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NOTES AND COMMENTS

ON THE GENERIC (IM)POSSIBILITY OF FULL SURPLUS
EXTRACTION IN MECHANISM DESIGN

BY AVIAD HEIFETZ AND ZVIKA NEEMAN1

A number of studies, most notably Crémer and McLean (1985, 1988), have shown
that in generic type spaces that admit a common prior and are of a fixed finite size,
an uninformed seller can design mechanisms that extract all the surplus from privately
informed bidders. We show that this result hinges on the nonconvexity of such a family
of priors. When the ambient family of priors is convex, generic priors do not allow for
full surplus extraction provided that for at least one prior in this family, players’ beliefs
about other players’ types do not pin down the players’ own preferences. In particular,
full surplus extraction is generically impossible in finite type spaces with a common
prior. Similarly, generic priors on the universal type space do not allow for full surplus
extraction.

KEYWORDS: Surplus extraction, information rents, universal type space, genericity,
prevalence, shyness, face.

1. INTRODUCTION

DOES RELEVANT PRIVATE INFORMATION necessarily confer a positive eco-
nomic rent to those who possess it? Surprisingly, the answer given by the
literature to this question is negative. A number of studies, including, most
notably, Crémer and McLean (1985, 1988), have shown that under standard
assumptions—the existence of a common prior, a fixed finite number of types,
risk neutrality, and no limited liability—an uninformed principal facing pri-
vately informed players can generically implement any decision rule he could
implement were that private information accessible to him. An uninformed
seller, for example, is generically able to extract the full surplus of any number
of privately informed bidders in an auction. As these “full-surplus-extraction”
results imply that the players’ private information is (generically) irrelevant,
they have been said to “cast doubt on the value of the current mechanism de-
sign paradigm as a model of institutional design” (McAfee and Reny (1992,
p. 400)).

Since full-surplus-extraction results make heavy use of the assumption that
the type spaces are of a fixed finite size, it is natural to ask how crucial this as-
sumption is for obtaining these results. This assumption is problematic because
there is no a priori finite bound on the number of types needed for modeling

1We thank an editor and four referees for very useful suggestions, and R. Anderson, F. Forges,
I. Gilboa, R. Laraki, B. Lipman, M. Marinacci, J.-F. Mertens, C. Shannon, N. Vielle, and W. Zame
for helpful discussions. Seminar audiences in Barcelona (JOCS), Boston University, Chicago,
Harvard/MIT, Hebrew University, Northwestern, Rutgers, Rochester, University of California at
San Diego, Vienna, Washington University, the Decentralization Conference at Duke, and the
Cowles Foundation Conference on Robust Mechanism Design provided useful comments.
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a situation involving asymmetric information. Indeed, the universal type space
(Mertens and Zamir (1985)) that embeds all such models has a continuum of
types, and its subspaces that admit a common prior can have an arbitrarily
large number of types. If any of the priors in some relevant family of priors P
could just as well serve as a plausible model of a situation involving asymmetric
information, would full surplus extraction “typically” be possible in P? This is
the question addressed in this paper.

The starting point for our argument is Neeman’s (2004) observation that full
surplus extraction is possible only if the type space has the “beliefs-determine-
preferences” (henceforth, BDP) property, which requires that almost every
possible belief of every player about other players’ types pins down the player’s
own preferences. As we show, a nondegenerate convex combination of a BDP
prior and a non-BDP prior yields a non-BDP prior. This implies that the col-
lection of priors that permit full surplus extraction (henceforth, FSE priors) is
“small” provided that the ambient family of priors P is convex and contains at
least one non-BDP prior.

“Smallness” is established in both a “geometric” and a “measure-theoretic”
sense. For the geometric perspective, we show that if P is convex and con-
tains at least one non-BDP prior, then the subset of FSE priors is contained
in a proper face of P . Furthermore, if P is the set of all priors on finite type
spaces or the entire collection of priors on the universal type space, then the
proper face containing the FSE priors has an infinite codimension in P . For the
measure-theoretic perspective, we show that the set of FSE priors is shy in such
a P . Shyness is a notion of smallness for convex subsets of infinite-dimensional
topological vector spaces (in our case, the set of common priors) that gener-
alizes the notion of Lebesgue measure zero in finite-dimensional spaces. The
result applies both in case P is the collection of all priors on the universal type
space and in case it is the collection of all such priors with a finite support.

This paper makes a contribution to the growing literature on robust mecha-
nism design that has stemmed from Robert Wilson’s view that further progress
in game theory depends “on successive reduction in the base of common
knowledge required to conduct useful analyses of practical problems” (Wilson
(1987)). As shown by Neeman (2004), full surplus extraction hinges on there
being common belief that a player’s belief pins down the player’s preferences.
Once this assumption is relaxed, the full surplus of the players cannot be ex-
tracted. The argument presented in this paper describes the conditions under
which this is generically the case.

The rest of the paper proceeds as follows. For simplicity, instead of consid-
ering surplus extraction in a general mechanism design problem with interde-
pendent types, we confine our attention to the classic problem of the design
of a revenue maximizing auction in a private-values setting (the general case
is treated in Heifetz and Neeman (2005)). Section 2 provides the required de-
finitions. Section 3 is devoted to the statement and derivation of the results.
Section 4 concludes with a discussion. Several more technical definitions and
proofs are relegated to the Appendix.
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2. SURPLUS EXTRACTION IN SINGLE OBJECT AUCTIONS WITH PRIVATE VALUES

We consider the problem of a seller who wishes to design a revenue maxi-
mizing auction of a single object. The seller faces n risk neutral bidders who
each have a privately known (private) valuation for the object. The value of the
object for the seller is normalized to zero. Each bidder may refuse to partici-
pate in the seller’s auction, but if she agrees to participate, then she is bound
by the auction’s outcome.

Let N = {1� � � � � n} denote the set of bidders or players. Bidder i’s, i ∈ N ,
valuation, or willingness to pay for the object, is denoted by vi ∈ Vi. The set of
bidder i’s valuations Vi, i ∈ N , is assumed to be a complete, separable, metric
space (in particular, Vi may be finite). The payoff to a bidder with valuation vi
who wins the object with probability q and who pays an expected amount m is
given by q · vi −m. We refer to vi as bidder i’s preference or preference type. Let
V ≡ V1 × · · · × Vn. The set V is the basic space of uncertainty for this problem.

