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Abstract

We study the performance of the English auction under different assumptions about the seller's
degree of “Bayesian sophistication.” We define the effectiveness of an auction as the ratio between
the expected revenue it generates for the seller and the expected valuation of the object to the bidder
with the highest valuation (total surplus). We identify tight lower bounds on the effectiveness of the
English auction for general private-values environments, and for private-values environments where
bidders’ valuations are non-negatively correlated. For example, when the seller faces 12 bidders
who the seller believes have non-negatively correlated valuations whose expectations are at least as
high as 60% of the maximal possible valuation, an English auction with no reserve price generates
an expected price that is more than 80% of the value of the object to the bidder with the highest
valuation.
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1. Introduction

The notion of optimality is central to economics. Yet, economic theory typically only
distinguishes between optimal and sub-optimal outcomes. By and large, there is no attempt
to quantify how far from optimality are sub-optimal outcomes, allocations, or institutions.
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In this paper we attempt to make a preliminary step toward quantification of optimality
in the context of auction theory. Specifically, we study the performance of the (single-
object) English auction in private-values environmehie define thesffectiveness of an
auction as the ratio between the expected revenue it generates for the seller and the expected
valuation of the object to the bidder with the highest valuation (which coincides with total
surplus when bidders are risk-neutral or risk-avefs@je identify tight lower bounds

on the effectiveness of the English auction for several “classes” of environments and
under three different assumptions about the seller’s degree of “Bayesian sophistication”
as expressed in his ability to set an appropriate reserve price. Specifically, we consider
the English auction with no reserve price, with a fixed positive reserve price and with
an optimally chosen reserve price. Our results show that the English auction performs
reasonably well in a wide class of environments. As will become clearer below, they may
be interpreted as quantifying the “optimality” of the English auction, or alternatively, as
establishing the “cost” of relying on the “simple” English auction relative to the “optimal”
auction in those circumstances where the latter extracts the full surplus.

At a perhaps more practical level, in recent years, several governments around the world
have auctioned off parts of the electromagnetic (airwave) spectrum for commercial use
with the main stated objective of promoting efficiency or “putting licenses into the hands
of those who value them most{(Milgrom, 1996, Chapter 1, p. 3). While the revenues
obtained exceeded expectations by a factor of ten or more, to the extent that maximizing
revenue is also an important objective, as it is likely to be in private auctions, existing
theory provides no way of assessing the effectiveness of the auction form used in terms
of what fraction of the total sum of bidders’ willingness to pay was obtained. The method
described in this paper provides a first step towards being able to form such assessments.

Generally, the effectiveness of any auction form depends on the environment that is
considered. In any particular environment, the closer effectiveness is to one, the closer
the auction is to extracting the full surplus. We seek to determine the effectiveness of the
English auction in the environment, within a given class of possible environments, in which
it is the lowest. In this sense, we perfomorst-case analysis of the performance of the
English auction. Our results illustrate the robustness of the English auction in the following

3 The English auction has many variants. One such variant that is referred to by Milgrom and Weber (1982)
as the Japanese version of the English auction is idealized as follows. Before the auction begins, the bidders are
given the opportunity to inspect the object and realize their valuations. The bidders choose whether to be active
at the start price that is equal to the reserve price set by the seller. As the auctioneer raises the price, bidders drop
out one by one. No bidder who has dropped out can become active again. The auction ends as soon as ho more
than one bidder remains active. The remaining bidder gets the object for the prevailing price. If several bidders
dropped out simultaneously, ending the auction, one of these bidders is chosen randomly and gets the object at
the price at which she quit.

In private values environments, the English auction is outcome-equivalent to a modified Vickrey auction, or
a sealed-bid second-price auction where the seller may set a reserve price (see, e.g., (Milgrom and Weber, 1982)).
All of our results therefore apply to second price auctions as well.

4 In the natural sciences, concepts that quantify aspects of the quality of performance are widely used. For
example, the notion of “energetic efficiency” which is defined as “what you get out of some device divided by
what you put in” (Vogel, 1998, p. 156) is similar to the notion of effectiveness presented here.

5 For details, see McAfee and McMillan (1996) and Milgrom (1996).
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sense: A seller who is uncertain about which environment he is facing within a certain class
of environments is guaranteed an expected revenue (as a proportion of total surplus) that
is not lower and in general higher than worst-case effectiveness. Thus, for those classes of
environments for which the worst-case effectiveness of the English auction can be shown
to be “high,” a seller who is uncertain about the environment, is unable to figure out the
optimal auction, and even if he is able, is suspicious about whether bidders understand the
optimal auction’s rules and is doubtful whether they employ Bayesian—Nash equilibrium
strategies, is well advised to employ an English auction; even in the worst-case, his losses
from not doing otherwise will be small.

We establish the following results. We parametrize all possible private-values environ-
ments by the number of bidders, and their expected valuations of the object,as a
percent of the maximum possible valuation. We obtain a lower bound on the ratio between
the expected revenue generated by the English auction and expected total surplus under
three different assumptions on the seller’s behavior:

(1) the seller does not set a reserve price,

(2) the seller sets a fixed reserve price that maximizes his expected revenue given his
beliefs about thexpectations of bidders’ valuations for the object, and

(3) the seller sets an optimal reserve price given his belief abodigtngoution of bidders’
valuations for the object.

These three assumptions can be thought of as corresponding to three different levels of
“Bayesian sophistication.” From a seller that fails to recognize the fact that setting a
positive reserve price may increase his expected revenue, to a seller who recognizes the
usefulness of a reserve price but is unable to articulate a belief about bidders’ valuations
beyond a specification of their expected valuations, to a seller who can fully articulate his
beliefs and set an optimal reserve price accordifighpme readers have pointed to an
apparent tension between our assumption that the seller may be so rational so as to be
capable of setting an optimal reserve price given his beliefs, and our method of analysis
which focuses on a “low rationality” worst-case analysis. We believe that in light of the
fact that even for the simple environments considered in this paper (correlated private
values environments with risk averse-bidders), the problem of identifying the optimal
auction is still very much an open orfighe decision to employ an English auction

with an optimally chosen reserve price, especially when the worst-case performance of
this auction is reasonable, is very sensible. Moreover, the fact that for private-values
environments with non-negatively correlated bidders’ valuations the differences between
the worst-case performance of the English auction with and without a reserve price is quite

6 we ignore the issue of whether the seller’s beliefs are “correct.” In a Bayesian world, beliefs are subjective.
The best that any Bayesian rational agent can ever do is to maximize with respect to her beliefs.

7 Even for correlated general values environments with risk neutral bidders, where optimal auctions that
succeed in extracting the entire bidders’ surplus have been identified (Crémer and McLean, 1988; McAfee
and Reny, 1992), the optimality of these auctions depends on the controversial assumption that the seller's and
the bidders’ beliefs are consistent. An assumption that is not needed here. See Neeman (1999) for additional
discussion of this and related points.



Z. Neeman / Games and Economic Behavior 43 (2003) 214-238 217

small, suggests that less sophisticated sellers should find employing English auctions (even
without a reserve price) even more sensible.

For each level of the seller's degree of Bayesian sophistication and everygareta,
we determine the effectiveness of the English auction imthrest possible private-values
environment. The identified bounds are tight, and we present examples of environments
that attain them. We then repeat this exercise for environments where bidders’ valuations
are non-negatively correlated. We assume, specifically, that bidders’ valuations of the
object are conditionally independent and identically distributed.

As expected, the worst-case effectiveness of the English auction improves as the number
of bidders,n, and their expected valuations for the objectjincrease. Obviously, when
bidders’ valuations are negatively correlated, the possibility of setting an appropriately
chosen reserve price is very valuable. For example, consider an environment with two
bidders who have negatively correlated valuations such that when one bidder’s valuation is
one, the other bidder’s valuation is zero and vice versa. In such an environment, an English
auction with no reserve price generates an expected revenue of zero, but an English auction
with a reserve price of one, generates an expected revenue that is equal to the total surplus,
one. The English auction is more effective when bidders’ valuations are more plausibly
assumed to be non-negatively correlated. For example, whed2 anda = 60%, even
in the worst possible case, an English auction with no reserve price sells the object at an
expected price that is more than 80% of the expected value of the object to the bidder with
the highest valuation.

