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We present a model of social learning in an environment with common values
where informational cascades and herding arise in combination with the winner's
curse. A seller of an object sequentially obtains bids from potential buyers. We
characterize three classes of equilibria that differ widely in their information
aggregation properties and in the size of the rent the seller captures from the
buyers. We compare the procedure of sequentially soliciting bids from the buyers
to conducting an English auction for the object in terms of maximization of seller's
revenue and demonstrate the superiority of the former. Journal of Economic
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1. INTRODUCTION

We present a model of social learning in market-like environments with
common values. We show that the phenomena of informational cascades
and herding, where the available public information swamps the agents'
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private information and induces them to behave identically, arise in
combination with the winner's curse.1

We consider a model where the owner of an object (henceforth, the
``seller'') sequentially obtains bids for the object from a finite number of
potential buyers. All buyers have the same ex post valuation of the object.
They differ, however, in their estimates of this common value. The basic
structure of our model is similar to the one considered by the herding
literature.2 However, our approach differs from the standard herding
literature in three respects. First, the order of approaching the buyers is
determined by the seller and hence is endogenous to the model. Second, the
action spaces of the agents who have private information are continuous
sets whereas in the rest of the literature the herding results depend on these
sets being discrete (see [5]). Third, and most importantly, the payoffs
to the buyers and to the seller depend on the actions of the other agents
in the model. That is, besides the informational externality that charac-
terizes the herding literature, there is also a payoff externality, and as a
consequence, the winner's curse becomes relevant to the analysis.

The model presented is flexible enough to incorporate a large variety of
cases: from an inventor who is searching for a venture capital firm to
finance the development of his idea into a marketable product, to a movie
director who needs a producer to realize a script, to a university graduate
in search of a job. Since the price of the object may be negative, the model
also applies to the case of a government agency that is looking for a con-
tractor to perform a public project. Our results help shed light on a
number of (casual) empirical observations such as the documented failures
of inventors to sell useful inventions. We show that such failures are not
necessarily due to the fact that no information about the true quality of the
object exists but rather may occur because the market fails to successfully
aggregate all the available information. Thus, for example, one of two
inventions with similar commercial potential may be sold for an extremely
high price, whereas the other may not be sold at all. Similarly, out of a set
of comparable university graduates, one may become a ``star'' in the job
market, others may do well, but the rest might fail to get any offers.
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1 An informational cascade occurs when the (observable) actions reveal no information
about the private signals. Herding occurs when agents behave identically, independently of
their private signals.

2 [1] and [2] are the classic references. For surveys of different aspects of herding literature
see [4], [18], and [3]. Another, especially general, treatment is presented by [17]. [19] con-
siders a herding model that is applied to the sale of IPO shares. It examines a sequential
model with one seller (the issuer) and many buyers (the investors). However, while in [19]
the seller offers IPO shares to potential buyers at a price that the seller chooses optimally, in
our model the buyers bid optimally for the object.



This diversity of outcome in the model arises as a consequence of path
dependent informational cascades.

We focus our analysis on three types of equilibria that differ by their
information aggregation properties and by the size of the surplus the seller
can extract from the buyers. We demonstrate the existence of a ``backwards
induction equilibrium'' which does not exhibit informational cascades or
herding and where, except for one particular case, all the available informa-
tion is used efficiently. In this equilibrium, except for this one particular
case, the seller succeeds in capturing all of the buyers' information rents.
Next, we show that there exists an equilibrium where an informational
cascade and herding occur with a positive probability that tends to 1 as the
number of potential buyers increases. Nevertheless, the seller succeeds in
capturing almost the entire surplus in this equilibrium as well. Finally, we
demonstrate the existence of a third family of equilibria where no informa-
tion is revealed and the sale price may be pushed down to the seller's
reservation value or even below, in which case no trade occurs. We discuss
the dimensions on which these equilibria can be compared, and the issues
of multiplicity and selection of equilibria, at the end of Section 3.

We compare the procedure of sequentially soliciting bids from the buyers
to conducting an English auction for the object in terms of the expected
payoff to the seller. We show that the sequential procedure presented in
this paper is superior. Under three different assumptions on the seller's
behavior, we demonstrate that the seller's expected payoff under the
sequential procedure is either higher than or equal to that generated by an
English auction. Under the English auction, buyers who have observed
high signals can step forward and bid up the price of the object. On the
other hand, under the sequential procedure, the buyers can only bid
the price up when approached by the seller. One may expect then that
the English auction would be better at aggregating the buyers' information
but our results show the opposite. Because buyers can step forward under
the English auction, the winner's curse is more severe under the English
auction, and as a consequence, the sequential procedure is better at
aggregating the buyers' information and at generating higher revenues for
the seller. In addition, whereas in the English auction, the seller is obliged
to sell the object if buyers bid the price above the initial price, in the
sequential procedure, the seller has the advantage of the possibility to
refuse to sell the object if he does not think the price is high enough.

Our results relate to those obtained in the literature that studies informa-
tion aggregation in common value auctions.3 In our model, there exist
equilibria where the information contained in all private signals is fully
aggregated (except, possibly, for the information contained in one single
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private signal). In the limit, as the number of potential buyers increases,
complete information aggregation is achieved even when Milgrom's [8]
necessary (and sufficient) condition for information aggregation in a first
price auction under common values is not satisfied. On the other hand,
when the number of buyers is large, there exist more compelling herding
equilibria where private signals are never fully aggregated. Since our model
does not satisfy Milgrom's [8] sufficient condition for full aggregation of
private signals (that requires the existence of signals that are strong enough
to overturn any previously held belief), this result is not, perhaps, very
surprising.4 But Milgrom's condition is very strong, and our model does
satisfy the weaker sufficient condition of [12] that consider a variation of
Milgrom's model where instead of one, k objects are for sale.5

Finally, the sequential procedure that is described in this paper is similar
to those described in the search literature.6 The important difference is that
in the search literature the bids are usually assumed to be independent and
no informational or payoff externalities are present. In contrast, in this
paper the buyers' bids for the object are correlated for (at least) three
reasons: the correlation in buyers' signals, the fact that the object has the
same common value to all the buyers, and because buyers condition their
bids for the object on publicly observed history. As a consequence, the
optimal strategy for the seller cannot be described by a reservation value
rule as in the search literature. Another consequence is that even without
discounting or search costs, in some equilibria the search may stop before
all potential buyers have been approached.

The rest of the paper proceeds as follows. In the next section we present
the model and some preliminary results. In Section 3, we explore the range
of equilibrium behavior. In Section 4, we compare the procedure of sequen-
tially soliciting bids to standard auctions. All proofs are collected in the
Appendix.

2. THE MODEL

We consider the problem of a seller of an object of unknown quality who
faces N�2 potential buyers. The set of buyers is denoted B. We denote the
quality of the object by q, and assume that it is either high or low. That
is, q # [qL , qH] where qH denotes high and qL denotes low quality. We
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4 See [17] for an analogous condition that assures that permanent herding on a wrong
decision cannot occur.

5 In [12] Pesendorfer and Swinkels provide a very weak sufficient condition for asymptotic
information aggregation but require both the number of objects that are up for sale, k, and
the number of bidders, n, to tend to infinity.

6 For an extensive survey, see [7] and the references therein.



assume that it is common knowledge among the seller and buyers that the
probability that the object is of a high quality is 0<Pr(qH)<1.

We denote the seller's valuation (i.e., his reservation value) of the object
by a0 . Hence, his payoff from selling the object for a price p is p&a0 . The
seller's payoff if he keeps the object is 0. The payoff to a buyer from
purchasing the object at a price p is given by v(q)& p where v(qH)>v(qL).
The buyers' payoffs when they do not obtain the object (and do not pay)
are normalized to zero. We assume that v(qH)>a0 ; otherwise, the seller
cannot hope to succeed in selling the object for a price that is mutually
acceptable to himself and the buyers. Note that we allow for the case where
v(qL)<a0 , so that trade need not always be welfare enhancing. The buyers
know the seller's reservation value a0 .