2.1. Type Spaces

Bidder i’s private information is captured by its type θi ∈ Θi. The sets of bid-
ders’ types Θi, i ∈ N , are assumed to be complete, separable metric spaces.
For every measurable space X , let ∆(X) denote the space of probability mea-
sures over X . Each type θi ∈ Θi is associated with a preference type v̂i(θi) ∈ Vi

that describes θi’s willingness to pay for the object, and with a belief type
b̂i(θi) ∈ ∆(Θ−i) that is a probability measure on the space of other bidders’
types Θ−i ≡ ∏

j �=i Θj . The space of probability measures ∆(Θ−i) is endowed
with the topology of weak convergence.

We assume that distinct types θi �= θ′
i of a given bidder i differ either by their

preference type or by their belief type. Each type of each bidder is assumed
to know its own willingness to pay for the object and its own beliefs. Since
we focus our attention in this paper on a private-values model, each type θi’s
preference type v̂i(θi) is defined independently of θi’s belief type b̂i(θi). This
assumption is relaxed in Heifetz and Neeman (2005).2

A product space Θ ≡ ∏
i∈N Θi of the players’ type spaces is called a private-

values type space. Each profile of types θ ∈ Θ is called a state of the world.

2.2. Priors

A probability measure pi on a private-values type space Θ = ∏
i∈N Θi is

called a prior for bidder i if bidder i’s belief types b̂i(θi) are the posteriors

2The assumption that each type knows its own belief is captured by defining b̂i(θi) as a proba-
bility measure over Θ−i rather than over Θi × Θ−i . The implied presumption about the bidders’
introspective ability is standard and is maintained throughout the paper.
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of pi or if, roughly, pi(·|θi�) = b̂i(θi) for pi-a.e. θi ∈ Θi. Formally, pi is a prior
for bidder i if for every bounded real-valued measurable function ϕ :Θ→ R,∫

Θi

(∫
Θ−i

ϕ(θi� θ̃−i) db̂i(θi)(θ̃−i)

)
dpi|Θi

(θi)=
∫
Θ

ϕ(θ)dpi(θ)�

where pi|Θi
is the marginal of pi on Θi.

A probability measure p on Θ is called a common prior, or prior for short,
if it is a prior for every bidder i ∈ N .

For a given collection of type spaces that is closed under finite unions, the set
of bidder i’s priors on these type spaces is convex: If p′

i ∈ ∆(Θ′) and p′′
i ∈ ∆(Θ′′)

are two priors for bidder i, then so is αp′
i + (1 − α)p′′

i ∈ ∆(Θ′ ∪ Θ′′) for every
α ∈ [0�1]. It follows that the set of common priors on any such collection of
type spaces is also convex.

Let P denote a convex family of priors on such a collection of type spaces
(equivalently, P can also denote a convex family of priors on the union of these
type spaces). We henceforth refer to P as the ambient family of models under
consideration, with respect to which genericity is to be established. It is natural
to assume that P in indeed convex. If it is conceivable that the seller, who
is uninformed, could potentially hold either the belief p′ about the bidders’
preferences and beliefs or the belief p′′, then it is also conceivable that it might
hold a belief that is a mixture of p′ and p′′.

2.3. BDP Priors

DEFINITION 1: A prior p ∈ ∆(Θ) satisfies the beliefs-determine-preferences
property for bidder i ∈ N if there exists a measurable subset Θp

i ⊆ Θi such that
the marginal p|Θi

of p on Θi assigns probability 1 to Θ
p
i or p|Θi

(Θ
p
i ) = 1, and

no pair of distinct types θi �= θ′
i in Θ

p
i hold the same beliefs, i.e., b̂(θi) �= b̂(θ′

i)
for every two different types θi� θ

′
i ∈ Θ

p
i .

This notion of beliefs determine preferences generalizes the one in Neeman
(2004). A prior p that satisfies the beliefs-determine-preferences property for
bidder i is called a BDP prior for bidder i. A prior p that is a BDP prior for
every bidder i ∈ N is called a BDP prior. Notice that BDP is a property of a
prior, not of a player’s type or a state of the world.

Since any pair of distinct types θi �= θ′
i in a private-values type space Θ differ

either by belief type or by preference type, there is no pair of distinct types
in Θ

p
i that hold identical beliefs but different preferences. If p is a BDP prior,

then it follows that for a type in Θ
p
i , knowledge of the type’s beliefs “pins down”

or implies knowledge of the type’s preferences.
The next proposition describes a property of BDP priors that is useful for

proving our two main results.
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PROPOSITION 1: Let Θ′�Θ′′ be two type spaces and Θ =Θ′ ∪Θ′′. A nondegen-
erate convex combination p = αp′ + (1 − α)p′′ ∈ ∆(Θ) of two priors p′ ∈ ∆(Θ′)
and p′′ ∈ ∆(Θ′′) is BDP if and only if both p′ and p′′ are BDP. In particular,
a nondegenerate convex combination of a BDP prior and a non-BDP prior (or of
two non-BDP priors) is a non-BDP prior.

For example, two different common priors p′ and p′′, which are represented
by the matrices below (where the entries in each matrix are positive and sum to
one, and either v1 �= ṽ1 or v2 �= ṽ2), are BDP if and only if a′

c′ �= b′
d′ and a′′

c′′ �= b′′
d′′ ,

respectively:

p′ θ′
2 = (v2� b

′
2) θ̃′

2 = (ṽ2� b̃
′
2)

θ′
1 = (v1� b

′
1) a′ b′

θ̃′
1 = (ṽ1� b̃

′
1) c′ d′

(1)

p′′ θ′′
2 = (v2� b

′′
2) θ̃′′

2 = (ṽ2� b̃
′′
2)

θ′′
1 = (v1� b

′′
1) a′′ b′′

θ̃′′
1 = (ṽ1� b̃

′′
1) c′′ d′′

A nondegenerate convex combination of these two priors, p= αp′ +(1−α)p′′,
which is represented by the matrix below, is BDP if and only if both p′ and p′′

are BDP:

p θ2 = (v2� b
′
2) θ̃2 = (ṽ2� b̃

′
2) θ′

2 = (v2� b
′′
2) θ̃′

2 = (ṽ2� b̃
′′
2)

θ1 = (v1� b
′
1) αa′ αb′ 0 0

θ̃1 = (ṽ1� b̃
′
1) αc′ αd′ 0 0

θ′
1 = (v1� b

′′
1) 0 0 (1 − α)a′′ (1 − α)b′′

θ̃′
1 = (ṽ1� b̃

′′
1) 0 0 (1 − α)c′′ (1 − α)d′′

(2)

The proof of Proposition 1, which is relegated to the Appendix, has two
parts. The more straightforward part consists of showing that a convex com-
bination of a BDP and a non-BDP prior is non-BDP. The more delicate part
consists of showing that a convex combination of two BDP priors is BDP.