The research that is most closely related to the work reported here is the series of
papers that culminated in the work of Rustichini et al. (1994) (see also the discussion
in Section 6 below). Rustichini et al. demonstrated that the inefficiency of double-auctions
under symmetric equilibria in i.i.d. environments converges to zero at an asymptotic rate
of the order of magnitude af/(nm) wheren is the number of buyers; is the number
of sellers, andc is a constant that depends on the particular environment considered.
We perform a similar exercise on the English auction. However, instead of considering
efficiency, we focus on seller’s revenues and consider a much wider class of environments
without restricting the set of equilibria. Furthermore, whereas Rustichini et al. only
identified asymptotic rates of convergence, we identify tight lower bounds for any number
of bidders® More recently, Satterthwaite and Williams (1999) have shown that the double-
auction is also worst-case asymptotically optimal. That is, there does not exist any other
exchange mechanism that has a faster asymptotic rate of convergence to efficiency.

The rest of the paper is organized as follows. In the next section we present the
model and state the general problem. We present the results for general private-values
environments in Section 3, and the results for private-values environments where bidders’
valuations are non-negatively correlated in Section 4. By focusing on worst rather than, say,
“average” performance, worst-case analysis tends to emphasize the “weakness” rather than
“strength” of a mechanism. We therefore devote Section 5 to analysis of the worst-case
effectiveness of another commonly used sale mechanism—the posted-price mechanism.

8 Recently, Swinkels (1998, 1999) established the asymptotic efficiency of discriminatory auctions and a class
of uniform price auctions for multiple identical goods in private values environment where bidders’ valuations
are independent but there may be some aggregate uncertainty about demand and supply.



218 Z. Neeman / Games and Economic Behavior 43 (2003) 214-238

The results compare unfavorably with those of the English auction. The point of the
comparison is not to argue that from the seller’s perspective the English auction is superior
to the posted-price mechanism, we believe that much is obvious, but rather to “calibrate”
the readers’ expectations about what constitutes “reasonable” worst-case performance. We
conclude in Section 6 with an additional discussion of motivation and related literature. All
proofs and a short explanation about our calculations are relegated to Appendix A.

2. Themode

We consider general private-values environments. A seller has a single object to sell.
There aren potential buyers (bidders) for the object. The object is worth nothing for the
seller but has a value; € [0, 1] for bidderi € {1, ...,n}. The payoff to biddei from
buying the object at a price depends only on her valuation for the objectind the price
paid. We assume that it is given by(v; — p) where bidder’s payoff functionu; : R — R,
is assumed to be increasing and such#hél) = 0. The payoff to the bidder when she does
not buy the object (and does not pay) is normalized to zero. We assume that each bidder
knows her valuation for the object. Except for that, we make no other assumption about
the bidders’ beliefs. In particular, we do not assume that a common prior exists, nor that
the buyers’ and seller’s beliefs are consistent.

If the seller had complete information about the bidders’ valuations for the object and
full bargaining power, he could fetch an expected price of

Rrg = E[max{vl, e vn}]

for the object by selling it at the price mfax, ..., v,} to the bidder with the highest
valuation. Since the seller’s valuation for the object is zero, if in addition we assume that
the buyers are risk-neutral or risk-averse, thig describes the maximal expected total
surplus that can be generated by selling the object.

We employ the following notation: we &8 : [0, 1]* — [0, 1] denote the environment
facing the seller, or more precisely, the beliefs that the seller would have had about the
environment he is facing had he been a sophisticated Bayesian. We [@t1] — [0, 1]
denote the corresponding cumulative distribution of feax .., v,} and H:[0, 1] —

[0, 1] denote the corresponding cumulative distribution of the second highest valuation
from among{vy, ..., v, }. By a well-known equality (see, e.g., (Shiryaev, 1989, p. 208))

1
Reg(B) :/(1— G(x))dx. (1)
0

We are interested in obtaining a lower bound on the ratio between the expected revenue
that the seller can obtain for the object when he employs an English auction and the
maximal total surplus as defined above in{The expected revenue to the seller depends

9 We do notassume that the seller is risk-neutral, however, a very risk-averse seller would obviously not care
much for our results.
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on whether he sets a reserve price for the object or not. We consider three different types
of seller’'s behavior that correspond to the three different degrees of the seller's Bayesian
sophistication as described above: (1) whether it is because the seller cannot articulate any
beliefs about the buyers’ valuations for the object or because the seller does not realize that
setting a positive reserve price may increase the expected revenue generated by the auction,
the seller does not set a reserve price. (2) The seller recognizes the benefit conferred by
setting a positive reserve price, but because he cannot articulate beliefs about buyers’
valuations that are more specific than the buyers’ expected valuations, he sets a reserve
price given his limited beliefs. A lower bound on the seller's expected revenue in this case
is given by the seller adopting a maxmin approach, namely, choosing a reserve price that
maximizes the expected revenue for the seller in the environmentin which it is the lowest.
Finally, (3) the seller sets an optimal reserve price given his beliefs about the distribution
of the bidders’ valuations.

Denote the expected revenue to the seller from employing an English auction with a
reserve price in the environmenB by Rg (B, r). Given a vector of bidders’ valuations
v1,..., Uy, letxy, ..., x, denote the ordered vector of bidders’ valuations whemenotes
the largest valuation from among, . . ., v,, x> denotes the second largest valuation from
amongui, ..., vy, ..., andx, denotes the smallest valuation from amang. .., v,. In
English auctions, it is a dominant strategy for the bidders to remain active in the auction
until the price equals their valuations for the object. It therefore follows that

Re(B,r)=rPr(xy>r)+Pr(xo2 >r)E[x2 —r|x2 > r].

That is, the seller obtains a revenuerofvhenever the highest valuation of the bidders,
x1, is larger or equal te and an additional revenue @ — r when the second highest
valuation is also larger or equal tolntegration by parts yields,

1

RE(B,r)zr(l—G(r—))+/(1—H(x))dx 2

r

whereG(r~) =limy » G(x).
Define theeffectiveness of the English auction with reserve priean the environment
B by

Re(B,r)
Rre(B)

Note that what appears in the denominator of the definition of effectiveness is the
total surplus generated by the sale rather than the expected revenue the seller can obtain
by employing an optimal auction. For the class of environments where the bidders are
risk neutral, have correlated valuations, and hold beliefs that are consistent with those of
the seller's, Crémer and McLean (1988) and McAfee and Reny (1992) showed that the
optimal auction succeeds in extracting the entire bidders’ surplus. However, for the type
of environments considered here, where the bidders may be risk-averse, and consistency is
not assumed, a characterization of the optimal auction is unavailable. To the extent that in
these more general cases the optimal auction falls short of extracting the entire buyers’
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surplus, our measure of effectiveness under-estimates the effectiveness of the English
auction relative to that of the “optimal” auctidfi.

As explained above, for a fixed class of environméhtae are interested in identifying
a lower bound on the effectiveness of the English auction under three different assumptions
about the seller’'s behavior. Specifically, we ask what is

o_ . [Re(B.O)
gB:mm{iR,:B(B) } (3

BeB
or the effectiveness of the English auction with no reserve price in the envirorBrest
in which it is the lowest

Rg(B
£ = max {min Re(B,r) , (4)
re[0,1] | BeB| Rpp(B)

or the effectiveness of the English auction with a positive reserve price that cannot be
tailored to suit the specific environment the seller faces, in the environBnei in which
it is the lowest; and

Eg(B)Emin{ X {7RE(B’F(B))”, (5)
BeB|r(B)e0.11| Rrg(B)

or the effectiveness of the English auction with a reserve pri@®) that is chosen
optimally given the seller’s beliefs about the buyers’ valuatidisn the environment

B € B in which it is the lowest. Thus, for example, a seller that employs an English
auction with no reserve price is guaranteed an expected revenue that is at least as high
as mirgep{RE (B, 0)/Res(B)} of the expected total surplus when facing any environment

in the class3.