At each point of time t # [1, 2, ...] the seller may

(a) search for a ``new'' buyer b # B from whom to solicit a bid for the
object (provided, of course, that the seller has not yet exhausted the set B);

(b) re-approach a buyer that has already been approached before
and ask her to make another bid;

(c) accept one of the bids made prior to time t and sell the object;
or

(d) end the search without selling the object.

When approached by the seller, each new buyer inspects the object and
obtains a private signal about its quality. The buyer's signal expresses her
subjective impression of the value of the object. We denote buyer b's signal
by S b # S, where S=[sL , sH] denotes the signal space. We let S b denote
buyer b's random signal and sb its realization. We assume that conditional
on the true quality of the object, q, buyers' signals are independent and
identically distributed and that for all buyers b # B,

0<Pr(Sb=sH | qL)<Pr(S b=sH | qH)<1.

After being approached by the seller and observing their signals and the
``history'' of the buyers' and the seller's actions (formally defined below),
buyers choose an action from the set R _ [&�]. We use superscripts to
denote buyers' identities and subscripts to denote time. Thus, choosing
action ab

t # R implies that, at time t, buyer b is offering to pay ab
t for the

object; we refer to such actions as bids or offers. Choosing action ``&�''
implies that the buyer declines to make an offer for the object. We refer to
a buyer that is re-approached by the seller as an ``old'' buyer. Old buyers
do not receive an additional signal when re-approached. However, as noted
above, they observe the actions of all preceding buyers.
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The history of buyers' actions at time t, t # [1, 2, ...], is denoted by
ht=(ab(1)

1 , ..., ab(t)
t ) where b({) denotes the identity of the buyer that is

approached by the seller at time {. At time 0, the history h0 is given by the
empty set. The set of all possible histories is denoted by H. We denote
the maximal bid the seller has received by time t by p(ht)=
max[ab({)

{ | 1�{�t], and let p(h0)=&�. We assume that at any point in
time, new buyers must either make a bid that is larger than or equal to
p(ht), or refuse to make a bid. This assumption is based on the idea that
a buyer that realizes that her bid will be lower than a previous bid, under-
stands that the seller will never sell her the object and therefore declines to
make a bid altogether. When re-approached, old buyers may either repeat
their previous offer or make a bid larger than or equal to p(ht).

A pure strategy for the seller is a function Ap : H � (B_R) _ B _
[``stop''] that maps every history ht into the actions available to the seller.
A choice of (b, ab

{) # B_R implies that the seller sells the object to buyer
b at the price specified in her last bid ab

{ ; a choice of b # B implies that the
seller solicits a new bid from buyer b that may be a new or old buyer; and
a choice of ``stop'' implies that the seller gives up the attempt to sell the
object and stops soliciting offers from buyers without selling the object.
A pure strategy for buyer b is described by a function Ab : H_S � R _
[&�] that maps histories and signals into the actions available to the
buyer. By assumption, Ab(ht , sb) # [ p(ht), �) _ [&�] unless b is an old
buyer in which case Ab(ht , sb) # [ p(ht), �) _ [ab

{] where ab
{ is the action

chosen by the buyer when she was previously approached by the seller at
time {<t. Mixed strategies for the seller and buyers are defined in the
usual way.

It is useful to explicitly introduce the players' beliefs about the rela-
tionship between the buyers' actions and their observed signals (types).
A belief for player i is given by a function 1 i : H � �t�1 [0, 1]t that maps
every history ht into a vector of probabilities (# i

1 , ..., # i
t) where # i

{ is the
probability that player i assigns to the event that buyer b({) has observed
the signal sH .

We rely on the notion of perfect Bayesian equilibrium (see, e.g.,
[11, p. 231�233] as our equilibrium notion.

Definition 1. A profile of strategies and beliefs is a perfect Bayesian
equilibrium (PBE) of the sequential bidding game above if (1) for every
possible history ht the seller's strategy maximizes the seller's expected
payoff given his beliefs and the buyers' strategies; (2) for every possible
history ht , buyer b's strategy maximizes her expected payoff conditional on
her observed signal given her beliefs and the seller's and other buyers'
strategies; and (3) whenever possible, beliefs are updated according to
Bayes' rule.
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Given the seller's and buyers' strategies, a player may be able to infer
some (possibly all) of the previous buyers' signals from the history of
actions. Note that if buyers adopt pure strategies, then their actions cannot
partially reveal their signals. Either an action completely reveals the respec-
tive buyer's signal, or the action is completely uninformative about this
signal. Suppose that buyers adopt pure strategies. Let nL(ht) denote the
number of low signals and let nH(ht) denote the number of high signals
that can be inferred from the history ht , Let PH(nL , nH) denote the prob-
ability that the object is of high quality conditional on the fact that, out of
nL+nH signals, nL are low and nH are high.

Lemma 1. PH(nL , nH) is strictly decreasing in nL and strictly increasing
in nH . In addition, there exists a unique integer k�1 such that

PH(nL+k, nH+1)�PH(nL , nH)<PH(nL+k&1, nH+1)

for every nL and nH . This integer is given by

k=min{l # [1, 2, ...] } Pr(sH | qH)
Pr(sH | qL)

�\Pr(sL | qL)
Pr(sL | qH)+

l

= .

For many specifications of the signal structure, the integer k that is
defined in the previous lemma is a small number. We demonstrate this in
the following two examples.

Example 1. When the signal structure is symmetric, that is, when
Pr(sH | qH)=Pr(sL | qL)=: and Pr(sL | qH)=Pr(sH | qL)=1&:, where 1

2<
:<1, k=1.

Example 2. Assume Pr(sH | qH)=Pr(sL | qH)= 1
2 , Pr(sL | qL)=

(n&1)�n and Pr(sH | qL)= 1
n , where n>2. Then, k=2 for n=4; k=3 for

n=10; and k=6 for n=100.

Let

V(ht)=E[v(q) | (A p, Ab)b # B , (1 p, 1 b)b # B , ht ]

denote the expected valuation of the object given the (public) information
that is contained in the history ht .

Lemma 2. V(ht) is a martingale. That is,

E[V(ht+1) | V(ht)]=V(ht)
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for every perfect Bayesian equilibrium profile of strategies (A p, Ab)b # B ,
beliefs (1p, 1 b)b # B and history ht # H.

We introduce the notions of an informational cascade and of herding.

Definition 2. An informational cascade occurs at time T if no
information about the quality of the object is revealed at time T or after.

Definition 3. Herding occurs at time T if all buyers, if and when
approached, refuse to bid up the price at time T or after.

Although there is no necessary relationship between the notions of an
informational cascade and herding, these two phenomena may reinforce
each other.7 Buyers may refuse to bid up the price because they do not
receive any information that justifies a higher price and refusing to bid up
the price prevents information about the quality of the object from being
transmitted to other buyers. In efficiency terms, the significance of informa-
tional cascades and herding is that together they may induce the seller to
inefficiently give up on selling the object despite the fact that it has a high
quality.

It is important to note that in contrast to other herding models, in this
model the informational cascades and herding may remain invisible to an
outside observer because as soon as the seller realizes that future buyers
will refuse to reveal additional information about the object or bid up the
price he may refuse to approach any new buyers.

3. EQUILIBRIUM BEHAVIOR

The main problem that the seller faces is the difficulty to get buyers to
bid the price up to the expected value V(ht) of the object conditional on
the public information and their private signal. The problem is that buyers
know that if they bid V(ht) for the object, their bid gives the seller a
valuable option. Specifically, a buyer b that considers bidding the price up
to V(ht) realizes that the seller may subsequently approach a new buyer. If
this new buyer observes a high signal, she may outbid buyer b, but if she
observes a low signal, she will decline to make a bid for the object and the
seller may sell the object to buyer b at the price V(ht) which, because an
additional low signal has been observed, is higher than the object's
(updated) value V(ht+1). Thus, the fact that buyers' bids have an option
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value for the seller gives rise to a winner's curse : being selected to buy the
object may imply that the seller has approached additional buyers who
observed low signals and therefore the object is worth less in expectation
than the price that is paid for it.