2.4. Full Surplus Extraction

By the revelation principle, no loss of generality is implied by assuming that
the seller employs an incentive compatible and individually rational “direct-
revelation” auction mechanism 〈qi :Θ → [0�1]�mi :Θ → [0�1]〉i∈N in which
each bidder i is asked to report its type θi ∈ Θi and then to participate in a
lottery in which he or she pays an amount mi(θ), and wins the object with
probability qi(θ).
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A mechanism 〈qi�mi〉i∈N is incentive-compatible if every type θi ∈ Θi of every
bidder i ∈ N maximizes its expected payoff by truthfully reporting its type or
if, for every θi ∈Θi,∫

Θ−i

(
qi(θi� θ̃−i)v̂i(θi)−mi(θi� θ̃−i)

)
db̂i(θi)(θ̃−i)

≥
∫
Θ−i

(
qi(θ

′
i� θ̃−i)v̂i(θi)−mi(θ

′
i� θ̃−i)

)
db̂i(θi)(θ̃−i)

for every θ′
i ∈ Θi.

A mechanism 〈qi�mi〉i∈N is individually rational if every type θi ∈ Θi of every
bidder i ∈ N prefers to participate in the mechanism rather than to opt out or
if, for every θi ∈Θi,∫

Θ−i

(
qi(θi� θ̃−i)v̂i(θi)−mi(θi� θ̃−i)

)
db̂i(θi)(θ̃−i)≥ 0�

DEFINITION 2: A prior p permits the full surplus extraction from a set K ⊆N
of bidders if there exists an incentive-compatible and individually rational
mechanism 〈qi�mi〉i∈N that generates an expected payment to the seller that
is equal to the full surplus generated by the bidders in K, i.e.,∑

i∈K

∫
Θ

mi(θ)dp(θ)=
∫
Θ

max
i∈K

{v̂i(θi)}dp(θ)�

A prior that permits the full surplus extraction from the K bidders is called a
full-surplus-extraction prior for K.

We show that BDP is necessary for full surplus extraction. Specifically, we
show that if a prior p permits the extraction of bidder i’s full surplus, then p is
a BDP prior for player i.

PROPOSITION 2: A prior p that is a FSE prior for bidder i is a BDP prior for
bidder i.

PROOF: Suppose that p is a FSE prior for bidder i. Let 〈qi�mi〉i∈N be an
incentive-compatible and individually rational mechanism that extracts the full
surplus of bidder i. Observe that this implies that bidder i must win the object
with p-probability 1 under the mechanism 〈qi�mi〉i∈N and that bidder i’s in-
dividual rationality constraint must be binding with p-probability 1 under the
mechanism 〈qi�mi〉i∈N .

Suppose that p is not a BDP prior for bidder i. It follows that there exist two
disjoint measurable subsets of bidder i’s types, Ai�A

′
i ⊆ Θi, that each have a

positive p-probability

p|Θi
(Ai) > 0� p|Θi

(A′
i) > 0�
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and the same range of beliefs

b̂i(Ai)= b̂i(A
′
i)⊆ ∆(Θ−i)�

but different valuations. That is, if θi ∈ Ai and θ′
i ∈A′

i are such that

b̂i(θ
′
i)= b̂i(θi)�

then

v̂i(θ
′
i) < v̂i(θi)�

In particular, for every type θi ∈ Ai there exists a type θ′
i ∈A′

i such that b̂i(θ
′
i)=

b̂i(θi) but v̂i(θ′
i) < v̂i(θi). It follows that∫

Θ−i

(
qi(θi� θ̃−i)v̂i(θi)−mi(θi� θ̃−i)

)
db̂i(θi)(θ̃−i)

≥
∫
Θ−i

(
qi(θ

′
i� θ̃−i)v̂i(θi)−mi(θ

′
i� θ̃−i)

)
db̂i(θi)(θ̃−i)

=
∫
Θ−i

(
qi(θ

′
i� θ̃−i)v̂i(θi)−mi(θ

′
i� θ̃−i)

)
db̂i(θ

′
i)(θ̃−i)

>

∫
Θ−i

(
qi(θ

′
i� θ̃−i)v̂i(θ

′
i)−mi(θ

′
i� θ̃−i)

)
db̂i(θ

′
i)(θ̃−i)

≥ 0�

The first inequality follows from the incentive compatibility constraint for
type θi; the following equality follows from the fact that b̂i(θ

′
i)= b̂i(θi); the next

strict inequality follows from the fact that v̂i(θ′
i) < v̂i(θi) and that qi(θ

′
i� θ̃−i)= 1

for p-almost every type θ′
i ∈ A′

i; and the last inequality follows from the in-
dividual rationality constraint for type θ′

i. It therefore follows that bidder i’s
individual rationality constraint is not binding for p-almost every type θi ∈ Ai.
A contradiction. Q.E.D.

3. THE SET OF FSE PRIORS IS SMALL

In this section we show that within a convex family P of priors that contains
at least one non-BDP prior (henceforth, NBDP prior) for bidder i, the sub-
set F of FSE priors for bidder i is small in two different senses. The first sense
is geometric: The set of FSE priors is contained in a proper face of the convex
body of priors P . The second sense is measure-theoretic: The set F of FSE
priors is finitely shy in P .
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3.1. The Set of FSE Priors Is Small in a Geometric Sense

DEFINITION 3—Rockafellar (1970): A convex subset F of a convex set C
is called a face if whenever f ∈ F is a convex combination of x� y ∈ C , then
x� y ∈ F .