0 r 1
Fig. 1.G, H, Rrg, andRg (r).
10 The English auction with an optimally chosen reserve price is optimal in the class of i.i.d. private-values

environments with risk-neutral bidders (Myerson, 1981), hence its effectiveness relative to the optimal auction in
such environments is one.
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Our method of proof makes extensive use of geometric arguments and intuition. The
effectiveness of an English auction with reserve priclr seller's beliefs that induce
distributionsG and H of the first and second highest valuations from ameng. ., v,,
is represented in Fig. 1 by the ratio between the aedasle (which by (2) is equal
to Rg(B,r) =r(L— G()) + [F(1 — H(x))dx) andObde (which by (1) is equal to
Re(B) = [5(1— G(x)) dx),

The problem of determining the worst-case environment and worst-case effectiveness is
equivalent to the problem of identifying seller’s beliefs that induce a minimal ratio of the
areasabcde andObde.

3. General private values environments

Let B,.«, a € [0, 1], denote the set of cumulative joint distribution functionsrof
random variables that obtain their values on the unit interval and have expectations
larger or equal tar. We interpretB, , as representing the general class of private-values
environments with: bidders whose expected valuations are larger than or equébtof
the maximal possible valuation. The parametelescribes how high, on average, bidders’
valuations are. It may be interpreted as describing the “attractiveness” of the underlying
auction environment as perceived by the seller.

Denote the worst-case effectiveness of the English auction with no reserve price, with
a fixed reserve price that cannot be tailored to the specific environment, and with a reserve
price that is chosen optimally given the seller’s beliefs in the class of environBgpts
by £%a), £, (), and&; P (a), respectively.

Theorem 1. For everyn > 2 and « € (0, 1],

Ew) = max{ ne _11, O}. (6)

Thinking of the bidders’ valuations asrandom variabless, ..., v, with expectation
larger or equal tay, the idea of the proof is to identify the joint distribution that induces
the highest possible expectation of the first order statistic from amgng., v,, but the
smallest possible expected second order statistic. The proof shows that the environment
that attains the worst-case bound is one where one bidder, which the seller believes is
equally likely to be any one of the bidders, has valuation 1 with probabilityfzminl} and
valuation 0 otherwise, and all other bidders have valuations{max- 1)/(n — 1), 0}.
Note that according to these beliefs, bidders’ valuations are negatively correlated.

For the case where the seller cannot tailor the reserve price to the specific environment,
we have,
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Theorem 2. For everyn > 2 and « € (0, 1],

r(n,a)n(ae —r(n,a)) o< 1+/4n -3
£100) () = AL—rm,a)ne—(n—Drm,a) n @
noe—1 1+4/4n -3
, —F— <a <1,
n—1 2n
where
_Jn =1 14+ /an =
r(n,o) = a(n (n )) when0< a < ;’13, (8)
n—1+a« 2n
and
-1 1+V4n -3
r(n,a) € [0, no i| when +27n <o <l (9)
- n

The idea of the proof is to identify for every possible reserve pried0, 1], the joint
distribution that minimizes the effectiveness of the English auction for this particular
and then to maximize ovet When 0< o < (14 +/4n — 3)/(2n), for every reserve price
r < a, 1 the distribution that attains worst-case effectiveness is one where with the highest
possible probability given the constraint that bidders’ expected valuations must be larger
or equal tow, the bidder with the highest valuation has a valuation that is either equal
to 1 or just below the reserve prieg and all other bidders have valuations just below
the reserve price. Maximization of this lowest possible effectiveness overeveals
that the distribution that attains the worst case bound is one where one bidder, which
the seller believes is equally likely to be any one of the bidders, has valuation 1 with
probabilityn (e — r(n, ®)) /(1 — r(n, «)) and valuation just below(n, «) otherwise, and
all other bidders have valuations just belew, o). When(1+ /4n — 3)/(2n) < a < 1,
it is impossible to ensure that all the bidders’ valuations except the highest one are below
r< (ma—1)/(n—1 < «, and so worst-case effectiveness is identical to that obtained
when the seller is constrained to set the reserve price equal to zero. In this case, the
ability to set a positive reserve price does not help the seller. The ability to set a fixed
positive reserve price thus helps the seller only wlhet (1 + «/4n — 3)/(2n), or when the
bidders’ expected valuations are small relative to their number. Intuitively, a fixed positive
reserve price helps the seller wheandw are low.

For the case where the seller chooses the reserve price optimally given his beliefs, we
have,

Theorem 3. For everyn > 2and « € (0, 1],
no —
(n—1B
where § isthe unique solution in the interval [0, 1] to the equation:

(EE) ()

1 itis straightforward to verify that for > « worst-case effectiveness is equal to zero.

ErBn) (@) = (10)
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The idea of the proof is that in the distribution that attains the lowest bound, it must be
that the seller is indifferent between setting an optimal reserve price for the bidder with
the highest valuation while ignoring all other bidders, and not setting any reserve price at
all. Otherwise, as the proof shows, it is possible to change the distribution and decrease
effectiveness. The distribution that attains the worst case bound is one where one bidder,
which the seller believes is equally likely to be any one of the bidders, has a valuation that
is distributed according to a truncated Pareto distribution,

0, 0<x<e¢,
Fo(x)=31-—¢/x, e<x<]1, (12)
1, x=1,

wheree € [0, 1] is such thak(1 — % log(e)) = «, and all the other bidders have valuations
equal toe. Observe that, first, the seller believes that every bidder’s expected valuation of
the object is equal ta. Second, more importantly, again, the distribution that attains the
worst-case bound is one where the bidders’ valuations are negatively correlated. Finally,
third, under the distribution that attains the worst-case bound, every reserve price set by the
seller generates the same expected reveffoethe seller. Obviously, any reserve price

¢ yields a revenue equal to the second highest valuatiés for reserve prices € (e, 1],

with probability F (r), the seller does not sell the object (and obtains a revenue of 0), and
with probability 1— F. (r), the seller succeeds in selling the object for the pricehe sell-

er's expected revenue is therefore given-iy— F, (r)), which can be immediately seen to
equales for everyr € [¢, 1]. Moreover,F; is the only function that satisfies the property that,

r(1— Fe(r))=¢ foreveryr € [e, 1]. (13)
We depict the values @ (a), £ ), and&s® (), forn = 4, 12, and the limits as
n tends to infinity, in Table 12

Table 1
Worst-case effectiveness for general environments

o @ £ &P @ &30 &P @ . 5w &P @
0 0 0 0 0 0 0 0 0

1 0 .047649 .2605 .01818 .06531 .28644 1 .30279
2 0 .10286 .33136 12727 .14288 .36427 2 .38322
.3 .0667 16791 .39566 .23636 .2369 43339 3 45373
4 2 24621 46007 .34545 .34545 501 4 52184
.5 .33333 34315 52768 45455 45455 5701 .5 .59062
.6 .46667 46667 .60078 .56364 .56364 .64262 6 .66189
7 .6 .6 .6816 67273 67273 72018 7 7371
.8 .73333 .73333 77274 78182 78182 .80437 .8 .81757
.9 .86667 .86667 87743 .89091 .89091 .89695 9 .90468
1 1 1 1 1 1 1 1 1

12 The limits can be shown to be equal t0 Jimoo E2(e) = limy o0& (@) = «, and

Iimnqoog,ﬁ(B")(a) =1/(1-log(e)), respectively. The difference between these limits and the valué¥ of

&r@, andgr(Bn) whenn = 25 is already quite small. Fatd; = 6£é25""), where it is the largest, it is smaller
than.04.
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Note that worst-case effectiveness stays bounded away from 1 as the number of bidders
tends to infinity even when the seller sets the reserve price optimally given his beliefs.
This apparently counter-intuitive result is due to the fact that on the distributions that
attain the worst-case bounds, the bidders’ valuations are negatively correlated. Each of
the three distributions that attain the worst-case bounds above describes the case of a seller
who believes that he facesbidders out of which only one, which he cannot identify,
is “serious” and is willing to pay a high price for the object while all the others are
no more than “warm bodies” with relatively low valuations. Even when the seller sets
the reserve price optimally, and can identify the serious bidder, the fact that the serious
bidder’s valuation is distributed according to the truncated Pareto distribution that satisfies
the special property (13) implies that the seller cannot get a high expected revenue from
this bidder. It should not come as a surprise that when there is only one serious bidder,
increasing the number of bidders has a negligible effect on the effectiveness of the English
auction.

