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Real-Time Moment Magnitude and Stress Drop with
Implications for Real-Time Shaking Prediction

by Alon Ziv and Itzhak Lior

Abstract Despite the potentially dramatic effect of the stress drop on ground-
motion intensity, currently available earthquake early warning systems that deliver
peak ground-motion predictions do not account for the effect of this parameter. To
address this issue, a new evolutionary algorithm for determining stress drop and mo-
ment magnitude in real time is described. It consists of two distinct modules: one
processes data recorded by individual stations and another computes event-average
stress drops and moment magnitudes. To speed up the analysis, the real-time algo-
rithm deviates from standard procedures of stress-drop determination in several ways.
Because these time-saving measures come at the price of accuracy, a quality-control
parameter is introduced, which quantifies the discrepancy between the observed and
modeled ground motion.

The results of implementing the algorithm offline using KiK-borehole data from
Japan are presented. It is shown that it is possible to recover the moment magnitudes
and the stress drops in real time. Two example timelines of seismic moment and stress
drop are presented. These show that the source parameters of small-to-moderate earth-
quakes may be estimated quite accurately within 5 to 10 s since the first trigger, whereas
those of larger magnitudes (i.e., M,, > 6) take 20-30 s. Finally, ground-motion predic-
tion equations for the velocity’s root mean square and peak ground velocity are pre-
sented. Once the epicenter, seismic moment, and stress drop are determined using a few
stations nearest to the epicenter, their values can be input into those equations to get the

ground-motion intensity at sites further away from it.

Introduction

Together with the hypocentral distance and the seismic
moment, the stress drop is among the three most important
source parameters affecting ground-motion intensity (Hanks,
1979; Hanks and McGuire, 1981; Baltay and Hanks, 2014;
Lior et al., 2016). Nevertheless, currently available earth-
quake early warning systems (EEWS), delivering peak
ground-motion predictions (e.g., Bose ef al., 2007; Cua et al.,
2009; Zollo et al., 2009; Brown et al., 2011; Satriano et al.,
2011), do not account for the effect of the stress drop on the
ground-motion intensity. It is thus important to develop a
real-time algorithm for stress-drop determination.

Stress drop, the driving force behind the rupture process,
may be expressed as
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(Hanks and Thatcher, 1972), with My, f,, and Cg being the
seismic moment, the corner frequency, and the shear wave-
speed, respectively, and k is a constant (Brune, 1970; Madar-

iaga, 1976). The inference of seismic moment and corner
frequency entails transforming the ground-motion time series

into the spectral domain, and fitting the displacement spectra
Q) with the omega-square model:
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(Aki, 1967; Brune, 1970), in which € is the low-frequency
spectral plateau, which is related to the seismic moment and
the hypocentral distance as
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in which rp is the radiation pattern, FS is a free-surface
correction factor, C is the body-wave velocity at the source
(P or S, depending on the spectra), R is the hypocentral dis-
tance, and p is the density. Thus, the hypocentral distance is
needed for stress-drop determination, and thanks to recent
advances in real-time P- and S-phase picking (e.g., Kiiper-
koch et al., 2012; Kurzon et al., 2014; Ross and Ben-Zion,
2014), its determination in real time is quite robust. Use of
equation (2) is appropriate only in cases where the permanent
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ground displacement is much smaller than the amplitude of the
transient motion. To a large extent, the popularity of this far-
field model stems from the fact that the vast majority of seismic
observations do satisfy this criterion. Because here, however,
stations nearest to the epicenter are used, the risk of not meet-
ing the far-field criterion is indismissible, and it is important to
check for model consistency. This issue is addressed in the
Data Quality Control and Model Consistency Check section.

This article is organized as follows: first, an evolutionary
algorithm for determining the seismic moment and stress
drop in real time is described. Then, the results of implement-
ing this algorithm offline using KiK-borehole data from
Japan are presented. A couple of example timelines of seis-
mic moment and stress drop are shown, which illustrate the
performances of the proposed scheme. Finally, the potential
of real-time seismic moment and stress drop for real-time
ground-motion prediction is discussed.

Real-Time Evolutionary Algorithm

Main Deviations from Standard Procedures of Stress-
Drop Determination

To speed up the analysis, the real-time algorithm devi-
ates from standard procedures of stress-drop determination in
several ways. In contrast to standard procedures of high-pass
filtering strong-motion records to reduce distortions caused
by tilts and permanent offsets, here the analyses are per-
formed on unfiltered seismograms. The benefit of avoiding
high-pass filtering of the data is twofold: it cuts down the
computation time, and it prevents the removal of the low-
frequency signals that dominate large earthquakes. Because
the constant trend resulting from single integration of tilted
accelerograms is much smaller than that caused by double
integration, in this study the spectral attributes €2 and f, are
solved for by fitting the velocity spectra {2 with the corre-
sponding omega-square model:

Q
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Use of equation (4) instead of equation (2) reduces the harm-
ful effects that tilts and permanent offsets may have on the
stress-drop assessment, and makes high-pass filtering the
accelerograms more dispensable.