DEFINITION 4: A face F of C is called a proper face if F is a proper subset
of C . If C is a convex subset of a vector space X , then the codimension of F
in C is the dimension of the minimal subspace Y of X such that C is contained
in the subspace spanned by F and Y .

THEOREM 1: Let P be a convex family of priors that includes at least one
NBDP prior for bidder i. Then the subset B of BDP priors for bidder i is a proper
face of P .

PROOF: To show that B is a proper face of P we have to show (i) that the
set B is convex, (ii) that if a nondegenerate convex combination p= αp′ + (1−
α)p′′ belongs to B, then so do p′ and p′′, and (iii) that B is a proper subset of
the set of priors P .

Statement (i) follows directly from Proposition 1. The contrapositive of (ii) is
“if either p′ or p′′ is NBDP, then so is p = αp′ + (1−α)p′′ provided α ∈ (0�1).”
This also follows directly from Proposition 1. Finally, (iii) follows from the fact
that P contains a NBDP prior for bidder i. Q.E.D.

COROLLARY 1: Let P be a convex family of priors that includes at least one
NBDP prior for bidder i. Then the subset F of full-surplus-extraction priors for
bidder i is contained in a proper face of P .

PROOF: The proof follows immediately from Theorem 1 and Proposi-
tion 2. Q.E.D.

REMARK 1: In particular, Corollary 1 applies to two important families of
priors:

— The family of priors Pu on the universal type space. The universal type
space is the type space into which any other type space can be mapped in a
beliefs-preserving way. The fact that each bidder is assumed to know its own
valuation of the object implies that the universal type space here is a spe-
cial case of the standard universal type space analyzed in Mertens and Zamir
(1985), Brandenburger and Dekel (1993), and Heifetz (1993). For the sake of
completeness, we describe in the Appendix the properties of this private-values
universal space, which we denote by T .3

3Ely and Peski (2006) have recently suggested that the basic space of uncertainty in the con-
struction of the universal space should be larger, and consist not only of payoffs (as reflected by
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— The family of priors Pf on finite type spaces. Corollary 1 thus implies
that consideration of the convex family of all priors on finite type spaces leads
to a reversal of Crémer and McLean’s (1985, 1988) result, which was obtained
for the (nonconvex) family of priors on type spaces with a some pre-given fi-
nite number of types ni ≥ 2 for each bidder i. See Section 4.1 for additional
discussion of the relationship of our results to those of Crémer and McLean.

In fact, for the two families of priors Pu and Pf mentioned in Remark 1,
Corollary 1 can be strengthened as follows:

PROPOSITION 3: For Pu and Pf , the subset of full-surplus-extraction priors for
bidder i is contained in a proper face of infinite codimension in Pu and Pf , re-
spectively.

PROOF: Given Proposition 1 and Theorem 1, it remains to show that the co-
dimension of the set of BDP priors B in Pu and Pf is infinite. This follows from
the fact that there are infinitely many (in fact, a continuum of) finite-support
NBDP priors that are not convex combinations of other priors.

To see this, consider two different bidders i� j, and two distinct valuations
for each, vi �= v′

i ∈ Vi and vj �= v′
j ∈ Vj . There is a continuum of priors pr�s with

r� s ∈ (0�1) that are each described by the matrix

pr�s vj v′
j

vi rs r(1 − s)
v′
i (1 − r)s (1 − r)(1 − s)

Each prior pr�s is such that with probability 1 each bidder has the same be-
lief about the other bidder’s types irrespective of its own valuation, so pr�s is
not a BDP prior. (If there are more bidders, then the definition of pr�s can be
extended by choosing some particular valuation for each of those extra bid-
ders, and having pr�s assign probability 1 to that combination of valuations
for each of the four combinations of valuations of i and j.) Moreover, each
prior pr�s is not a convex combination of other common priors in P , because
if (r� s) �= (r ′� s′), then the priors pr�s and pr′�s′ on the universal space T have
disjoint supports. Q.E.D.

REMARK 2: In a finite-dimensional space, a proper face of a convex set is
nowhere dense (namely, its closure has an empty interior). This is not nec-
essarily the case in infinite-dimensional spaces. In particular, if the space of

valuations in our auction setting), but also of conditional beliefs about payoffs. This extension
captures bidders’ beliefs about correlations across their types, which may affect the range of im-
plementable outcomes. Corollary 1 applies just as well to the family of priors on the universal
type space in Ely and Peski’s construction.



222 A. HEIFETZ AND Z. NEEMAN

finite-support priors Pfu on the universal space is equipped with the topology
of weak convergence, then both the subset of finite-support BDP priors and its
complement, the subset of finite-support NBDP priors, are dense in Pfu. Be-
cause Pfu is dense in the space of all priors Pu on the universal space (Mertens
Sorin, and Zamir (1994, p. 156)), it follows that both the sets of BDP and of
NBDP priors are also dense in Pu. In particular, neither set is open and dense
in Pu.

3.2. The Set of FSE Priors Is Shy

A natural definition of genericity is that of full Lebesgue measure. Un-
fortunately, there is no direct analogue for Lebesgue measure in infinite-
dimensional spaces. Unlike the Lebesgue measure in a finite-dimensional
Euclidean space R

k, which is spread uniformly across the space, in infinite-
dimensional spaces there does not exist any (countably additive) translation
invariant measure. For example, in an infinite-dimensional separable Banach
space, any open ball of radius r > 0 contains an infinite sequence of disjoint
open balls of radius r

4 , so if a translation-invariant measure were to assign a
positive measure to these balls, then the r ball would be assigned an infinite
measure for any r > 0.4 Therefore, in infinite-dimensional spaces, probabilities
or measures are not satisfactory devices for determining whether events are
“typical.”