4. Private-valuesenvironmentswith non-negatively correlated bidders' valuations

While the general class of environments, or more precisely, the general class of seller’s
beliefs about the environment, is the appropriate class in some applications, in many other
cases the appropriate class of environments is smaller. In particular, given that assuming
that bidders’ valuations are non-negatively correlated accords well with the qualitative
features of real life auctions (for this reason, it is also the maintained assumption in much
of auction literature), we restrict our attention in this section to this case.

Specifically, IetB,Cli)i(;j denote the set of cumulative distribution functions that describe
the joint distribution ofz random variables that obtain their values on the unit interval,
have expectations larger or equaktpand are conditionally independent and identically
distributed (c.i.i.d.). The selB,C,‘)‘;’ describes the beliefs of sellers who believe that there
is some unobservable factor that affects all bidders’ valuations in the same way. For
example, bidders’ valuations may depend on the (unobservable to the seller) state of the
economy, or on the “intrinsic worth of the object,” or on both. Any such (possibly multi-
dimensional) unobservable factor introduces positive correlation into the distribution of
bidders’ valuations but, conditional on it, the bidders’ valuations are independently and
identically distributed-3-14

13 By de Finetti's theorem (see, e.g., (Durrett, 1991, p. 232)) an infinite sequence of random variables is
conditionally i.i.d. if and only if it is exchangeable. Diaconis and Freedman (1980) describe a sense in which
a finite sequence of exchangeable random variables is approximately conditionally i.i.d.

14 Another widely used assumption that implies non-negative correlation in auction models is affiliation
(Milgrom and Weber, 1982). While many examples of distributions of bidders’ valuations are both conditionally
i.i.d and affiliated, the two notions are independent. Examples of conditionally i.i.d random variables that are not
affiliated are easy to construct; for an example of affiliated random variables that are not conditionally i.i.d., see
(Shaked, 1979, p. 72 (ii)).
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Thus, every environmeit e B,Cl[ig may be represented as a mixture of i.i.d. distributions
in the following way,

B(v1, ..., va) =/]"[F(v,- |2)dZ(2) (14)

i=1

where for every € Z, F(-| z) € B1,o(;) for someu(z) € (0, 1] and [ «(z) dZ(z) > a.

Denote the worst-case effectiveness of the English auction with no reserve price, with
a reserve price that cannot be tailored to the specific environment, and with a reserve
price that is chosen optimally given the seller's beliefs in the class of conditionally i.i.d.
environmentsBZid by £y, grme-6id o) andg; By, respectively. We have
the following result.
Theorem 4. For every « € (0, 1], £2%%(q) is obtained on joint distributions of the form
B(vi,...,v) = [Tl F(vi | 2)dZ(z) € Bg['o? where for every z, F(- | z) € Biy(y) iSa

“two-step” distribution function of the form:

0, xe(—00,0),
| p. xelom,
Fx= xelb, ), (15)
1 xell 00,
for some 0< p<g<land0<b <1, and grome.did oy is obtained on a limit of
a sequence of such distributions.

The idea of the proof is to show that unless evely | z) is a two-step function with
support on at most three points B, and 1, the environmern can be changed so as
to decrease effectiveness. In fact, we conjecture, a conjecture that is confirmed by our
numerical analysis but which we cannot prove, that worst-case effectiveness is obtained
on a mixture of two-step distribution functions where the “first step” is always equal
to O (i.e., p = 0 in (15) above from which it follows that the distribution is supported
by only two pointsp and ). Intuitively, when the reserve price is constrained to be zero,
conditional onz, under such distributions the expectation of the highest of the bidders’
valuation is “maximized,” whereas the expectation of the second highest of the bidders’
valuations is “minimized.” Remarkably, for the case where the reserve price is constrained
to be zero, our numerical analysis reveals that worst-case effectiveness is obtained on
degenerate mixtures of two-step distribution functions, namely, on i.i.d. distributions of
two-step functions. Again, we conjecture that this is generally the case, but we cannot prove
it. Even remarkably still, our numerical analysis also reveals that the ability to set a fixed
positive reserve price does not allow the seller to obtain higher worst-case effectiveness,
£991 () seems to be equal &%) for every value of > 2 anda € (0, 1].

We depict the computed values 8 “'% () = &%) for n = 4,12, and 25 in
Table 2 (see Appendix A for a short explanation on how the calculation was performed).

As suggested by Table 2, even when the seller sets no reserve price, worst-case
effectiveness converges to 1 for everg (0, 1].
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Table 2
Worst-case effectiveness for conditionally i.i.d. environments

52’0”‘1(&),52(4’“)’0”‘1 g:(L)éCIId(a)’ giélza),cud ggécud(a)’ g£é25,a),cud

o

0 0 0 0

1 .15208 32411 .36106
.2 .30600 47259 .50317
.3 43872 57934 .60472
4 .54811 .66507 .68591
5 .64273 .73769 75442
.6 .72696 .80117 .81413
7 .80337 .85785 .86729
.8 .87362 .90925 .91537
.9 .93889 .95638 .95937
1 1 1 1

Table 3
Upper bounds on worst-case effectiveness with optimally chosen reserve
price in i.i.d. environments

o 52(3)’6”(1((1) < g{;B)’C”d(Ol) < 55(53)’6”(1(0!) <
0 0 0 0

1 .31415 45226 .5883
2 41496 .56441 .65178
.3 .50583 .65517 .70938
A .59351 .73015 .76190
5 .67969 79224 .80998
.6 .75400 .84005 .85416
7 .82260 .88439 .89489
.8 .88612 .92563 .93255
.9 .94509 .96407 .96750
1 1 1 1

Unfortunately, we cannot analytically identify the distributions that attain worst case
effectiveness for c.i.i.d. environments where the seller sets the reserve price optimally
given his beliefs. The fact that, for example, in Table 2, on the environmdﬁﬁ%that
attains worst case effectiveness with no reserve price 0.2 andx = 10%, choosing the
reserve price optimally increases effectiveness fr82411 t0.89579, but fom = 12 and
a = 50%, choosing the reserve price optimally increases effectiveness only#8at@9 to
.75282 suggests that setting the reserve price optimally may significantly improve worst-
case effectiveness for environments with leig, but it may have only a negligible effect
on worst-case effectiveness for environments with lasger

However, we are able to determine the worst-case effectiveness of the English auction
with an optimally chosen reserve price for i.i.d. environments that satisfy some regularity
condition as shown in Table 3 for valuesmo& 4, 12, and 252

15 The proof is quite involved and is not reproduced here. It can be obtained from the author upon request.
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The fact that fora larger than 40%, the differences between the values depicted in
Tables 2 and 3 are below 10% demonstrates that, unléssmall, an optimally chosen
reserve price does not improve worst-case effectiveness by much on conditionally i.i.d.
environmentg®

5. Comparison to the posted price mechanism

In this section we determine the worst-case effectiveness of the posted price mechanism.
As explained in the introduction, the motivation for this exercise is not to argue for the
superiority of the English auction over posted-prices, but rather to “calibrate” expectations
as to what constitutes “reasonable” worst-case performance.

As Milgrom (1989, p. 18) writes “Posted prices are commonly used for standardized,
inexpensive items sold in stores.” Several authors examined the relative performance of
posted-prices compared to auctions (see (Wang, 1993; Kultti, 1999) and the references
therein) and compared to bargaining (see (Wang, 1995) and the references therein) and
described conditions under which the posted-price mechanism may outperform, or at least
perform as well, as either auctions or bargaining.

As in the rest of the literature, we assume that posted prices are set optimally given the
seller’s beliefs about the distribution of the buyers’ valuations for the object. We have the
following result,

Theorem 5. For everyn > 2 and o € (0, 1], the wor st-case effectiveness of the posted-price
mechanismis given by

gPP(a) _ 1

~ 1—log(e) (16)

where ¢ is the unique solution to (1 — log(e)) = « in the interval (O, 1]. It is obtained
on the distribution (in Bg'!'o?) where all the buyers have the same identical valuation that is
distributed according to the truncated Pareto distribution F; in (12).

