strategies of G
are probability distributions over R.

In view of the previous section it is not surprising that the chooser cannot prevent
the guesser from having better than even odds of guessing correctly. By Proposition 1
there is no mixed strategy (X1, X2) for C such that each of the events X1 > X2 and
X1 < X2 has probability 1/2 independent of the observed value of X1 or X2. Moreover,
the solution to this puzzle serves as a proof of Claim 3 in what follows. This claim is a
special case of Proposition 1 and suffices for the resolution of the paradox in the first
puzzle. First, we establish in the next two claims the fact (shown in [4]) that G has a
mixed strategy Q that guarantees her a probability higher than 1/2 of winning against
any pure strategy of C .

Claim 1. If G plays an arbitrary threshold strategy t against any pure strategy (x1, x2)

of C, then she
• wins with probability 1/2 when either x1, x2 < t or x1, x2 ≥ t;
• wins for sure when either x1 < t ≤ x2 or x2 < t ≤ x1.

Indeed, in the first two cases G’s guess is the same whether she observes x1 or x2.
Her guess is correct with probability 1/2. In the last two cases G guesses correctly
whether she observes x1 or x2.6

Consider a mixed strategy Q of player G such that Q((a, b]) > 0 whenever a < b.

Claim 2. The strategy Q guarantees that player G wins with probability higher than
1/2 against any pure strategy of C.

Consider the strategy (x1, x2) of C such that x1 < x2. If x1 < t ≤ x2, which happens
with probability Q((x1, x2]), then G wins for sure. In all other cases G’s chance of
winning is 1/2. Thus her chances of winning are 1/2+ Q((x1, x2]) > 1/2. The case
x2 < x1 is similar.

In view of this claim it is obvious that C does not have a mixed strategy that guar-
antees that she wins with probability 1/2. This implies the following claim.

Claim 3. There is no mixed strategy (X1, X2) of C such that

(a) P(X1 > X2) = P(X2 > X1) = 1/2;
(b) each of X1 and X2 is independent of the events X1 > X2 and X2 > X1.

Suppose to the contrary that such a mixed strategy exists and that player C is using
it. The probability that G guesses correctly using the threshold strategy t is

P(G observes X1)
[
P(X1 > X2 and X1 ≥ t)+ P(X1 < X2 and X1 < t)

]
(1)+ P(G observes X2)

[
P(X1 < X2 and X2 ≥ t)+ P(X1 > X2 and X2 < t)

]
.

4It is possible to identify the mixed strategy with the probability distribution over pairs (x1, x2) induced by
the pair (X1, X2).

5One can think of more general pure strategies in which the guess is any function of the observed number
and the slip that is chosen. But threshold strategies suffice to guarantee a win with probability higher than 1/2.

6Blackwell, in Example 1 in [2], introduces a special case of this puzzle. He uses a similar threshold
estimate to improve upon the constant estimates, which guarantee a correct guess with probability 1/2 only.
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Since G observes each of X1 and X2 with probability 1/2 and since conditions (a)
and (b) are in force, the probability in (1) is

1

2

[
P(X1 > X2)P(X1 ≥ t)+ P(X1 < X2)P(X1 < t)

]
+ 1

2

[
P(X1 < X2)P(X2 ≥ t)+ P(X1 > X2)P(X2 < t)

] = 1

2
.

Thus, the mixed strategy P guarantees player C a probability 1/2 of a win against any
pure threshold strategy of G, and hence also against Q, which is a contradiction to
Claim 2.
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On the “Reducibility” of Arctangents
of Integers

E. Kowalski

On a number of occasions (see [5], [4]), this MONTHLY has mentioned a problem
originally due to J. C. P. Miller concerning relations (with integer coefficients) among
numbers of the type arctan m, where m ≥ 1. The best-known instance is

arctan(239) = 4 arctan(5)− 5 arctan(1),

April 2004] NOTES 351