Recently, a general notion of largeness, which coincides with full Lebesgue
measure in finite-dimensional spaces, has been proposed. An event E in a
finite-dimensional Euclidean space R

k has Lebesgue measure zero if and only
if there exists a positive measure µ on R

k such that E and all its translations
{x + y :x ∈ E}, y ∈ R

k, have µ-measure zero. Christensen (1974) and Hunt,
Sauer, and Yorke (1992) have relied on this observation and defined a Borel
subset of a complete metric topological vector space to be shy if there exists
a positive measure µ on the space such that the set and all its translations
have µ-measure zero.5 They called the complement of a shy set prevalent. They
showed that shy sets satisfy the properties one would expect “small” or “negli-
gible” events to satisfy. In particular, a subset of a shy set is shy, every transla-
tion of a shy set is shy, a countable union of shy sets is shy, and no open set is
shy.

Anderson and Zame (2001) have adapted the Christensen (1974) and Hunt,
Saver, and Yorke (1992) definition to the case in which the relevant parameter

4Furthermore, confining attention to full-support quasi-invariant measures, which preserve
null sets under translations (such as the Gaussian measures on the Euclidean spaces), is unhelp-
ful either. Under fairly general conditions, it can be shown that if there does not exist a nontrivial
full-support invariant measure on an infinite-dimensional space, then neither does there exist
such a quasi-invariant measure (see, e.g., Yamasaki (1985)).

5For more on prevalence, see the recent survey by Ott and Yorke (2005).



FULL SURPLUS EXTRACTION 223

set is a convex subset C of a topological vector space X . Since we are interested
in determining the genericity of the set of FSE priors within a convex family of
priors, this is the definition we employ.

It turns out that for our purposes it is not necessary to use Anderson and
Zame’s general definition of shyness, but rather a simpler and stronger no-
tion called finite shyness. Let λH denote the Lebesgue measure on a finite-
dimensional subspace H ⊆ X .

DEFINITION 5—Anderson and Zame (2001): Let C be a completely metriz-
able convex subset of the topological vector space X . A universally measur-
able6 subset E ⊆ C is finitely shy in C ⊆ X if there exists a finite-dimensional
subspace H ⊆ X such that λH(C +p) > 0 for some p ∈ X and λH(E + x) = 0
for every x ∈ X . An arbitrary subset F ⊆X is finitely shy in C if it is contained
in a finitely shy universally measurable set.

Anderson and Zame (2001) showed that if a set E is finitely shy in C , then it
is also shy in C . A subset Y ⊆ C is said to be prevalent in C if its complement
C\Y is shy in C .

Consider a convex family of priors P . Positive multiples of priors in P con-
stitute a convex cone of (positive) measures. Taking the differences of pairs
of such measures yields the vector space of signed measures that are gener-
ated by P , denoted M. We assume that the vector space M is endowed with a
topology that satisfies the following two properties:

(i) The mappings

(p�p′)→ p+p′�

(α�p)→ αp

are continuous in p�p′ ∈ P and α ∈ R (these continuity requirements
make M a topological vector space).

(ii) A subset A ⊆ R is Borel if and only if for every pair of priors p�p′ ∈ P ,
the one-dimensional set of weighted averages

{αp+ (1 − α)p′ :α ∈A}
is a Borel subset of M.

These two properties are satisfied by a large variety of topologies on M,
including the topology of weak convergence and the topology of the total vari-
ation norm, but not by extremely strong topologies such as the totally discon-
nected topology in which every subset of M is open.

6A subset E ⊆ X is universally measurable if it is measurable with respect to the completion
of every regular Borel probability measure on X .
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THEOREM 2: Let P be a completely metrizable convex set of priors with a topol-
ogy that satisfies requirements (i) and (ii) above. Suppose that P contains at least
one NBDP prior for bidder i. If the subset B ⊂ P of BDP priors for bidder i is
universally measurable, then both B and the set of FSE priors for bidder i�F , are
finitely shy in P .

PROOF: Theorem 1 implies that B is a proper face of P . Lemma 1 implies
that B is finitely shy in P . Proposition 2 implies that also F ⊂ B is finitely shy
in P . Q.E.D.

Lemma 1 states that a proper face of a convex set is finitely shy in the set.

LEMMA 1: Let C be a convex subset of the topological vector space X . Suppose
that X is endowed with a topology that satisfies the following property: for every
c �= c′ ∈C and A⊆ R, the one-dimensional set

{α(c − c′) :α ∈ A}
is a Borel subset of X if and only if A is a Borel subset of R. Let F be a Borel set
that is a proper face of C . Then F is finitely shy in C .

PROOF: Fix some g ∈ C \ F and f ∈ F . Consider the one-dimensional sub-
space of X ,

H = {α(g − f ) :α ∈ R}�
Observe that α(g− f )+ f = αg+ (1 −α)f ∈ C if α ∈ [0�1] and hence λH(C −
f ) ≥ 1 > 0. However, λH(F + x) = 0 for every x ∈ X . Indeed, H ∩ (F + x) is
either empty or a singleton. Assume by contradiction that

f1 + x = h1 = α1(g − f )�

f2 + x = h2 = α2(g − f )�

where h1�h2 ∈H, f1� f2 ∈ F , and α1 >α2. Then

f1 − f2 = (α1 − α2)g − (α1 − α2)f

or

1
1 + (α1 − α2)

· f1 + (α1 − α2)

1 + (α1 − α2)
· f

= 1
1 + (α1 − α2)

· f2 + (α1 − α2)

1 + (α1 − α2)
· g�

where the left-hand side is a convex combination of f1� f ∈ F , and hence in F ,
while the right-hand side is a convex combination of f2 and g. Since F is a
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face, this implies that f2� g ∈ F . A contradiction to the assumption that g ∈
C \ F . Q.E.D.

REMARK 3: Theorem 2 applies in particular when P is the convex family of
all priors Pu on the universal space or the convex subfamily of priors with a
finite support Pfu on the universal space, provided that P is endowed with a
topology at least as strong as the topology of weak convergence, that satisfies
properties (i) and (ii), and with which P is completely metrizable.7 Theorem 2
is applicable because by Lemma 2 in the Appendix, the set B of BDP priors for
bidder i is a Borel (and therefore universally measurable) subset of the set of
priors Pu and hence also of its subset of finite-support priors Pfu.8

REMARK 4—B Is a Null Set: In a recent paper, Perry and Reny (2003) define
a set to be null if it is a countable union of finitely shy sets {An}∞

n=1, where for
each n there exists a one-dimensional subspace Hn = {αxn :α ∈ R} such that
λHn(An + x) = 0 for every x ∈ X . Inspection of the proof of Lemma 1 reveals
that the set B of BDP priors for bidder i is a null set according to this definition.