Since English auctions with optimally chosen reserve prices obviously dominate
reserve prices alone which are equivalent to the posted-price mechanism, the more
interesting comparison is between the English auction with no reserve price and the posted-
price mechanism. These two sale mechanisms perform better in very different types of
environments. The English auction with no reserve price performs relatively well when
bidders’ valuations are positively correlated, and relatively poorly when bidders’ valuations
are negatively correlated. In contrast, the posted-price mechanism performs relatively well

18 For largera’s, the fact that the possibility of setting an optimal reserve price is not very valuable for the
seller is consistent with Bulow and Klemperer's (1996) result that an English auction with no reserve price and
n + 1 bidders generates a higher expected revenue than an English auction with an optimally chosen reserve
price butn bidders. However, it should be emphasized that the two-step environments that attain worst case
effectiveness violate one of the conditions (specifically, downward-sloping MR) that is maintained throughout
Bulow and Klemperer’s analysis.
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Table 4
Worst-case effectiveness of the posted-price mechanism
o 0 1 2 .3 A4 5 .6 7 8 .9 1

EPP(@) 0 20451 25036 .29076 .33088 .37336 .42080 .47679 54813 .65282 1

when buyers’ valuations are negatively correlated because by charging a high price, the
seller can extract more surplus from the buyer with the highest valuation, but it performs
relatively poorly in environments where the buyers’ valuations are positively correlated
because it cannot exploit the implied “competition” among the buyers.

We depict the value o£”P(«a), which is independent of the number of buyersjn
Table 4.

In spite of the fact that, especially when we restrict our attention to c.i.i.d. environments,
the worst-case performance of the English auction is better than that of the posted-price
mechanism, the worst-case performance of the latter compares favorably with that of the
former for lown’s ando’s.

6. Discussion

The inspiration for this paper came from what has been called the “Wilson critique.”
Wilson emphasized that in contrast to optimal mechanisms that are tailored to specific
environments, the rules of real economic institutions “are not changed as the environment
changes; rather they persist as stable, viable institutions” (1987, p. 36). In Wilson (1985),
he argued that good economic institutions must not rely on features that are common
knowledge among the agents such as (in the context of auctions) the number of potential
bidders, the bidders’ and seller’s probability assessments (i.e., the prior), and the functional
form of the dependence of the bidders’ willingness to pay for the object on their types.
While asking that mechanisms be independent of whatever is commonly known among
the agents seems somewhat extreme, it is upheld by the fact that in “practical situations,”
little, if at all, is commonly known among the relevant agents. Wilson (1985) presented
the double-auction as a premier example of a simple institution, (obviously, the English
auction provides another such example), and demonstrated its Pareto incentive efficiency
when the number of buyers and sellers is large. We described some of the research that has
followed in the introduction.

Except for the literature on double-auctions mentioned above, the literature that is most
closely related to our work in its motivation is the one that identifies environments in which
simple mechanisms are optimal. The motivating idea is that if it can be demonstrated
that these environments are general enough, then the prevalence of simple mechanisms
is explainedt’ In auction theory, the early work of Vickrey (1961) showed that the
most widely used auction forms such as the English, the Dutch, and the sealed-bid first-
price auctions are equivalent in terms of the expected revenues they generate for the

17 McAfee (1992, p. 284), for example, writes “Finding the restriction that leads to the optimality of simple
mechanisms ... [is] the most important problem facing mechanism design.”
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seller in private values environments in which the bidders’ valuations are independently
and identically distributed. Myerson (1981) then established the optimality of these
auction forms in these environmersMore recently, Lopomo (1998) showed that an
“augmented” English auction (where the seller sets the reserve price optimally after all but
one of the bidders dropped out) maximizes the expected revenue for the seller among
all ex-post incentive compatible and ex-post individually rational auction mechanisms.
In contract theory, Holmstrom and Milgrom (1987), Laffont and Tirole (1987), and
McAfee and McMillan (1987) have established the optimality of linear incentive contracts
in specific classes of environments. In contrast to this literature that demonstrates the
optimality of simple mechanisms in special environments in order to explain their
prevalence in general environments, the approach taken here is to focus on one well-known
simple auction mechanisms—the English auction—and to show that while perhaps strictly
sub-optimal in most environments, it is nevertheless reasonably effective in a wide range
of plausible environments.

Finally, as for the merit of worst-case analysis: if there existed an agreed upon prior
over the set of all possible environments, a better indicator of the effectiveness of the
English auction could be given by its average (according to this prior) rather than its worst-
case performance. The fact that such a prior does not exist indicates that the nature of
the uncertainty facing the seller is difficult to quantify in terms of (objective) risk. Under
such circumstances, worst-case analysis still allows us to form sensible judgements about
the quality of performance of the English auction in spite of the fact that discussion of
“average performance” is impossible.
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Appendix A. Proofs

We begin by identifyinggi(l‘a)(a) and £I<Bl)(a) (it is straightforward to see tha‘flo(a) =0 for all
a € (0, 1]). Auctions with only one bidder are not very interesting, but the results illustrate our method of proof
and will become useful later.

Lemma 1. For every « € (0, 1],

er9) (g) = @) herer=1- yI=a.
1-ra

18 However, Myerson (1981) followed by Crémer and McLean (1985, 1988) and McAfee and Reny (1992) also
showed that, even within the confines of the private values model, when the identical distribution and then the
independence assumptions are relaxed, the resulting optimal auctions are very different from any auction that is
used in practice.
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Proof. Fix ana € (0,1] and a reserve price € [0,1). We show that (1) the worst case effectiveness of the
English auction with reserve priceover the environments iy ,, is larger or equal to (o —r)/((1 - r)a);
and (2) describe a family of distributionsBY}.~.0 € B1 4 such that for every > 0, the effectiveness of
the English auction with reserve pricein the environmentBY is equal tor(a —r +¢&)/((1—r + &) \
r(e —r)/((1—r)a), whene N\ 0. Finally, (3) we show that the highest worse case effectiveness over the
environments i3y, is obtained at the reserve price=1—v1—a.

(1) Consider any cumulative distribution functiédnthat induces an expectatien Since

1 r 1
a=/(lfB(x))d.x=/(lfB(x))dx+/(lfB(x))dx<r+(1fr)(lfB(r_)),
0 0 r

whereB(r~) =lim,. ». B(r), it must be tha3(r~) < (1 — «)/(1 —r). Therefore,

Re(B,r)=r(1— B()) >r<lf i_‘:) = r(f_ rr).
Now, sincer (¢ —r)/((1 — r)a) is increasing inx, for everya € (0, 1] the worst case effectiveness of the English
auction with reserve price over the environments 81, is larger or equal te(« — r)/((1 — r)a).

(2) For everya € (0,1], r € [0,a) and e > 0, define the cumulative distribution functiaBf"” € B1, as
follows: B®"(x) =0 for x € [0,r — &), B¥" (x) = (1—0a)/(1—r+¢) for x e [r —¢,1) and B (1) =1
(suppose that < r so that BS" is indeed a cumulative distribution function). It is straightforward to
verify that the effectiveness of the English auction with reserve pricen the environmentBY" is
rlea—r+e)/(A—r+e)a)\yr(a—r)/(1-r)a), whene \ 0.

(3) Finally, for a givenx € (0, 1), we compute the reserve priecghat generates the highest worse case effec-
tiveness oveBB1,. (Whena =1, r = 1 is the best reserve price.) That is, we compute arg gy {r (o —r)/
((1—-r)a)}. Since d%(r(o: —1/(L=ra)) = 2 —2r +a)/((1—r)2a), the maximum is obtained at the
smaller root of-2 —2r +a, namelyr=1—+/I—a. O

Lemma 2. For every a € (0, 1],

1 e

r(B), \ _ _e
S @= 1000 " a

where ¢ is the unique solution to e(1 — log(e)) = « in the interval (O, 1].