In the next three subsections, we present three types of pure strategy
Bayesian perfect equilibria that illustrate the range of equilibrium behavior.
In the fourth subsection, we comment on the plausibility of these equilibria
and the way it depends on the number of potential buyers.

3.1. The Backwards Induction Equilibrium

The first PBE we consider is one where all the information about the
quality of the object is revealed (except, possibly, for one single private
signal). Furthermore, the price at which the object is sold converges to the
true value of the object conditional on buyers' information as the number
of buyers increases.

Note that although the number of buyers is finite, the fact that the seller
can re-approach old buyers implies that the game may still be infinite.
Nevertheless, the game has a perfect Bayesian equilibrium which closely
resembles a backwards induction equilibrium. Along the equilibrium path
of this ``backwards induction'' perfect Bayesian equilibrium, the seller
approaches the buyers sequentially and every buyer that is approached
(except for the last one) takes account of the winner's curse by making a
bid equal to the expected valuation of the object conditional on public
information, her own signal, and the assumption that all the buyers that
have not yet been approached by the seller observe low signals. After
obtaining bids from all the buyers, the seller sells the object to the buyer
who has made the highest bid, provided this bid is higher than his reservation
value.

We introduce the following notation. Let

pN=E[v(q) | all N buyers observe low signals]

denote the lowest possible valuation of the object conditional on buyers'
information, and let

WN(ht&1 , sb(t))

=E _v(q) } (Ab)b # B , (1b)b # B , ht&1 , sb(t), and all the buyers who
have not yet revealed their signals observe low signals&

denote the expected value of the object conditional on public information
at time t, buyer b(t)'s own signal and all the buyers whose signals are still
unknown observing low signals.
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Proposition 1. There exists a perfect Bayesian equilibrium in pure
strategies where along the equilibrium path: (i) all buyers except the last one
bid up the price to WN(ht&1 , sb) when they observe a high signal, and decline
to make a bid when they observe a low signal; (ii) the last buyer behaves like
previous buyers unless a0<pN and all previous buyers have observed low
signals, in which case she bids pN independently of her signal; (iii) after
soliciting bids from all the buyers, the seller sells the object to the buyer who
has made the highest bid, provided it is larger or equal to a0 ; he sells the
object to the last buyer if the highest bid is pN and a0<pN; and (iv) unless
a0<pN, all buyers except the last one observe low signals and the last buyer
observes a high signal, the seller sells the object at a price equal to the value
of the object conditional on all the buyers' information.

The proposition shows that if a0�pN or at least one buyer except for the
last one observes a high signal, the sale price perfectly aggregates all the
buyers' information. When it does not, the sale price still incorporates the
information of the first N&1 buyers. In this case, the last buyer earns a
positive rent when she observes a high signal. She pays pN although the
object is worth E[v(q) | N&1 signals are low, 1 signal is high]>pN to her.
This is the only case where a buyer succeeds in capturing a positive rent
from the seller.

The equilibrium outcome is always efficient. The object is sold if and
only if its value to the buyers conditional on all the buyers' information is
larger than the seller's reservation value a0 .

To understand the equilibrium and the special role played by the last
buyer, recall that as discussed above, the seller has to overcome the dif-
ficulty of inducing buyers to reveal the fact they have observed high signals.
By insisting on selling only to buyers who have revealed themselves to
observe high signals, the seller can solve this problem for all the buyers
except for the last one. But, if the seller's reservation value is sufficiently
low (i.e., if a0<pN) and if all the buyers before the last buyer have revealed
that they have observed low signals, the last buyer has an incentive to
pretend she has observed a low signal even when her signal is high. In this
case, the seller cannot extract the informational rent from the last buyer
and has no choice but to sell her the object at a price equal to her bid, pN.
This observation relies on two subtle points. First, for the seller, the alter-
native strategy of insisting that the last buyer bids the price up to her
valuation when she observes a high signal is not subgame perfect because
independently of her signal it is always optimal for the buyer to refuse to
bid up the price (if she bids up the price she reveals that her signal is high
and consequently her rent will be zero). Second, since the last buyer does
not reveal her signal, the expected value of the object conditional on public
information is higher than the expected value conditional on all N buyers
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observing low signals, which is the price at which the object is sold.
Nevertheless, no buyer can benefit by deviating and bidding up the price
because if she does, the last buyer will bid the price even higher if she
observes a high signal but decline to bid if she observes a low signal and
thus expose the deviating buyer to the winner's curse.

We obtain the following result on the relationship between the sale price
and the true value of the object.

Proposition 2. As the number of buyers N increases, the transaction
price under the perfect Bayesian equilibrium described in Proposition 1
converges to the true value of the object with probability 1.

3.2. The Herding Equilibrium

In this subsection we present perhaps the most interesting of the three
equilibria we consider. Recall that an informational cascade means that
from some point in time onwards no information about the buyers' signals
is revealed and that herding is defined as a situation where all buyers refuse
to bid up the price. Accordingly we say that a buyer herds if she declines
to bid up the price independently of her signal.

We present a PBE where, initially, buyers who observe high signals bid
up the price, buyers who observe low signals decline to bid, and herding
and an informational cascade occur with a positive probability that
approaches one as the number of buyers, N, tends to infinity. When herding
occurs, the seller sells the object at a price equal to its expected value con-
ditional on public information provided it is not below his reservation
value; otherwise, if it is below his reservation value, the seller ends the
search and retains the object.

The intuition underlying this equilibrium is easier to explain under the
provisional assumption that there are infinitely many buyers. This implies
that the seller can always approach a new buyer. Since there are many
buyers and only one seller, the price competition among the buyers induces
them to bid up the price to the value conditional on history, their private
signal (which is revealed by their bid) and on the information implied by
winning the object (i.e., the winner's curse). When the number of buyers is
infinite, there exists a PBE where buyers who observe a low signal decline
to make a bid for the object; unless herding has already occurred, buyers
who observe a high signal bid up the price while avoiding the winner's
curse by bidding the expected value of the object conditional on past
history, their signal, and k additional low signals where k is the integer
identified in Lemma 1; and a high signal followed by a sequence of k low
signals generates herding and an informational cascade.8 Suppose that
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buyer b is approached at time t and has observed a high signal. Given the
strategies of the other buyers, she will win the object only if her high signal
is followed by an uninterrupted sequence of k low signals. Because of
Lemma 1, a buyer that is approached after buyer b and observes a high
signal before k new low signals have been inferred, will bid up the price;
but after k low signals have been observed, every buyer will herd. This
follows since after the k additional low signals the bid of buyer b exactly
equals V(ht+k). The next buyer (i.e., the buyer that is approached after k
low signals have been observed), even if she has observed a high signal, will
refuse to bid up the price because bidding the value of the object condi-
tional on the history ht+k , her private signal sb(t+k+1) and the winner's
curse (i.e., k additional low signals) results in a lower bid than V(ht+k).
Consequently, she will herd. The same argument implies that every subse-
quent new buyer that is approached by the seller will herd as well. Taking
this into account, the seller will not bother to solicit offers from additional
buyers after a sequence of k low signals is observed.

The PBE presented in the next proposition relies on the intuition
developed for the case of an infinite number of buyers to motivate and
rationalize the strategies of the first N&2k&1 buyers approached by the
seller in a model with a finite number of buyers. The strategies of the last
2k+1 buyers are modified to take into account the fact that the number
of buyers is finite.

Proposition 3. If N�2k+3, there exists a perfect Bayesian equilibrium
in pure strategies where along the equilibrium path: (i) An informational
cascade and herding are generated if and only if at least one of the first
N&2k&1 buyers observes a high signal. Thus, the probability of an informa-
tional cascade and herding is positive and approaches 1 as N � �. (ii) The
seller continues to approach new buyers until an informational cascade and
herding occur. If herding does not occur, the seller approaches all the buyers.
(iii) After herding has occurred or the seller has approached all the buyers,
the seller sells the object to the buyer who made the highest bid provided her
bid is larger or equal to a0 . The seller retains the object otherwise. Finally,
(iv) whenever a0�pN or at least one buyer except for the last one observes
a high signal, the sale price is equal to the value of the object conditional on
public information.