4. DISCUSSION

4.1. Comparison with Crémer and McLean’s Results

Crémer and McLean (1988) showed that within the set of models with a
fixed finite number of types ni ≥ 2 for each player i (equivalently, within the
set of priors that are supported on a fixed finite number of types ni ≥ 2 for
each player i), the set of priors that permit full surplus extraction from any
bidder is generic. Our argument cannot be phrased in this more limited setting,
because the set of priors that are supported on a fixed finite number of types
is not convex. For example, the mixture p = αp′ + (1 − α)p′′ of the common
priors that are represented by the two matrices in (1) is not the prior that is
represented by the matrix

θ′′′
2 = (v2� b

′′
2) θ̃′′′

2 = (ṽ2� b̃
′′′
2 )

θ′′′
1 = (v1� b

′′′
1 ) αa′ + (1 − α)a′′ αb′ + (1 − α)b′′

θ̃′′′
1 = (ṽ1� b̃

′′′
1 ) αc′ + (1 − α)c′′ αd′ + (1 − α)d′′

7Prior Pu is a complete metric space with, for instance, the topology of weak convergence,
as well as with the total-variation norm. In contrast, its subspace of finite-support priors Pfu is
a complete metric space with the total-variation norm, but we do not know if it is completely
metrizable also with the topology of weak convergence. Since complete metrizability of the am-
bient convex set C is a prerequisite for defining shyness of its subsets, the definition itself might
therefore apply to the finite-support priors Pfu only with a smaller range of topologies than the
range with which it applies to Pu. (Such a subtlety did not arise in the purely geometric argument
of the previous subsection, which relied entirely on the linear structure of the spaces and did not
involve any choice of topology.)

8We do not know if Theorem 2 can be proved also for the set of priors Pf on finite type spaces
(not necessarily within the universal space).
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but rather the prior that is represented by the matrix (2), which is supported
on eight states rather than on four.

4.2. Approximate and Robust Full Surplus Extraction

A number of results suggest that although it might be impossible to imple-
ment a given social choice rule, it might nevertheless be possible to implement
a rule that is ε close to it, for any ε > 0� When this is the case, the social choice
rule is said to be “virtually implementable” (see, e.g., McAfee and Reny (1992),
Abreu and Matsushima (1992)). Our results imply that full surplus extraction
also fails to be generically virtually implementable. This is because if a prior p
is not BDP for bidder i—as is the case for generic priors—then at most 1 − εi

p

of the surplus can be extracted from this bidder for some εi
p > 0. Hence, for

0 < ε< εi
p, it is not the case that 1 −ε of the surplus can be extracted from this

bidder.
We conjecture, but have been so far unable to prove, that, for every small

ε > 0, both the set of priors in which it is possible to extract at least 1 − ε of
the available surplus and the set of priors in which it is impossible to extract
at least 1 − ε of the available surplus are not small in the sense that neither of
them is shy.9

A conceptually distinct question is how much surplus can be extracted in a
robust way. Suppose that for a given prior p, the principal has designed an op-
timal mechanism µp that extracts as much surplus as possible. If it turns out
that the principal has misspecified the prior slightly, would the mechanism µp

extract nearly as much of the surplus as could be extracted with the correct
prior? We conjecture that the answer to this question is negative, and further-
more, that the extent of surplus extraction by a fixed optimal mechanism is gen-
erally discontinuous in the prior. That is, we conjecture that arbitrarily close to
any prior p, there exists another prior p′ such that the mechanism µp extracts a
much smaller portion of the surplus than the portion of surplus that µp extracts
under p.10

Finally, it is also interesting to know how the portion of the extractable sur-
plus varies with the prior p when the mechanism is allowed to vary optimally

9For the case of public good provision, Neeman (2004) describes an example where if beliefs
do not determine preferences, then the probability that a public good can be provided decreases
to zero with the number of players, while efficiency requires that the public good be provided with
probability 1. It therefore follows that in such a setting the total surplus that can be extracted from
the players converges to zero at the same time that the total surplus that could be generated by
the players remains uniformly bounded away from zero.

10Consider the sequence of common priors

pn =
 v = 1 v = 2 − 1

n

v = 1 1
3

1
6

v = 2 − 1
n

1
6

1
3

 �
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with the prior. Since the set of FSE priors is dense (even though, as we showed,
it is nongeneric), the portion of the extractable surplus is discontinuous at any
NFSE prior. The percentage of the surplus that can possibly be extracted as
a function of the prior is thus discontinuous “almost everywhere” (i.e., on a
prevalent set of priors). We conjecture that the extractable surplus may never-
theless be continuous at the nongeneric subset of environments described by
the FSE priors themselves.

4.3. Type Spaces Without a Common Prior

In this paper we restrict our attention to type spaces that admit a common
prior. There are two reasons for this restriction. First, this is a standard practice
in economic modeling, synonymous with the so-called Harsanyi doctrine. More
importantly, the universal type set Ti of each bidder (see the Appendix) has the
product structure Vi × ∆(T−i). It therefore violates the BDP property in the
most extreme possible way—every belief type of the bidder can be associated
with each and every one of its possible valuations. Thus FSE is impossible in
the universal type space.

4.4. Fubini’s Theorem

The fact that no invariant measure exists on infinite-dimensional vector
spaces prevents the notion of prevalence from satisfying all the properties that
full Lebesgue measure satisfies in finite-dimensional spaces. For example, it
fails to satisfy the analogue of Fubini’s theorem. There could be a subset E of
an infinite-dimensional space Y ×Z such that the sections {z ∈ Z : (y� z) ∈ E}
are shy in Z for every y ∈ Y , while the sections {y ∈ Y : (y� z) ∈ E} are preva-
lent in Y for every z ∈ Z. This, of course, is impossible if Y ×Z is finite dimen-
sional.