Proof. Fix ana € (0, 1]. Consider any distribution functioB € By, that is not a truncated Pareto distribution
F. as in (12) where € [0, 1] is such that (1 — log(e)) = «. The fact thatB is different from F, and that both
belong toBy 4, i.e.,fol(l— B(x)) dx > fol(l— F,(x)) dx = « implies that there must exist d@ne (¢, 1] such that
B(x) < F.(x). Therefore,

maXeou{Re(B, 1)} _ Re(B,%) _ 11— B()) - FA-F@®) _ ¢
o - o - o o - o

where the last equality follows from (13).0

The proofs of Theorems 1-3 proceed in two steps. First, in Lemma 3 below we show that among all
the distributionsB € B, , that induce the same distribution of the highest valuationthe minimal ratios
E%a; x1~G), E3" (a; x1 ~ G), and £5®(a; x1 ~ G), are obtained at the distribution that induces the
distribution of the second highest valuati@gh* that is described below. Then, we show that among all the
distributions B € B, that induce a distribution of the second highest valuatiéh, the minimal ratios
EVa; x2~ H*), E5" (a; x2 ~ H*), and&, P (a; x2 ~ H*) are obtained on certain distributions of the highest
valuation that are described below.
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Lemma 3. Among all thedistributions B € B, , that induce a distribution of the highest valuation G, the minimal
ratios £,?(cx; x1~ G),and 5;“’)(04; x1 ~ G), are obtained on those distributions that induce a distribution of the
second highest valuation that is given by

G(x), forO0<x <=,

1, for £ <x <1, (17)

H*(x) = {
where £ issuch that [, (1— H*(x))dx = (na — )/(n — 1) and B = [ (1L — G(x)) dx.

Proof. The proof formalizes the intuition that for any given reserve pricand distribution of the highest
valuation G, worst-case effectiveness is obtained on those distributions where the second highest valuation is
as small as possible (or, whefe is “pushed” to the left as much as possible). Fix a reserve pried0, 1]
and a distributionB € B, , that induces a distribution of the highest valuati@rsuch thatfol(l —G(x))dx =
Reg(B) = B. Denote the distribution of the second highest valuatiortby

We show that/*(1 — H(x))dx > [*(1 — H*(x))dx. This follows immediately for- > &. We assume
therefore thatr < x. Recall thatx, ..., x, denote the largest to smallest valuations from among. ., v,,
where the latter are distributed according Bo Because)_;_; E[x;]1 = Y i1 E[vi] > na and E[x1] = B,
E[x2] + Z}’=3E[xi] >na — B, and sinceE[x2] > Elx;] foralli € {3, ..., n},

no—f

E > .
[x2] 1

(18)

SinceRg (B, 0)/Rrs(By,) = E[x2]/8, the proof for&fJ wherer = 0 ends here. Suppose ttfét(l— H(x))dx <

frl(l — H*(x))dx wherer < x. BecauseH is the distribution ofxp, H(x) > G(x) = H*(x) for all x € [0, r].
Therefore,

r

1 1
E[x] = /(17H(x))dx+/(lfH(x))dx </(17G(x))dx+/(lfH*(x))dx
0 r 0 r

r

noe—f

1
= /(l—H*(x))dx: —
0

A contradiction to(18). Therefore, for every € [0, 1] and distributionB € B, , that induces a distribution of
highest valuatiorG such thatfol(l —G(x))dx =8,

Re(B.r)  r(1—G( )+ [F(1— H)dx _rA-Ge)+ fHa - H* () dx

Res(B) B - B ’
The last inequality holds for every € [0, 1], and in particular, for the that maximizes the last expression.
Therefore, among all the distributio® € B, , that induce the distribution of the highest valuatiGh the
minimal ratioss), ™ (a; x1 ~ G) and&5®) («; x1 ~ G) are obtained at the distribution that induces a distribution
of the second highest valuation that is given#y. O

Proof of Theorem 1. By Lemma 3, we may restrict our attention to those distributiBns B, , that induce a
distribution of the second highest valuation that is givend3y, We show that among all such distributions, the
minimal ratio E,?(cx; x2 ~ H*) = maXx{(ne — 1)/(n — 1), 0} is obtained on a distribution where one (randomly
chosen) bidder has valuation 1 with probability f#ia, 1} and valuation 0 otherwise, and all other bidders have
valuations maf(no — 1)/(n — 1), 0}.

Fix a distribution B € B, , that induces a distribution of the highest valuatiGnand a distribution of the
second highest valuatioH*. Recall thatE[x1] = 8. By definition of H*,

E[x2] = n::f .

Therefore, minimal effectiveness is equal to,
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min { Elxal } = max{ min {u } 0} = max{ ne - 1, 0}
pero,1| E[x1] pelol| (n—1)B n—1

since(na — B)/((n — 1)B) is decreasing i8. O

Proof of Theorem 2. Fix ann > 2 anda € (0,1). By Lemma 3, we may restrict our attention to those
distributions B € B, , that induce a distribution of the second highest valuation that is giveH hyWe show
that worst-case effectiveness among such distributions is given by

r(n,a)n(a —r(n,a))
A—r@,a)(na—@n—Drn, o)’
no—1
n—1"

o?n(l—a) <1,

Erm) oy xp~ H*) = (19)

(xzn(l —a)>1,

wherer(n, o) = a(n — /n —na)/(n — 1+ «) whena?n(1—«) < 1. Wheno2n(1— «) > 1, every reserve price
in the interval[0, (na — 1)/(n — 1]) is optimal. Wherx?n(1 — ) < 1, worst-case effectiveness is obtained on
the limit of a sequence of distributions where one randomly chosen bidder which the seller cannot identify has
valuation 1 with probability(n(a — r(n, @)))/(1 — r(n,«)) and valuation just below(n, «) otherwise, and all
other bidders have valuations just belogw, «). Whena?n(1— o) > 1, worst-case effectiveness is attained on
the same environments on whieﬁ(a) is attained.
Fix somer € [0, «].1® By (2) and Lemma 3, the worst-case effectiveness of any distribltienB,, , that

induces a distribution of the highest valuatiGrwith Rgg(B) = fol(lf G(x))dx = 8 is bounded from below by

_ no —p

Reqs.r) |70 =S
B ) na—p r<n(x7,6
n—1" Sn-1"

By Lemma 1, there exists a sequence of distributions on the limit of whith- G (™)) attains its lower bound
of r(B —r)/((L—r)B). It therefore follows that,

r(B—r) r>na—/3
RE(B,r)> a-ng’ n—1"
ﬁ =

(20)

na—ﬂ’ rgna—ﬂ.
n—1 n—1

We are interested in the value @ € [«, 1] for which the low bound (20) is the lowest. The fact that
r(B—r)/((L—r)B) is increasing ing and thatr (8 —r)/((L—r)B) < r < (na — B)/(n — 1) implies that the
lowest value of (20) is obtained at the lowest valuggoivhich satisfies: > (na — 8)/(n — 1), or at the limit
wheref = min{na — nr +r, 1} > «. It follows that for everyr € [0, o], worst-case effectiveness is bounded from
below by

rn(a —r) no—1
1-r)(na—nr+r)’ rz n—1"
- (21)
no—1 no—1
, r< .
n—1 n—1

depending on whether the lowest possiBlés obtained oma — nr + r or 120 We now solve for the reserve
pricer that maximizes (21). The fact that

d ( rn(a —r) )_n((n + o —1)r2 — 2anr + na?)
A—r)Y(na—nr+r)

ar - A —r)2(ma —nr +r1)?