As in the PBE described in Proposition 1, in the PBE described above
in Proposition 3 the last buyer may capture some rent from the seller, but
only if all buyers before her have observed low signals, she observed a high
signal, and a0<pN.

The PBE presented in Proposition 3 combines the intuition about
buyers' behavior when there is an infinite number of buyers with the
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intuition developed in the backwards induction equilibrium described in
Proposition 1. The last 2k+1 buyers adopt strategies that are identical to
the strategies they adopt in the PBE of Proposition 1. However, they are
approached by the seller only in case herding does not occur. The first
N&2k&1 buyers behave as they do in the PBE described in Proposition
9 where the number of buyers is infinite. An informational cascade and
herding occur if and only if at least one of the first N&2k&1 buyers
observes a high signal. Once this happens, an informational cascade and
herding occur as soon as either the next k new buyers approached by the
seller decline to bid for the object thereby revealing themselves to have
observed low signals, or buyer N&2k is approached by the seller,
whichever occurs first. If herding has not occurred by the time buyer
N&2k is approached by the seller, that is, all previous buyers have
observed low signals, then play reverts to the backwards induction equi-
librium described in Proposition 1.

The important difference between the PBE described in Proposition 3
and the one described in Proposition 1 is that the former may be inefficient.
Herding and an informational cascade may occur after a bid that is below
the seller's reservation price a0 . The seller's equilibrium strategy calls for
not selling the object in spite of the fact that its real value for the buyers
(conditional on the information of all the buyers) may be higher than a0 .
It may also be the case that herding and an informational cascade occur
after a bid that is higher than a0 and the seller sells the object, but the
object's valuation conditional on the signals of all the buyers is lower than a0 .

3.3. Uninformative Equilibria

In this subsection we describe a third type of equilibrium where no infor-
mation is revealed and the highest bid can be as low as the seller's reserve
price or even lower. In the latter case, no trade occurs and the seller retains
the object. If, in addition, a0<pN, this is inefficient.

The intuition behind this equilibrium is as follows. Suppose the current
bid is below pN. Buyers refuse to bid up the price because equilibrium
strategies are such that if they bid the price up but still below pN, other
buyers ``retaliate'' by bidding the price even further, so they have no chance
of buying the object at a price equal to their bid. And if they bid the price
up above pN they expose themselves to the winner's curse, so that, at best,
they can only hope to buy the object at a price equal to its expected value.
In this equilibrium, no information is ever revealed and an informational
cascade and herding occur immediately.

Proposition 4. Fix a number p�pN. There exists a perfect Bayesian
equilibrium in pure strategies where along the equilibrium path: (i) the first
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buyer bids p regardless of her signal; (ii) if p�a0 the seller sells the object
to the buyer and if p<a0 the seller stops the search without selling the object.

The reason that the seller does not even attempt to solicit offers from
other new buyers is that he knows that they will decline to increase the
existing bid. If they do, they will be believed to have observed high signals
and play will revert to the backwards induction PBE described in Proposi-
tion 1, where no buyer except for the last one can ever capture a positive
rent. The deviating buyer is surely not the last buyer and the equilibrium
is sustained. Note that along the equilibrium path, if trade occurs, the first
buyer captures a positive rent.9

3.4. Discussion and Evaluation

The equilibria described in Sections 3.1�3.3 span a wide range of equi-
librium outcomes. In the first PBE described in Proposition 1, herding and
informational cascades never occur and the seller extracts almost the entire
buyers' surplus. This is the only PBE among the three considered where
the outcome is always efficient. In the second PBE that is described in
Proposition 3, observing a high signal followed by k successive low signals
(sufficiently early) triggers herding and generates an informational cascade.
The seller succeeds in capturing some surplus from the buyers, but as the
next proposition shows, not as much as in the first PBE. This is not
because the buyers succeed in securing some rent for themselves, but rather
because the latter PBE is less efficient. Finally, in the PBE described in
Proposition 4, herding and an informational cascade occur immediately
and the buyers capture all the rent. The seller's expected payoff is the
lowest in this case.

Proposition 5. The expected payoff to the seller in the PBE of
Proposition 1 is larger than or equal to his expected payoff in the PBE
of Proposition 3.

We have described only one equilibrium in Sections 3.1 and 3.2, respec-
tively, but by changing the equilibrium strategies outside the equilibrium
path, many similar equilibria can be constructed. Many equilibria similar
to those described in Section 3.3 exist. In addition, other equilibria can be
created by ``combining'' the equilibria described in Sections 3.1�3.3. This
multiplicity of equilibria has two reasons: in general, price competition
among buyers implies that the buyer who wins the object pays exactly the
expected value of the object. Therefore, each buyer is indifferent between
winning the object and paying the associated price, and not winning the

104 NEEMAN AND OROSEL

9 The situation described here is similar to the one described by [14] where in a complete
information model, a non competitive equilibrium arises in a frictionless environment.



object but not paying. The other reason is that in order to avoid the
winner's curse each buyer conditions her bid on the information implied by
her winning the object. However, the event of winning the object depends
on other buyers' strategies, and the constraints on the strategy profiles
implied by the winner's curse do not lead to a unique outcome. There are
many mutually consistent ways in which buyers can incorporate their
concerns about the winner's curse into their bids.

For reasons similar to those that make the backwards induction out-
come less plausible in the chain-store paradox [15] and in the Centipede
game [13], we believe that the backwards induction equilibrium described
in Proposition 1 is more plausible when the number of potential buyers is
small, but the herding equilibrium described in Proposition 3 is more
plausible when this number is large. In addition, when the number of
potential buyers is large, the PBE of Proposition 3 has the advantage that
the first N&2k&2 buyers need not know the total number of potential
buyers N. For these ``early'' buyers, it is sufficient to know that the seller
can approach at least 2k+1 additional new buyers.

The uninformative equilibria described in Proposition 4 are unappealing
because buyers rely on weakly dominated strategies. Specifically, if the
seller continues to solicit offers from new buyers, a buyer who deviates and
bids pN may end buying the object for this price, capturing a rent even if
her signal is low.

Finally, note that of the three equilibria described, only the backwards
induction PBE described in Proposition 1 is robust to a modification of the
game into one where the seller is allowed to make a take-it-or-leave-it offer
to the buyers after herding occurs. Thus, which equilibrium emerges as the
likely outcome in this more general game depends on the ability of the
seller to commit to such take-it-or-leave-it offers. The problem is that after
such an offer is accepted by one of the buyers, herding and the informa-
tional cascade break down and the seller could only benefit from approach-
ing new buyers who may bid the price even higher if they observe high
signals, thus exposing the buyer who accepted the offer to the winner's
curse.

4. COMPARISON TO AUCTIONS

In this section we address the following question. The seller can either
solicit bids from buyers sequentially, as described here, or conduct an auc-
tion. Which procedure is better for the seller?

The environment we consider is a common values environment where
buyers' signals are affiliated. Milgrom and Weber [10] have shown that in
such environments the English auction generates higher expected revenues
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for the seller than the other commonly used auctions such as the Dutch
and the sealed bid first and second price auctions. We therefore compare
the procedure of sequentially soliciting offers from buyers to an English
auction. We obtain sharp results. We show that the sequential procedure,
even under the herding PBE of Proposition 3, is superior to an English
auction; depending on the seller's reservation value, the seller's expected
payoff under the sequential procedure is either larger or equal to that
generated by the English auction.

The English auction has many variants. For our purposes it is most con-
venient to focus on the variant that is referred to by Milgrom and Weber
[10] as the Japanese version of the English auction. It is idealized as
follows. Before the auction begins, the bidders are given the opportunity to
inspect the object and to observe their private signals. Upon observing
their signals, the bidders choose whether to be active at the start price p0 .
As the auctioneer raises the price, bidders drop out one by one. No bidder
who has dropped out can become active again. After any bidder quits, all
remaining active bidders know the price at which she quit. The auction
ends as soon as no more than one bidder remains active. The remaining
bidder gets the object for the prevailing price. If several bidders dropped
out simultaneously, ending the auction, one of these bidders is chosen
randomly and gets the object at the price at which she quit.