Although the standard approach for stress-drop determi-
nation of local earthquakes is to use fixed data intervals of P or
S waves, the real-time scheme introduced here uses incremen-
tally increased data intervals, starting at the time of the first P-
wave arrivals. The obvious advantage of this evolutionary ap-
proach is that initial assessment becomes available sooner than
it would have been had the standard approach been imple-
mented. A consequence of this approach is that P and S phases
very quickly get mixed up. This issue is addressed later.

Finally, the effects of anelastic dissipation and near-
surface attenuation, which are accounted for by standard
procedures, are neglected here. Previous studies show that
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anelasticity is not important at distances less than about
60 km (Wu et al., 2005; Wu and Zhao, 2006; Lior et al.,
2016), and near-site effects mainly attenuate frequencies that
are well above the corner frequencies of M, >4 (Oth, Pa-
rolai, et al., 2011; Baltay and Hanks, 2014). Because distan-
ces greater than 60 km and M, <4 are irrelevant for EEWS,
neglecting these effects is justified.

In summary, the analysis is expedited by using unfiltered
data, by implementing an evolutionary scheme with data in-
tervals starting at the time of the first P-wave arrivals, and by
not accounting for anelastic and near-site attenuations. These
time-saving measures come at the price of accuracy, and it
is necessary to compensate for them by passing the data
through a strict quality control.

Data Quality Control and Model Consistency Check

The far-field spectra of body waves depend on the azi-
muth at which these waves leave the source (Madariaga,
1976). This azimuthal dependency introduces within-event
variability in the corner frequencies. Because the stress drop
is a function of the corner frequency cubed (equation 1), the
within-event variability in the corner frequencies is mapped
into a much greater variability in the stress-drop estimates.
An additional consequence of the strong stress-drop depend-
ency on the corner frequency is that small errors in the cor-
ner-frequency estimates may cause large errors in the stress-
drop estimates (Cotton et al., 2013). Furthermore, use of the
omega-square model is appropriate only in the far field,
where the permanent ground displacement is much smaller
than the amplitude of the transient displacement. Finally, the
inference of the stress drop is model based (e.g., Brune,
1970), and these models do not account for various rupture
propagation effects, such as directivity and segmentation.
Thus, large discrepancies between modeled and observed
spectra may arise when the source process defies the simpli-
fying assumptions underlying these models. Therefore,
whether in real time or not, estimating stress drops is a chal-
lenging task, and unless a statistically meaningful number of
good-quality seismic records with good azimuthal coverage
are available, determining the stress drop may not be robust.
To address the robustness issue, data quality assessments and
model consistency checks are critical for real-time stress-
drop determination.

To assess the data quality and check for model consis-
tency, a parameter that quantifies the discrepancy between
the observed and modeled ground motion is introduced.
By inserting the omega-square relation into the Parseval’s
theorem, Lior et al. (2016) obtained the following expression
for the root mean square (rms) velocity:

3
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in which AT is the data interval. A discrepancy parameter
that quantifies the disagreement between observed and pre-
dicted ground velocities is
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Results whose discrepancy parameter exceeds some prespe-
cified value are disregarded. Next, an algorithm for determin-

ing the moment magnitude and the stress drops in real time is
described.

Detailed Description

The algorithm described here may either be integrated
into existing EEWS or form the basis for a totally new one.
It consists of two distinct modules. The first is an individual
station analyst (ISA), which processes data recorded by indi-
vidual stations. The second module is a multistation aggrega-
tor (MSA), which performs a quality check on the ISA outputs
and computes event-average stress drops and M.

An ISA proceeds along the following steps:

1. Run a P- and S-phase picker (e.g., Kurzon et al., 2014;
Ross and Ben-Zion, 2014) and proceed to the next step
after S picking.

2. Initialization:

2.1. estimate a hypocentral distance according to:
R = AT p(s) x 8(km/s), with ATg_p being the in-
terval between the P and S arrivals;

2.2. extract a data interval, starting at the time of
the first P-wave arrival, according to AT =
max(ATg p,5 s).

3. Data preparation:

3.1. integrate accelerograms to get a velocity time series;

3.2. apply a zero-offset correction; and

3.3. obtain velocity rms for the entire data interval.

4. Spectral inversion:

4.1. apply a Hann window;

4.2. obtain velocity spectra;

4.3. downsample the spectra at constant intervals of log-
of-frequency;

4.4. employ equation (4) to infer 2, and f, via a 2D grid
search.

5. Output:

5.1. employ equation (3) to get M;

5.2. employ equation (1) to get Ar;

5.3. use the moment-magnitude relation of Hanks and
Kanamori (1979) to get M;

5.4. output the following parameters: R, vy, o, fo»
M,,, and Az.

6. Exit criteria check:

6.1. exit if the total data interval reached 60 s;

6.2. exit if the rms of the next data packet falls below 100
times the presignal rms.