19 1t is staightforward to verify that for > o worst-case effectiveness is equal to zero.
20 Note thatna — nr +r < 1 if and only if (ne —1)/(n — 1) <r.
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implies that as a function of the reserve prieg rn(a —r)/((1—r)(na —nr +r)) is increasing on the
interval [0, a(n — /n — na)/(n — 1+ )), and decreasing on the interv@al (n — /n — na)/(n — 1+ o), o). 22
Worst-case effectiveness is therefore obtainedrea a(n — /(n —na))/(n — 1+ o) where it is equal to
rn(a —r)/((1—r)(noe — nr +r)) provided thatx(n — /(n — na))/(n — 1+ &) > (na — 1)/(n — 1), or on any
r € [0, (na — 1)/(n — 1)] where it equalsna — 1)/(n — 1), otherwise. Finally, inspection of the inequality

a(n —+/n—na) < na —1
n—1+a«a “n-1
reveals that for > 1 anda € [0, 1], it is satisfied if and only if

_1+Van—3
S

O0<a

Proof of Theorem 3. By Lemma 3, we may restrict our attention to those distributiBns B, , that induce a
distribution of the second highest valuation that is givendy, We show that among all such distributions, the
minimal ratio E,® («; xo ~ H*) = (na — B)/((n — 1)) is obtained on a distribution that induces a distribution
of the highest valuation that is a truncated Pareto distribufipras in (12) wheree = (nae — 8)/(n — 1) and

B €0, 1] satisfies (11), and all other valuations are equal. to

By Lemma 2, for every distributio with fol(l —G(x))dx =B,

5{(8)(,3) _ maX.cjo,1y{r(1— G 7))} S maX.co,y{r(l— Fe(r))} ¢

B - B B
wheree is such that (1 — log(e)) = B. Therefore, for every distributio® € B, , that induces a distribution of
the highest valuatio with [, (1 — G(x))dx = 8,

B - B ’ B

e na—pB
= ) bl 22
>max{ﬁ (n—l)ﬁ} e2)

max-cio.u(Re(B.r)} max{ max.cjo.{r(1— G(r)) fol(lfH*(x))dx}

wheres € [0, 1] is such that
e(1—log(e)) = B. (23)

The first term in the right-hand side of (22) corresponds to the revenue obtained from the bidder with the highest
valuation when the reserve pricerisand the second term corresponds to the revenue obtained from the bidder
with the second highest valuation (i.e., whes 0). Because, fot € (0, 1), e(1—log(¢)) is increasing ire, ¢ and
therefore alse/B8 = 1/(1 — log(e)) is increasing irB. On the other handpa — B)/((n — 1) B) is decreasing iiB.
Therefore, mipey,11{maxe/B, (na — B)/((n — 1)B)}} is obtained at # that satisfie®

na—p
= — 24
g=——7 (24)
and by plugging (17) back into (16) it follows that the minimum ratio is obtainedga&40, 1] that satisfies

(2=2) (-eo(22=F)) =

Proof of Theorem 4. Fix an n > 2 and ana € (0,1). Consider any belief8 e BS'9. By assumption,

n

B(vy,..., v) = f]'[?le(u,-,z)dZ(z) for every (vy, ..., v,) € [0, 1]" where for every, F(-,z) € Biu(;), and

21 The numberse(n — v/n —na)/(n — 1+ a) and a(n + /n —na)/(n — 1+ «) are the two roots of the
equation(n + « — 1)r2 — 2anr + na? = 0. It is staightforward to verify that < a(n + /i — na)/(n — 1+ ).
Note also thatn(a —r)/((L—r)(na —nr +r)) = (na — 1)/(n — 1) whenr = (na — 1)/(n — 1).

22 8 > o follows from the fact that wheng = o, (no —«)/((n —Da) = 1 > ¢/a becauses/a =
1/(1—log(e)) < 1 sincee € (0, 1].
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Ja(z)dZ(z) > o. We show that unless ever§(-,z) is a “two-step” function as in (15), the minimal ratios
£04id () and g, 9id (%) cannot be obtained on it. The idea of the proof i is to show that unless &very)
is a two-step function, the distributiaB can be changed into another distributiBre BC"'d such that

Re(B.r) Re(B,r)
Res(B) ~ Res(B)

(25

for everyr € [0,1). Because every distribution functiaB BC”“ can be arbitrarily closely approximated by

a distribution function |n8,§”(;j that describes the dlstrlbutlon af random variables that are i.i.d. conditional

on a random variable that obtains only finitely many values, it is sufficient to prove the theorem only for
every such function. That is, we may restrict our attention to distribution functR)resBC”d that may be
written asB(vy, ..., v,) = Z"’ 16j [Ti=q Fj(v;) for every (vi,...,v,) € [0,1]" whereF; € Bla for every
jefl, ..., m}, Z qcja; >a,and(cy, ..., ¢m) Is a vector of positive weights such t@ ci= 1 For every

such distribution functlon the distribution of the highest and second highest bidders’ valuations are given by

G =Y ¢;j(F;)" and Hw) =Y ¢;(n(F;m)" " = (- D(F;w)").

j=1 j=1

for everyv € [0, 1], respectively. ~
Let:[0,1] — [—1, 1] be a smooth bounded function such tlhat= F; + 8¢ Bl,a}. for somea; € (0,1].
Application of (1) and (2), respectively, yields,

n
n

Res((F5)") =

" (?)(ﬂ(x>)"(¢<x>)”"]dx

i=0

1
F (x)+8¢(x) dx /|:l
0

Og“‘\p Ok“‘ﬁp

1
[1- (Fj))"]dx —én /(Fj )" p(x) dx + 0(5?)
0

1

Rea((F)") — én /(Fj )" P dx + 0(5?) (26)
0

where 0 (52) denotes order of magnitudé,23 and

Re((F))",r) = r(L—(F;¢) +8¢())")

1

+ /[1 —n(Fj(x)+ 5¢(x))"’1 + (n — D(Fj(x) + 8¢ (x))" ] dx

r

= r(1= (Fj¢7)") = dngp ¢ )(F; )"

1

+ /[1 —n(F;(0)" ™+ (1= D(F; ()" ] d

r

—8n(n—1 / ¢ () (F;(x)" " 2(1— Fj(x)) dx + 0(69)
n—1

= Re((F)",r) = ndp(r7)(F;(r7))
1

—sn(n—1) / ) (Fj(0))" 2 (1= F;(x)) dx + 0(6?). @7)

23 Afunction h(8) is of an order of magnitudg®, denotedO (8%), if lim s« 0 7:(8)/8 is finite.
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Lemma 4. For every constant C € [0, 1], and every cumulative distribution function F € By o, if F isnot a two-
step function asin (15), then there exist two numbers 0 < a < b < 1 such that F(a) < F(b), and
—D((F(}B)" 21— F(b)) — (F(a))" 21— F
(n—D((FB)"( 1(b)) ( (a)i ( (@))) £C. (28)
(FO)"—+ = (F(a)"~
If r > 0, then numbers 0 < a < r < b < 1 can also be chosen such that F(a) < F(b), and
(n—D(FB)" 21— F(b)
(F(b)'1 = (F(a)"t

£C. (29)

Proof. By definition, if F is not a two-step function then it assumes at least three different values on the interval
[0, 1). It follows that there exist three numbersOr; < x2 < x3 < 1 such that &< F(x1) < F(x2) < F(x3) < 1.
For n = 2, the left-hand side of (28) is equal tel for any F(a) < F(b).2* Since forn > 3 the left-hand side
of (28) is strictly decreasing i (b) on the intervall0, 1], it must have at least two different valuations, and the
conclusion follows.
Suppose now that & r < 1. If F is not a two-step function then there exist three numbegs@ < x2 <
x3 < 1 wherex; <r, x2 #r, andxz > r such that 6< F(x1) < F(x2) < F(x3) < 1. Since the left-hand side of
(29) is strictly decreasing ifr (b) on the interval0, 1], we may choose & a < r < b < 1 to satisfy (29). O

Note that for every distribution functio; € B14;, and for every two numbersQa < b < 1, such that
Fi(a) < F;(b), there exist two non-overlapping intervals of lengthk 0, 7, and I, respectively, such that the
average value of’; on I, is F;(a), and the average value &F on I, is F;(b).