Define

p1, N&1=E[v(q) | out of N signals, 1 is high and N&1 are low].

The following proposition describes the outcome under the symmetric
equilibrium that is characterized by Milgrom and Weber [10].

Proposition 6. The equilibrium outcome under the English auction is as
follows:

(i) If p0�pN the sale price is equal to the expected valuation of the
object conditional on all the buyers' information except when there is only
one high signal, in which case it is equal to pN.

(ii) If pN<p0�p1, N&1 the sale price is equal to the expected valua-
tion of the object conditional on all the buyers' information except when there
is only one high signal, in which case it is equal to p0 . If all signals are low,
the seller retains the object.

(iii) If p1, N&1<p0 the seller retains the object regardless of the
realization of buyers' signals. No bid is made.

In case (iii) above, the winner's curse prevents the buyers from bidding
for the object and the object is not sold. This is because a buyer who observes
a high signal knows that if she bids the price up, she may either suffer
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the winner's curse if she is the only buyer to have observed a high signal,
or, if some other buyers have observed high signals, competition will drive
her rent to zero. As a consequence, she refuses to bid up the price, no
information is revealed, and the seller retains the object.

We distinguish among three cases that differ by the seller's degree of
sophistication and his ability to commit not to sell the object. First, we
consider the case of a naive seller who sets an initial price p0=a0 . Next,
we consider the case of a sophisticated seller that lacks commitment power.
Finally, we consider the case of a sophisticated seller that has commitment
ability.

Proposition 6 illustrates why it is naive for the seller to set the initial
price p0 equal to the reservation price a0 . If a0>p1, N&1, the seller retains
the object in spite of the fact that had he started with a lower initial price,
he could have sold the object and obtained a positive payoff. Proposition
6 also implies that a sophisticated seller may always set a start price that
is either p0= pN or p0= p1, N&1. It can be shown that when a0<pN but
sufficiently close to pN, p0= p1, N&1 is the initial price that maximizes
the seller's expected payoff. This is because the seller is better off trading
the higher revenue associated with p1, N&1 (vs pN) against the smaller prob-
ability of selling (the seller retains the good if all buyers observe low
signals). Note, however, that to do this successfully, the seller must be able
to commit not to sell the object to some buyer for the price pN after he
failed to sell it when he set the initial price p1, N&1 and the buyers have all
observed low signals. If the seller cannot commit, that is, if the buyers
believe that if all buyers observe low signals, the seller will sell the object
to one of them for the price pN, then the buyers have an incentive to
pretend to have observed low signals. A sophisticated seller who lacks com-
mitment power and understands the buyers' incentives has no choice but to
set an initial price p0= pN when a0<pN.

We compare the expected revenue to the seller under the sequential pro-
cedure, specifically under the PBE described in Proposition 3, to the seller's
expected revenue under the English auction for each seller type and
show that the former generates a higher expected payoff for the seller.
Proposition 5 implies that the conclusion holds a fortiori for the PBE
described in Proposition 1.

Proposition 7. The expected payoff to a naive seller, and to a
sophisticated seller who lacks commitment power, under the sequential proce-
dure with the PBE of Proposition 3 is higher than or equal to his expected
payoff under an English auction.

To prove Proposition 7, we distinguish among three cases. (1) If
a0 # [ pN, p1, N&1], a sophisticated seller sets p0= p1, N&1, and the English
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auction, the PBE described in Proposition 1 and the PBE described in
Proposition 3 are all equivalent in terms of expected revenues they generate
for the seller. By Proposition 6, a naive seller who sets p0=a0 obtains a
lower or equal expected revenue. (2) If a0<pN, in the English auction the
seller loses rent to the winning buyer whenever there is exactly one buyer
who has observed a high signal, whereas in the PBE under the sequential
procedure described in Propositions 1 and 3, the seller loses rent only if the
last buyer is the only one to have observed a high signal. Finally, (3) if
a0>p1, N&1, the seller either sets an initial price p0>p1, N&1, in which case,
by Proposition 6, buyers refuse to bid and the seller retains the object, or the
seller sets an initial price p0= p1, N&1 and with a positive probability will end
up selling the object at a price that is below his reservation value a0 .10

To fairly compare the performance of the sequential procedure to that of
the English auction, we must assume that the seller has the power to
commit under the sequential procedure if we assume that he has this ability
under the English auction. We therefore assume that the seller has the
power to insist on the price p1, N&1 even when a0<pN and that he can do
so under both procedures (sequential or auction). In the sequential proce-
dure, this would give rise to PBEs that are similar to those described in
Propositions 1 and 3. We name them as the modified PBE of Proposition 1
or 3, respectively.

Proposition 8. The expected payoff to a sophisticated seller who has
commitment power under the sequential procedure with the modified PBE of
Proposition 3 is higher or equal to his expected payoff under an English
auction.

The intuition for Proposition 8 is similar to that of Proposition 7 except
that the interval of reservation values for which the English auction
generates the same expected revenue to the seller as the PBE described in
Proposition 3 is now [:, p1, N&1] instead of [ pN, p1, N&1] for some :<pN.
The reason for this is that, as explained above, for a sophisticated seller
with commitment power the optimal initial price is p1, N&1 whenever a0 is
smaller than but close to pN, whereas for a seller without commitment
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power and a reservation value below pN, any initial price that is smaller or
equal to pN is an optimal initial price. When either a0<: or a0>p1, N&1,
because of the reasons given above for a seller that lacks commitment
power, the English auction generates a lower expected revenue to the seller
than the PBE described in Proposition 3.

Finally, welfare comparisons between the sequential procedure and the
English auction are complicated by the fact that the PBE of Proposition 3
may give rise to inefficiency. However, we can make the following
straightforward observation. The PBE of Proposition 1 is always efficient
whereas the English auction is efficient only if a0�p1, N&1 and the seller
has no commitment power.

APPENDIX: PROOFS

Proof of Lemma 1. By Bayes' law,

PH(nL , nH)=
Pr(sL | qH)nL Pr(sH | qH)nH Pr(qH)

_Pr(sL | qH)nL Pr(sH | qH)nH Pr(qH)
+Pr(sL | qL)nL Pr(sH | qL)nH Pr(qL)&

.

Because 0<Pr(sL | qH)<Pr(sL | qL)<1, PH(nL , nH) is strictly decreasing
in nL and because 1>Pr(sH | qH)>Pr(sH | qL)>0, PH(nL , nH) is strictly
increasing in nH .

It is straightforward to verify that PH(nL+i, nH+ j) equals

Pr(sH | qH) j Pr(sL | qH) i PH(nL , nH)

_Pr(sH | qH) j Pr(sL | qH) i PH(nL , nH)
+Pr(sH | qL) j Pr(sL | qL) i (1&PH(nL , nH))&

for every i, j, nL and nH . Thus, PH(nL+k, nH+1)<PH(nL , nH) if and only if

Pr(sH | qH)
Pr(sH | qL)

�
Pr(sL | qL)k

Pr(sL | qH)k

and PH(nL , nH)<PH(nL+k&1, nH+1) if and only if

Pr(sL | qL)k&1

Pr(sL | qH)k&1<
Pr(sH | qH)k

Pr(sH | qL)
.

By our assumptions Pr(sH | qH)�Pr(sH | qL) and Pr(sL | qL)�Pr(sL | qH) are
strictly larger than 1. As a consequence, there exists a unique k such that

Pr(sL | qL)k&1

Pr(sL | qH)k&1<
Pr(sH | qH)
Pr(sH | qL)

�
Pr(sL | qL)k

Pr(sL | qH)k . K
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Proof of Lemma 2. Given any profile of pure strategies (Ap, Ab)b # B and
(1p, 1b)b # B let PH(ht) denote the probability that the object is of high quality
given the signals that can be inferred from the history ht . V(ht) can be written
as

V(ht)=PH(ht) v(qH)+(1&PH(ht)) v(qL)

=PH(ht)[v(qH)&v(qL)]+v(qL).