For instance, if we take Y = ∆(R), Z = R, and E = {(µ�z) ∈ ∆(R) ×
R :µ(z) > 0}, then for every µ ∈ ∆(R) the section {z ∈ R :µ(z) > 0} (i.e., the
atoms of µ) is at most countable and hence shy, while for every z ∈ R the sec-
tion {µ ∈ ∆(R) : µ(z) > 0} is prevalent because its complement is a proper face
of ∆(R).

The total surplus that is generated by this sequence converges to 5
3 . However, for every n, the

mechanism that extracts full surplus from the limit prior

p=
 v = 1 v = 2

v = 1 1
3

1
6

v = 2 1
6

1
3


cannot extract more than 1

3 from any element of the sequence because it excludes bidders with
valuation 2 − 1

n
.
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The fact that this section is a countable intersection of weakly open and
dense sets

{µ ∈ ∆(R) :µ(z) > 0} =
∞⋂
n=1

{
µ ∈ ∆(R) :µ

(
z − 1

n
�z + 1

n

)
> 0

}
implies that it is a second-category set with the topology of weak convergence.
Thus, this example illustrates that the analogue of Fubini’s theorem also fails
in infinite-dimensional spaces for this alternative, topological, notion of “large-
ness” and not only for the measure-theoretic notion of prevalence.
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APPENDIX

The Private-Values Universal Type Space

Given a basic space of uncertainty V ≡ V1 × · · · × Vn and a set of bidders N
as defined in Section 2.1, there exists a private-values universal type space

T =
∏
i∈N

Ti

into which every other private-values type space can be mapped in a beliefs-
preserving way. The proof of existence follows from a slight adaptation of
the arguments contained in Mertens and Zamir (1985), Brandenburger and
Dekel (1993), and Heifetz (1993). That is, for every type space Θ ≡ ∏

i∈N Θi,
there exists a unique set of measurable mappings

ηi :Θi → Ti� i ∈N�

that satisfy

v̂i(ηi(θi)) = v̂i(θi)

and

b̂i(ηi(θi))(A)= b̂i(θi)(η
−1
−i (A))
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for every measurable set A ⊆ T−i, where η−i :Θ−i → T−i is defined by

η−i((θj)j �=i)= (ηj(θj))j �=i�

The universal type set Ti of bidder i ∈ N is isomorphic to the product space

Vi ×∆(T−i)

by the mapping

τi →
(
v̂i(τi)� b̂i(τi)

)
�

Thus, in what follows we use the terms Ti and Vi ×∆(T−i) interchangeably.

PROOF OF PROPOSITION 1: Suppose that p = αp1 + (1 − α)p2, where α ∈
(0�1). We first show that p is non-BDP if either p1 or p2 is non-BDP. Suppose,
without loss of generality that p1 is non-BDP. It follows that for some bidder
i ∈ N there exist two disjoint measurable subsets of i’s types, Ai�A

′
i ⊆ Θi, that

each have a positive p1-probability,

p1|Θi
(Ai) > 0� p1|Θi

(A′
i) > 0�

and the same range of beliefs,

b̂i(Ai)= b̂i(A
′
i)⊆ ∆(Θ−i)�

but different valuations. That is, if θi ∈ Ai and θ′
i ∈A′

i are such that

b̂i(θ
′
i)= b̂i(θi)�

then

v̂i(θ
′
i) �= v̂i(θi)�

It therefore follows that

p|Θi
(Ai)= αp1|Θi

(Ai)+ (1 − α)p2 |Θi
(Ai) > 0�

p|Θi
(A′

i)= αp1|Θi
(A′

i)+ (1 − α)p2 |Θi
(A′

i) > 0�

which implies that p cannot be a BDP prior.
We now show that p is BDP if both p1 and p2 are BDP. If p1 and p2 are BDP

priors for player i, then by Definition 1 there exist subsets Θpk
i ⊆ Θi, k ∈ {1�2},

such that p|Θi
(Θ

pk
i ) = 1 and Θ

pk
i is the graph of a function Φ

pk
i :Bpk

i → Vi,
where B

pk
i is the projection of Θpk

i on ∆(Θ−i).
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We show that the graph of the function Φi :B
p1
i ∪B

p2
i → Vi defined by

Φi(bi)=
{
Φ

p1
i (bi)� bi ∈ B

p1
i ,

Φ
p2
i (bi)� otherwise,

is assigned probability 1 by p|Θi
. This implies that p is BDP for bidder i.

This is obvious if Bp1
i ∩ B

p2
i = ∅, because in this case the graph of Φi is sim-

ply the union of the graphs of Φ
p1
i and Φ

p2
i . We show that the graph of Φi

is assigned probability 1 by p|Θi
(and hence p is BDP for bidder i) also if

B
p1
i ∩ B

p2
i �= ∅. The proof consists of showing that the graphs of Φp1

i and Φ
p2
i

coincide almost surely on B
p1
i ∩B

p2
i according to p|Θi

.
Pick some bidder j �= i and, for k = 1�2, denote by

Θ̄
pk
j = {θj ∈Θj : b̂j(θj)|Θi

(Θ
pk
i )= 1}

the set of j’s types that assign probability 1 to Θ
pk
i . Because pk is a common

prior,

1 = pk|Θi
(Θ

pk
i )(3)

=
∫
Θj

b̂j(θj)|Θi
(Θ

pk
i ) dpk|Θj

(θj)

=
∫
Θ̄
pk
j

b̂j(θj)|Θi
(Θ

pk
i ) dpk|Θj

(θj)+
∫
Θj\Θ̄pk

j

b̂j(θj)|Θi
(Θ

pk
i ) dpk|Θj

(θj)