Suppose now that = 0 and that one of theF;’s is not a two-step function. Then, as the previous
lemma shows, two numbetsand b can be chosen to satisfy (28) for every constdntand in particular for
C = Rg(B,r =0)/Rpg(B). Distinguish between the following two possibilities:

(1) there exist two numbersQa < b < 1, such that
(n— D((F;(0))"2(1— Fj(b)) — (Fj(@))">(1— Fj(a))) _ Rp(B,r= 0

B 30
(Fj(b)"~1 = (Fj(a)r1 ~ T Rea(B) (30)
(2) there exist two numbersQa < b < 1, such that

(n— D((F;(0))""2(L— F;(b)) — (Fj(@)""2(1- F;(@)) Rg(B,r=0) (31)

(F;(b)y" 1 — (Fj(a)" =" Res(B)

In case (1), ifF;(a) > 0O, then lety: [0, 1] — [—1, 1] be a smooth function that approximates a function that is
equal to-1on/,, 1 onl;, and zero otherwise; and#; (a) =0, then let : [0, 1] — [—1, 1] be a smooth function
that approximates a function that is equal to 1/gnand zero otherwise. In case (2), 1[0, 1] - [—-1,1] be a
smooth function that approximates a function that is equal to 4, 0r1 on I, and zero otherwise. Note that in
every case above, can be chosen so thEp = Fj + 8¢ € By, for every small enough.

It can be readily verified that for every four real numbgrsB > 0, andx, y > 0, such thatt < A andy < B,

A— A A
T2 s 12 (32)
B—y B y B
and
A A A
tx_A4 .4 33)

Bry B ° 7 B
DefineF; = Fj 4 8¢ with § > 0 small enough so tha; e By,«; . Consider case (1). Note that,
Re(B.r=0) Yz cRe(F)",r =0 +¢;Re((F))",r =0)
Reg(B) > k) Sk Res((F)™) + ¢ Reg (F))")

24 As will become clear at the completion of the proof, this implies thatifer 2, £2%%(a) is obtained on
mixtures of i.i.d distributions with support on 0 and 1.
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which by (26) and (27), is equal to,
Y aciRE((F)",r=0) —5n(n—1)fo ) (Fj ()" 21— F; (X))dxiO(tSz)
> 1cjRes((Fj)") —8n fo (Fj(x)" g (x) dx £ 0(5?)

Therefore, by definition o, RE(B r= 0)/RFB(B) is approximately equal to,

Y1 Re((F))", r=0) = 8n(n — D((Fj(b))""2(L— F; (b)) — (Fj(a))"2(1— F; (a»)iowz)
Y1 Re((Fj)") — 8n((F; (b))~ — (Fj(a)"~1) £ 0(8?)

Finally, the fact that for smal, terms of order of magnitud&® may be ignored, together with (30) and (32),
imply (25). Consider now case (2). As before, by (26) and (27),

Re (B, r_O) Z'f 16 Re((Fj)",r=0)—én(n— 1) fo ¢ () (Fj(x))""2(1— Fj(x))dx & 0(52)
Re(B) Y7y cj Res((F))") = 8n fo (Fj ()"~ (x) dx £ 0(82)

Therefore, by definition o, Re(B,r = 0)/RFB(B) is approximately equal to,
Z;"Zl ¢jRE(F))",r =0) +8n(n — D((F;(b))""2(1— F;(b)) — (Fj(a))""2(1— F;(a))) £ 0(52)
Z, 1€ Res((F))") + 8n((Fj(b))" "1 — (Fj(a))"™H) + 0(5?)

As before, for smalb, terms of order of magnitud& may be ignored, together with (31) and (33), this implies
(25).
The proof for the case where> 0 employs a similar idea. Suppose that 0 and that one of thé&’;’s is not
a two-step function. By Lemma 4 there exist two numheks r < b that satisfy (29) for every constaat, and
in particular forC = Rg (B, r)/Reg(B). Distinguish between the following two possibilities:

(1) the two numbers & a <r < b < 1 are such that

(= D(F;(b))" 2L F;j(b)) _ Re(B,r).

; 34
(Fj(b))"=1 — (Fj(a)1 - Rre(B) 34
(2) there exist two numbersQa < r < b < 1, such that
_ . n-21 _ . ; —
(n=D(F;®)"“A—=F;})) Re(B,r=0 (35)

(Fj(b)"=1 — (Fj(apn~1 = " Ree(®)

In case (1), ifFj(a) > 0, then let¢ : [0, 1] — [—1, 1] be a smooth function that approximates a function that is
equal to—1on/,, 1 only, and zero otherwise; and#f; (a) =0, then let : [0, 1] — [—1, 1] be a smooth function
that approximates a function that is equal to 1ignand zero otherwise. In case (2), 1[0, 1] — [—1,1] be a
smooth function that approximates a function that is equal to 4, pr1 on I, and zero otherwise. Note that in
every case above, can be chosen so thfp =Fj+ 8¢ € Bi,4, for every small enough.

Define Fj = F; + 8¢ with 8 > 0 small enough so tha; € B4, . Consider case (1). Note that by definition
of ¢, Re(B, r)/Rea(B) is approximately equal to,

Re(B,r)  X0_1¢jRe((F)".r) —én(n — D(F; (b)) 21— Fj(b)] + 0(5?)
Rea(B) — Yi_iciRes((F))") —n((Fj(0))"~1 — (Fj(@)"~1) £ 0(8?)

As before, the fact that for small| terms of order of magnitud# may be ignoE-:‘d, togethAer with (34) and (32),
imply (25). Consider now case (2). As before, the definitiop @hplies thatRg (B, r)/Rrs(B) is approximately
equal to,
Re(B.r=0) _ Xj_1¢jRe((Fy)",r =0 +dn(n — H(F;(b)" 21— F; (b)) £ 0(?)
Res(B) Y1 ¢ Re((F))™) + 8n((Fj(h))"~1 — (Fj(a)"~) £ 0(8?)

which, for smalls, together with (35) and (33), implies (25). Finally, we write that worst-case effectiveness is
obtained on a limit of a sequence of mixtures of i.i.d. two-step distributions because of reasons similar to those in
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the proof of Lemma 1, namely, for similar considerations, the “jumpFimay occur “just before” the reserve
pricer(n,a). O

Proof of Theorem 5. Fix ann > 2 and anx € (0, 1]. Consider any environmer® € 5, ,. Let G denote the
corresponding distribution of méix, ..., v,}. The expected revenue under the posted-price mechanism is given
by

rr;rg(%{r(l— G(r))}

whereG (r~) =lim, ». G(x). The effectiveness of the posted-price mechanism in the environbisrtherefore
given by
m {72(17(;(”) } (36)
rel0A | [7(1—G(x))dx

Suppose thafol(l — G(x))dx =B > «. By Lemma 2, for every such,

m { r(l—G(@r)) }> 1
rel0.11] [1(1— Gx))dr ~ 1—log(e)

wheree € [0, 1] is the unique solution te(1— log(e)) = 8. Because, for € (0, 1), e(1—log(e)) is increasing in

¢, ¢ and therefore also/11 — log(e)) is increasing inB. Therefore, the minimum of/L1 — log(e)) is obtained at

B =«. In fact, the inequality in (36) is binding at the environment where all the buyers’ valuations are identical
and distributed according to the truncated Pareto distributiowheres(1 — log(e)) = «. It therefore follows
that EPP (@) = 1/(1 — log(e)) wheree € [0, 1] is the unique solution te(1—log(e)) =a. O

Calculating £2%19(«) and grme.did oy Fix somen > 3 anda e (0, 1]. By Theorem 4, we know that

£0.¢did g and&; %14 ) are obtained on distributions that are mixtures of i.i.d. two-step distribution functions.
For everyr € [0, 1), we solve numerically for the particular two-step functions that attain worst-case effectiveness
on i.i.d. environments with bidders and expected valuatioms, j € J. Denote these functions Wa_, }jes. AS

noted in the text, all these two-step functions have a first step that is equal to zero. We then numerically solve for,

max{ min {ZIE/ AiRe((Fo))"s 1) }}

rel01] | {4} jes Z_/e] }”f RFB([FO‘I' 1
subject to

dokjepza. Y =1,

jeJd jed
and

Aj =0 foreveryjelJ.

As noted in the text, remarkably, the minimum is obtained on degenerate mixtures, namely, fer exefy 1],
the minimum is obtained on the vectgt; };c; wherei; =1 andi; = 0 for everyk # j.

We also conducted robustness checks to verify that replacing the two-step distribution functions that attain
worst-case effectiveness for i.i.d. environments by other two-step distribution functions and minimizing subject
to the constraints above only increases the value of the objective function.
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