Therefore, it is sufficient to show that PH(ht) is a martingale, i.e., that
E[PH(ht+1) | PH(ht)]=PH(ht). Given the PBE (A p, Ab)b # B and
(1 p, 1b)b # B and a history ht , the action of buyer b(t+1) at t+1 depends
on her random signal and thus is a random variable with realizations
ab(t+1)

t+1 # Ab(t+1)
t+1 where the set Ab(t+1)

t+1 of admissible actions depends on
p(ht) and on whether the buyer is old or new. Given ht , let dF(ab(t+1)

t+1 | ht)
denote the density or probability, respectively, of ab(t+1)

t+1 ; and let
dF(ab(t+1)

t+1 | ht , qH) denote the density of probability, of ab(t+1)
t+1 conditional

on quality qH . Applying the definition ht+1=(ht , ab(t+1)
t+1 ) and Bayesian

updating we get

E[PH(ht+1) | ht]=E[PH(ht , ab(t+1)
t+1 ) | ht]

=|
At+1

b(t+1)
Pr(q=qH | ht , ab(t+1)

t+1 ) dF(ab(t+1)
t+1 | ht)

=|
At+1

b(t+1)

dF(q=qH , Ab(t+1)
t+1 =ab(t+1)

t+1 | ht)
dF(ab(t+1)

t+1 | ht)

_dF(ab(t+1)
t+1 | ht)

=|
At+1

b(t+1)

dF(ab(t+1)
t+1 | ht , qH) PH(ht)
dF(ab(t+1)

t+1 | ht)
dF(ab(t+1)

t+1 | ht)

=PH(ht) |
At+1

b(t+1)
dF(ab(t+1)

t+1 | ht , qH)

=PH(ht). K

Proof of Proposition 1. Let bN denote the last new buyer that is
approached by the seller. For any t�2, let

W� N(ht&1)

=E _v(q) } (Ab)b # B , (1b)b # B , ht&1 , and all the buyers who have
not yet revealed their signals observe low signals & ,

which given the history is the minimal expected value of the object.

110 NEEMAN AND OROSEL



The following profile of strategies constitutes a symmetric pure strategy
PBE.

If buyer b # B is a new buyer different from bN , then for every history
ht&1 # H,

Ab(ht&1 , sL)=&�

and

Ab(ht&1 , sH)={WN(ht&1 , sH)
&�

if WN(ht&1 , sH)�p(ht&1)
otherwise

.

If a0�pN, then the last buyer, bN , bids like other buyers; if a0<pN, the
last buyer employs the same bidding strategy as other buyers except in the
case where all preceding buyers have revealed themselves to have observed
low signals in which case the last buyer bids pN regardless of her signal.

If buyer b$ # B is an old buyer, then for every history ht&1 # H and
private signal sb$ # S,

Ab$(ht&1 , sb$)=W� N(ht&1).

The seller's strategy is

As(ht)=

b if the number of new buyers approached is
smaller than N

b$ if the number of new buyers approached is
equal to N, pN<p(ht)<V(ht), and b$ has
revealed that she had observed a high signal

bN if the number of new buyers approached is
equal to N and either p(ht)<pN or p(ht)= pN

but the offer of buyer bN is less than pN

accept p(ht) if the number of new buyers approached is
equal to N and either p(ht)�V(ht)�a0 and
the buyer who has offered p(ht) has revealed
that she had observed a high signal or
p(ht)= pN>a0 and pN has been offered by bN

``stop'' if the number of new buyers approached is
equal to N and either pN<V(ht)�p(ht)<a0

or p(ht)= pN�a0

for every ht # H where b is a new buyer and b$ is an old buyer. If more
than one buyer has offered to pay p(ht)>pN for the object and p(ht)�
V(ht)�a0 , the seller selects the buyer who first made this bid provided she
has revealed that she has observed a high signal.
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If p(ht)= pN>a0 , the seller selects buyer bN .
Finally, each player's beliefs are consistent with other players' strategies.

If a new buyer b chooses an action ab
t that cannot be generated by the

buyers' equilibrium strategies, the other players infer that she has observed
a low signal if she declines to bid, and that she has observed a high signal
otherwise. The players' beliefs about old buyers signals are independent of
their actions.

To see that this profile of strategies and beliefs forms a PBE, note that
new buyers cannot benefit from pretending to observe low signals when
they observe high signals because they will not have an opportunity to buy
the object in this case. When they reveal themselves to observe high signals,
they cannot benefit from not bidding the price up to its valuation condi-
tional on public information and the winner's curse because if they do, the
seller will approach an old buyer who will.

The last buyer bN captures a rent when a0<pN and all buyers before
her have revealed low signals. As explained in the body of the paper, the
seller cannot extract this rent from the last buyer. It is straightforward to
observe that the old buyers' (who are not approached by the seller
along the equilibrium path) and the seller's strategies are best responses as
well. K

Proof of Proposition 2. For every the number of buyers N, the transaction
price under the PBE described in Proposition 1 is equal to V(hN) with proba-
bility 1&Pr(Sb=sL | q)N&1 and to pN with probability Pr(S b=sL | q)N&1.
Hence the transaction price converges to V(hN) as N � �. By Lemma 2,
V(hN) is a martingale, and therefore, by the martingale convergence
theorem (see, e.g., [16, p. 508]) converges to a random variable V with
probability 1. We show that V=v(q) where q is the true quality of the
object with probability 1.

Conditional on the true quality of the object, the signals Sb(1), S b(2), ...
are i.i.d. Let *N denote the proportion of high signals from among the
signals [Sb(1), ..., S b(N)]. By the strong law of large numbers, conditional
on the true quality q, *N � Pr(sH | q) with probability 1. Because
Pr(sH | qH)>Pr(sH | qL), observing the signals identifies the true quality of
the object with probability 1 at the limit. The convergence of *N therefore
implies that V(hN) w�

N � �
v(q) where q is the true quality of the object with

probability 1. K

Proof of Proposition 3. It is helpful to first consider the case where the
number of buyers is countably infinite. For every t # [1, 2, ...], let

Wk(ht&1 , sH)=E _v(q) } (Ab)b # B , (1 b)b # B , ht&1 , sb(t)=sH ,
and k additional low signals &
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denote a new buyer's valuation of the object at time t given what she can
learn from past history, the fact that she observed a high signal, and the
assumption that k additional new buyers will observe low signals. For
every possible history ht , let m(ht) denote the number of inferred low
signals that were observed by new buyers after the latest inferred high
signal. For every t # [1, 2, ...], let

Wk(ht&1 , sL)=E _v(q) } (Ab)b # B , (1b)b # B , ht&1 , sb(t)=sL , and
max[k&m(ht&1)&1, 0] additional low signals&

denote a new buyer's valuation of the object at time t given what she can
learn from past history, the fact that she observed a low signal, and the
assumption that an additional number of max[k&m(ht&1)&1, 0] low
signals will be observed. The following proposition describes a particularly
compelling equilibrium for the case where the number of buyers is infinite.

Proposition 9. When the number of buyers is countably infinite, the
following strategies constitute a symmetric perfect Bayesian equilibrium in
pure strategies.

If buyer b # B is a new buyer, then for every history ht&1 # H, and
private signal sb # S,

Ab(ht&1 , sb)={Wk(ht&1 , sb)
&�

if Wk(ht&1 , sb)>p(ht&1)
otherwise.

If buyer b$ # B is an old buyer, then for every history ht&1 # H and
private signal sb$ # S,

Wk(ht&1 , sL) if Wk(ht&1 , sL)>p(ht&1)

Ab$(ht&1 , sb$)={(ht&1) if Wk(ht&1 , sH)�p(ht&1)<V(ht&1)

ab$
{ otherwise,

where ab$
{ is the previous action of buyer b$.