=
∫
Θ̄
pk
j

1 · dpk|Θj
(θj)+

∫
Θj\Θ̄pk

j

b̂j(θj)|Θi
(Θ

pk
i ) dpk|Θj

(θj)�

Since b̂j(θj)|Θi
(Θ

pk
i ) < 1 on Θj \ Θ̄

pk
j , we conclude that pk|Θj

(Θ̄
pk
j ) = 1 (and

pk|Θj
(Θj \ Θ̄

pk
j ) = 0), because otherwise the sum of the two integrals in (3)

would be smaller than 1.
Since pk is a common prior (and Θ

pk
i ⊂ B

pk
i × Vi), it follows that∫

B
pk
i ×Vi

b̂i(θi)|Θj
(Θ̄

pk
j ) dpk|Θi

(θi)= pk|Θj
(Θ̄

pk
j )= 1

and hence that b̂i(θi)|Θj
(Θ̄

pk
j ) = 1 for pk|Θi

-almost every θi ∈ B
pk
i × Vi. This

implies that for p|Θi
-almost every θi ∈ (B

p1
i ∩B

p2
i )× Vi we have b̂i(θi)|Θj

(Θ̄
p1
j ∩

Θ̄
p2
j )= 1.
Furthermore, the belief of every θj ∈ Θ̄

p1
j ∩ Θ̄

p2
j is concentrated on Θ

p1
i ∩Θ

p2
i

or

b̂j(θj)|Θi

(
(B

p1
i ∩B

p2
i )× Vi

) = b̂j(θj)|Θi
(Θ

p1
i ∩Θ

p2
i )= 1�
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In other words, if B0 = {bi ∈ B
p1
i ∩ B

p2
i :Φp1

i (bi) �= Φ
p2
i (bi)} is the subset of i’s

belief types in B
p1
i ∩ B

p2
i on which the graphs Θ

p1
i and Θ

p2
i are disjoint, then

b̂j(θj)|Θi
(B0 × Vi)= 0� Since p is a common prior, we therefore have

p|Θi
(Θ

p1
i ∩Θ

p2
i ) =

∫
Θ̄
p1
j ∩Θ̄p2

j

b̂j(θj)|Θi
(Θ

p1
i ∩Θ

p2
i ) dp|Θj

(θj)

=
∫
Θ̄
p1
j ∩Θ̄p2

j

b̂j(θj)|Θi

(
(B

p1
i ∩B

p2
i )× Vi

)
dp|Θj

(θj)

= p
((
(B

p1
i ∩B

p2
i )× Vi

) × (Θ̄
p1
j ∩ Θ̄

p2
j )×Θ−i−j

)
=

∫
(B

p1
i ∩Bp2

i )×Vi

b̂i(θi)|Θj
(Θ̄

p1
j ∩ Θ̄

p2
j ) dp|Θi

(θi)

=
∫
(B

p1
i ∩Bp2

i )×Vi

1 · dp(θi)

= p|Θi

(
(B

p1
i ∩B

p2
i )× Vi

)
�

This equality implies that on B
p1
i ∩ B

p2
i the graphs of Φ

p1
i and Φ

p2
i coincide

p-almost surely, as required, because if this were not the case on a subset of
B

p1
i ∩ B

p2
i with a positive measure according to p, then it would follow that

p|Θi
(Θ

p1
i ∩Θ

p2
i ) < p|Θi

((B
p1
i ∩B

p2
i )× Vi). Q.E.D.

LEMMA 2: The set B of BDP priors for bidder i is a Borel subset of the space of
priors Pu on the universal space T , when Pu is endowed with a topology at least
as strong as the topology of weak convergence.

PROOF: If the lemma obtains when Pu is equipped with the topology of weak
convergence, it also obtains for any stronger topology. It is therefore enough
to proceed by assuming that Pu is equipped with the topology of weak conver-
gence.

A prior p ∈ Pu is a BDP prior if and only if the marginal of p on Ti = Vi ×
∆(T−i) is concentrated on a measurable graph of a function Φ

p
i :Bp

i → Vi. This
is expressible by countably many conditions, in the following way.

Since Vi is separable, there is a countable collection {An
i }n≥1 of subsets of Vi

that is closed under complements and finite unions, and generates the Borel
sigma-field of Vi. Hence there are also countably many partitions {Γ m

i }m≥1 of Vi

to finitely many disjoint subsets {Anm
k

i }Nm
i

k=1 ⊆ {An
i }n≥1. Similarly, since ∆(T−i)

is separable, there exists a countable collection {Y�
i }�≥1 of subsets of ∆(T−i)

that is closed under complements and finite unions, and generates the Borel
sigma-field of ∆(T−i). Hence, there are also countably many partitions {Λr

i }r≥1

of ∆(T−i) to finitely many disjoint subsets in {Y�r
k

i }Lr
i

k=1 ⊆ {Y�
i }�≥1.
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The marginal of p on Ti = Vi ×∆(T−i) is concentrated on the graph of Φp
i if,

and only if for every partition Γ m
i = {Anm

k
i }Nm

i
k=1 of Si,

p

(Nm
i⋃

k=1

(
A

nm
k

i × (Φ
p
i )

−1
(
A

nm
k

i

) × T−i

)) = 1�

Intuitively, as the partitions (Γ m
i )m≥1 of Vi get finer, the union of the rectangles

A
nm
k

i × (Φ
p
i )

−1(A
nm
k

i ) approximates the graph of Φp
i increasingly well.

Now, for each partition Γ m
i = {Anm

k
i }Nm

i
k=1 of Vi, {(Φp

i )
−1(A

nm
k

i )}Nm
i

k=1 is a partition
of ∆(T−i) that can be approximated arbitrarily well (in terms of the probabil-
ities assigned to the partition members by the marginal of p on ∆(T−i)) by
partitions in {Λr

i }r≥1. Hence, the marginal of p on Ti = Vi × ∆(T−i) is concen-
trated on a measurable graph from ∆(T−i) to Vi if and only if, for every natural
number q ≥ 1 and for each partition Γ m

i = {Anm
k

i }Nm
i

k=1 of Vi, there exists a parti-
tion Λr

i = {Y�r
k

i }Lr
i

k=1 of ∆(T−i) with Lr
i =Nm

i and

p

(Nm
i⋃

k=1

(
A

nm
k

i ×Y
�r
k

i × T−i

)) ≥ 1 − 1
q
�

Formally, therefore, the set B of BDP priors is

⋂
i∈N

⋂
m≥1

⋂
q≥1

⋃
r≥1

{
p ∈Pu :p

(Nm
i⋃

k=1

(
A

nm
k

i ×Y
�r
k

i × T−i

)) ≥ 1 − 1
q

}
�

which is a Borel subset of the space of priors Pu. Q.E.D.
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