The seller's strategy is

Ap(ht)={
b if p(ht)<V(ht) and W(ht , sH)>p(ht)
b${b(t) if W(ht , sH)�p(ht)<V(ht) and b$ has

revealed that she hadobserved a high signal
accept p(ht) if p(ht)�V(ht)�a0 and the buyer who has

offered p(ht) has revealed that she had
observed a high signal

stop if V(ht)�p(ht)<a0
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for every ht # H where (i) b is a new buyer, (ii) b$ is an old buyer, (iii)
``accept p(ht)'' implies that the seller sells the object for the price p(ht) to the
buyer who first submitted this bid provided she has revealed that she has
observed a high signal, and (iv) ``stop'' implies that the seller ends the search
for a buyer without selling the object.

Finally, player's beliefs are consistent with other players' strategies. If a
new buyer b chooses an action ab

t that cannot be generated by the buyers'
equilibrium strategies, other players infer that she has observed a low signal
if she declines to bid, and that she has observed a high signal otherwise.
The players' beliefs about old buyers signals are independent of their
actions.

Proof. Along the equilibrium path, only buyers who have observed a
high signal bid for the object. The seller only sells to buyers who have
revealed high signals. Therefore, buyers cannot benefit from pretending to
observe a low signal when their signal is high. A buyer who has revealed
herself to observe a high signal cannot benefit from bidding below the
object's expected valuation conditional on public information and the
winner's curse because the seller will approach an old buyer who will bid
the price up. The old buyers' and the seller's strategies are best responses
as well. K

We now consider the case where the number of buyers N is finite and
larger or equal to 2k+3. There exists a PBE where up to buyer N&(2k+1)
the players employ the strategies described in the PBE of Proposition 9. If
herding has not occurred by then, the players revert to the backwards
induction equilibrium strategies and the seller approaches all N buyers.
Specifically, the following strategies and beliefs constitute a perfect
Bayesian equilibrium in pure strategies.

v As long as N&(2k+1) or less buyers have revealed their signals,
the strategies of the buyers and the seller prescribe the same actions as the
strategies specified in Proposition 9.

v The strategies for the last 2k+1 new buyers are as follows. A new
buyer b(t) that is approached when all but n # [2, ..., 2k+1] buyers have
revealed their signals bids WN(ht&1 , sH) if she has observed a high signal
and WN(ht&1 , sH)>p(ht&1), and declines to bid otherwise. The strategy of
the last new buyer is identical to the strategy of the last buyer in the PBE
of Proposition 1.

v If an old buyer is re-approached by the seller at some t after exactly
N&2k&1 buyers have revealed their signals, she bids as old buyer in
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Proposition 9. If an old buyer is re-approached by the seller at some t after
N&2k or more buyers have revealed their signals, she bids W� N(ht&1)
(defined in the proof of Proposition 1).

v After N&2k or more buyers have revealed their signals the seller's
strategy prescribes the same actions as the seller' strategy in the PBE of
Proposition 1.

v If at t exactly N&(2k+1) buyers have revealed their signals (and
the seller has not yet sold the object) the seller's strategy prescribes the
following actions. If p(ht&1)<WN(ht&1 , sH), he solicits an offer from a
new buyer (and continues to do so until he has approached all buyers). If
p(ht&1)�max[V(ht&1), a0], he sells the object for the price p(ht&1). If
a0>p(ht&1)�V(ht&1) or if a0>V(ht&1)>p(ht&1)�WN(ht&1 , sH), he
ends the search without selling the object. If a0�V(ht&1) and V(ht&1)>
p(ht&1)�WN(ht&1 , sH), he re-approaches the buyer who, among those
who have revealed a high signal (because of p(ht&1)�WN(ht&1 , sH) there
is at least one), has made the highest offer and demands a bid V(ht&1). If
this buyer declines to bid V(ht&1), the seller approaches any other buyer
who has revealed her signal and sells her the object if she bids V(ht&1). If
this other buyer bids less than V(ht&1), the seller continues to approach
buyers who have revealed their signal until one offers V(ht&1), in which
case she sells the object.11

v Finally, each player's beliefs are consistent with other players'
strategies. If a new buyer b chooses an action ab

t that cannot be generated
by the buyers' equilibrium strategies, the other players infer that she has
observed a low signal if she declines to bid and that she has observed a
high signal otherwise. The players' beliefs about old buyers signals are
independent of their actions.

The game ends when either herding has occurred or the seller has
approached all N buyers. Herding will occur if and only if at least one
among the first N&2k&1 buyers observes a high signal. This is because
herding occurs if either buyer N&2k&1 observes a high signal or buyer
N&2k&1 observes a low signal but some buyer before her has observed
a high signal.

We show that the specified strategies are best replies. For the first
N&3k&1 new buyers the arguments of the proof of Proposition 9 carry
over. Since buyer N&2k conditions her bid on the history, on her own
signal and on 2k additional low signals, these arguments apply analogously
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for the new buyers N&3k to N&2k&1.12 For the last 2k+1 new buyers
the arguments of the proof of Proposition 1 hold analogously. Similarly,
for old buyers the arguments of the proof of Proposition 9 (if less than
N&2k buyers have revealed their signals) or Proposition 1 (if N&2k or
more buyers have revealed their signals), respectively, apply analogously.
Finally, the seller's strategy is also optimal. Whenever there is herding at
some t an offer V(ht&1) is the best he can get, and by re-approaching old
buyers (if necessary) he obtains a bid equal to V(ht&1). The optimality of
the seller's strategy in the case where herding does not occur follows from
the same arguments as in the proof of Proposition 1. K

Proof of Proposition 4. The strategies and beliefs that support this PBE
are as follows. The first buyer bids p. If the first buyer bids p, all other
buyers decline to make a bid. If the first buyer declines to make a bid or
bids differently from p, (i) the seller and all the buyers (including the first
buyer when re-approached) revert to playing the PBE of Proposition 1;
(ii) the seller and all the other buyers believe that the first buyer has
observed a high signal. If after the first buyer has made the bid p any other
buyer, when approached by the seller, makes a bid, (i) the seller and all the
buyers revert to playing the PBE of Proposition 1; (ii) the seller and all
the buyers except the deviating one believe that the deviating buyer has
observed a high signal. Since conditional on one (or more) high signals no
buyer gets a positive rent in the PBE of Proposition 1, no buyer has an
incentive to make a higher bid than p and the first buyer's strategy is
optimal. Given the buyers' strategies, it is optimal for the seller either to
accept p when p�a0 or to stop the search without selling the object when
p<a0 . K

Proof of Proposition 5. The proof relies on the fact that the seller's
payoff, max[V(ht)&a0 , 0] is a submartingale. We prove a stronger result.
If a0�p1, N&1 or a0�E[v(q) | N high signals] then the seller's expected
payoff under the PBEs of Proposition 1 and 3 is identical; otherwise, it is
strictly higher under the PBE of Proposition 1. If a0�E[v(q) | N high
signals], the seller obtains a payoff of zero under both equilibria. Suppose
that a0<E[v(q) | N high signals]. Denote the maximum bid the seller
obtains by pmax . The seller's payoff is max[ pmax&a0 , 0]. The expected
maximum bid, pmax , is identical under the PBEs of Propositions 1 and 3.
Because V(ht) is a martingale (Lemma 2), E[V(ht)] is the same in both
equilibria. The maximum bid in both equilibria is equal to V(ht) except in
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the case where the first N&1 buyers have observed a low signal. But this
case, pmax= pN in both equilibria. Therefore, if a0�pmax , and thus
whenever a0�p1, N&1 the expected payoff to the seller is the same in both
equilibria. Consider now the case where a0>p1, N&1. Assume herding has
occurred at some price p=E[v(q) | ht] at t+1 after a history ht that
reveals exactly one high signal. This implies p>p1, N&1 because less than N
buyers have revealed their signals at t+1. The seller's payoff under the
PBE of Proposition 3 is max[ p&a0 , 0]. In the PBE of Proposition 1 the
expected payoff conditional on ht is E[max[E[v(q) | S 1, ..., S N]&
a0 , 0] | ht]. Note that the event E[(v(q) | S 1, ..., SN) | ht]= p1, N&1 has
positive probability. Because of this, the fact that a0>p1, N&1 and the
martingale property (Lemma 2) it follows that

E[max[E[v(q) | S1, ..., S N]&a0 , 0] | ht]

>max[E[E[v(q) | S1, ..., S N] | ht]&a0 , 0]

=max[ p&a0 , 0].

If more than one high signal can be inferred from the history ht , the strict
inequality changes to a weak inequality. The proposition follows. K

Proof of Proposition 6. A pure strategy for buyer b specifies, as a func-
tion of the private signal and the observable activity of the other buyers,
(i) whether or not to be active at the initial price p0 , and (ii) for any price
p�p0 , whether or not to remain active at p, provided buyer b has been
active up to p. The argument given in [10] can be adapted to show that
the following profile of strategies constitutes a symmetric equilibrium. If
p0�pN every bidder is active at p0 . All the bidders who have observed low
signals drop out at p0 , and all the bidders who have observed high signals
remain active. Thus, ``immediately after'' the price has been raised above p0

all signals are revealed. If no buyer has observed a high signal, the auction
ends at p0 and the object is sold to a randomly selected buyer for the price
p0 . If exactly one buyer has observed a high signal, the auction ends at p0

and the object is sold to this buyer for the price p0 . If two or more buyers
have observed a high signal, they remain active until the price reaches the
value of the object conditional on all the bidders' signals and the object is
sold to one of them (randomly selected) at this price. If p0 # ( pN, p1, N&1],
a bidder chooses to be active at p0 if and only if she has observed a high
signal. If there is only one such bidder, she gets the object for the price p0 ;
if there are two or more, the auction proceeds like in the case where
p0�pN. Finally, if p0>p1, N&1, because of the winner's curse no bidder is
willing to become active at the initial price p0>p1, N&1. This follows from
the fact that whenever the expected value conditional on the observed
signals is at least p0 , there must be at least two bidders who have observed
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a high signal and thus they will bid up the price to its expected value con-
ditional on all the signals. Since there is a positive probability that a bidder
who chooses to be active at p0 is the only one who has observed a high
signal, a bidder that chooses to be active at p0 exposes herself to the
winner's curse. K

Proof of Proposition 7. We first prove the proposition for the case of
the unsophisticated seller who sets an initial price p0=a0 in the English
auction. If a0>p1, N&1, Proposition 6 implies that the seller retains the
object under the English auction. Since the seller may sell the object for a
higher price than a0 under the PBE of Proposition 3, his expected payoff
is higher or equal under the sequential procedure. Suppose that a0�
p1, N&1. It follows from the proof of Proposition 5 that in this case the
expected payoff to the seller is identical under the PBEs of Propositions 1
and 3. We can therefore compare the expected payoff under the English
auction English auction with the one in the PBE of Proposition 1. If
a0= p1, N&1 the English auction and the PBE of Proposition 1 lead to an
identical outcome. If a0<p1, N&1 the outcome of the auction and of the
equilibrium in the PBE of Proposition 1 are identical whenever at least two
buyers have observed a high signal. But whenever any buyer who is not the
last buyer bN in the PBE of Proposition 1 is the only one to have observed
a high signal, the seller's revenue in the auction is max[ pN, a0] whereas it
is p1, N&1>max[ pN, a0] in the PBE of Proposition 1. If buyer bN is the
only one to have observed a high signal, the seller's revenue in the PBE of
Proposition 1 is greater than in the auction if a0 # [ pN, p1, N&1) and identical
if a0<pN .

We now prove the proposition for the case of a sophisticated seller who
lacks commitment power. We first derive the optimal initial price p0 for the
English auction. If

a0>E[v(q) | out of N signals at least one is high]

the seller is better off not auctioning the object at all (or, equivalently,
choosing p0>p1, N&1); if a0�E[v(q) | out of N signals at least one is
high], it is optimal for the seller to choose

p0={pN

p1, N&1

if a0<pN

if a0�pN .

The former statement follows from the fact that with p0= p1, N&1 the
expected maximum bid in the English auction conditional on selling is
E[v(q) | out of N signals at least one is high]. The latter statement follows
immediately from Proposition 6 and the inability to commit, which implies
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p0�pN whenever a0<pN. If a0 # [ pN, p1, N&1], the English auction and
the PBE of Proposition 1 generate identical payoffs for the seller for all
signal realizations and thus (see proof of Proposition 5) the expected
payoff is the same as in the PBE of Proposition 3. Next, consider the case
where a0<pN and thus p0= pN. Arguments analogous to those employed
in the first half of the proof imply that the PBE of Proposition 3 generates
a higher expected payoff for the seller than the English auction. Consider
now the case where p1, N&1<a0�E[v(q) | out of N signals at least one is
high] and thus p0= p1, N&1. Clearly, if in the PBE of Proposition 3 herding
does not occur, the seller is never worse off than in the English auction,
and he is strictly better off whenever the object's value conditional on all
the buyers' signals is below a0 , which happens with positive probability
because a0>p1, N&1. If herding has occurred at some price p=E(v | ht) at
t+1 after a history ht (which necessarily reveals at least one high signal),
the seller's payoff is max[ p&a0 , 0]. Because of the martingale property
(Lemma 2), the expected payoff in the English auction conditional on the
signals that are revealed by ht is p&a0�max[ p&a0 , 0] with a strict
inequality whenever p<a0 . Taking the expectation over all possible
outcomes of the PBE of Proposition 3 gives the proposition. K

Proof of Proposition 8. If a0�E[v(q) | N high signals] the seller retains
the object under both procedures and therefore obtains the same expected
payoff. We therefore assume that a0<E[v(q) | N high signals]. Note that
if a0�pN, the ability to commit is not an issue and the result therefore
follows from the previous proposition. Suppose then that a0<pN. In this
case, the optimal initial price under the English auction is as follows. There
exists a unique ;<pN such that it is optimal for the seller to choose

p0={pN

p1, N&1

if a0�;;
if a0>;,

; is determined by the condition that when a0=; the seller's expected
payoff is identical under the two initial prices, p0= pN and p0= p1, N&1.
This follows from the fact that for p0= pN the seller's expected payoff
decreases with a0 whereas for p0= p1, N&1 it increases with a0 .

If the seller has the power to commit, the PBEs described in Propositions 1
and 3 change in a way similar to the change in the auction's initial price
p0 . There exists a unique : # (;, pN) such that a seller with a reservation
value a0>: does not accept a bid pN. The number : is determined by the
condition that when a0=: the seller's expected payoff is identical when he
sells when the maximal bid is pN and when he refuses to sell. The inequality
;<: is due to the fact that in the English auction the seller looses informa-
tional rent to the winning buyer whenever any of the N buyers is the only
buyer who has observed a high signal, whereas in the modified PBEs of
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Proposition 1 and 3, the seller looses rent only if one particular buyer (the
``last buyer'' bN) is the one who has observed a high signal. If a0 � (:, pN)
the PBEs of Propositions 1 and 3 are not affected by the seller's ability to
commit.

Clearly, if a0 � (;, pN) Proposition 7 applies, and thus the sequential
procedure is equivalent for a0 # [ pN, p1, N&1] and better otherwise.
Moreover, for a0 # (:, pN) the English auction and the modified PBE of
Proposition 1 have identical outcomes for all signal realizations and thus
(using an argument similar to the one in the proof of Proposition 5) the
seller's expected payoff is identical under the English auction and the
modified PBE of Proposition 3. If a0 is smaller than :, the seller's expected
payoff rises in the modified PBE of Proposition 3 whereas in the English
auction it decreases for every a0�; and rises for a0<;. However, the
argument that implied ;<: implies that for a0<; the seller's expected
payoff is strictly higher in the modified PBE of Proposition 3 than in the
English auction. K
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