7. Append the new data packet to the previous data interval
and return to step 3.

The MSA module, which computes event-average M,
and Ar, is activated by the first ISA output. It reports event-
average parameters each time a new ISA result becomes
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available. The MSA employs equation (4) to get a discrep-
ancy parameter and excludes results whose discrepancy
parameter exceeds some prespecified value.

Explanatory notes and comments are as follows:

e The only notable time-consuming computation in the
above algorithm is the Fourier transformation in step 4.2
of the ISA. Calculating the velocity spectra of one compo-
nent instead of three saves time. In that case, to approxi-
mately make up for the missing spectra, the €}, in
equation (3) should be replaced by the €, corresponding
to that component multiplied by /3.

* The downsampling in step 4.3 is necessary to avoid over-

weighting the highest frequencies when fitting the spectra

to Brune’s omega-square model (Allmann and Shearer,

2009). In addition, it has the advantage of reducing the

computation time of the grid search.

In this study, the following parameter settings are used:

k= 0.37, Cp = 5800 m/s, Cg = 3200 m/s, rpp = 0.52,

ps = 0.63, FS = 2, and p = 2600 kg/m?, with the sub-

scripts P and S signifying the seismic phase.

» The data intervals are set such that P and S phases get
mixed up. For that reason, rp/C* in equation (3) is replaced
by the weighted average Xprpp/C3 + (1 — Xp)rps/C3, in
which Xp is the fraction of P waves.

Previously proposed algorithms for real-time M,, and
stress-drop determination differ markedly from the one de-
scribed above. Colombelli and Zollo (2015) examine multi-
station averaged time series of the logarithm of the distance-
corrected peak displacement and show that the time and the
amplitude of the displacement plateau may be used to assess
the magnitude and the rupture length. Once these source
parameters become available, estimating the stress drop is
straightforward. Although Caprio et al. (2011) does not
explicitly propose an algorithm for stress-drop determina-
tion, their evolutionary algorithm and the one described here
share some features; both schemes are evolutionary, employ
the omega-square model, obtain M, through spectral inver-
sion, and rely on getting a robust epicentral distance from a
different algorithm. The main differences between the
two is that (1) there the quality factor is solved for together
with f, and )y, whereas here only the last two parameters
are solved for; (2) there the data are band-pass filtered,
whereas here they are not; (3) there the displacement spectra
are modeled, whereas here the velocity spectra are used; and
(4) there the three ground-motion components are Fourier
transformed, whereas here only the vertical component is
Fourier transformed.

Application to Japan Earthquakes

Comparison between surface and borehole acceleration
records from Japan reveals that the former are much more
strongly affected by site amplification and near-site attenu-
ation than the latter (e.g., Oth, Parolai, et al, 2011; Oth,
Bindi, et al., 2011). Because the source spectra of small-
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Figure 1. Waveform distribution according to catalog M, and
hypocentral distances. A total of 587 seismograms, which corre-
spond to 347 earthquakes, were used in this study.

to-moderate earthquakes are difficult to extract from records
that are strongly distorted by such effects, use of borehole
data for testing the newly proposed algorithm is preferable.
In future implementations, in places where borehole records
are unavailable, it would be sensible to exclude stations
located on soft sediments and correct the spectra using pre-
determined near-site attenuation coefficients.

Data

The data set consists of 587 accelerograms recorded by
Japan’s KiK-net borehole accelerometers, with hypocentral
distances of up to 60 km (Fig. 1). These records are associ-
ated with 347 earthquakes that occurred between 2000 and
2014. F-net revised M,, (hereafter, catalog M) and hypo-
centers are used. Details regarding the five largest earth-
quakes are provided in Table 1. Only vertical components are
used in this study. Although in real-time implementation the
P and S phases are to be picked automatically, here they were
picked semimanually, and the T's_p intervals were setto 1 s
per 8 km of the hypocentral distance reported in the F-net
catalog.

Single-Station Stress Drop and Moment Magnitude
Estimates

The data were processed offline using the real-time al-
gorithm described in the Detailed Description section. Re-
sults shown here correspond to the closing outputs of the
ISA module, that is, the last f,, €y, M,,, and At estimates
inferred from individual stations. The average closing data
interval equals 27 s (Fig. 2a). It increases with magnitude
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Figure 2. Data interval distribution. (a) A histogram of the data

intervals, with a vertical dashed line indicating the average data in-
terval. (b) Data interval as a function of M,. The solid line indicates
a moving average.

from about 15 s for the smallest earthquakes in the data
set to nearly 40 s for the largest ones (Fig. 2b).

Example spectra of records whose discrepancy param-
eter is well below and well above 0.5 are presented in
Figure 3a and 3b, respectively. It is clear from these examples
that records with a large discrepancy parameter cannot

Table 1

List of Five Largest Earthquakes with M, and Locations as
Reported by the F-net Catalog

Epicenter
Date
(yyyy/mm/dd) M, Name Longitude (°) Latitude (°)
2000/10/06 6.6  Tottori 35.28 113.34
2004/10/23 6.6  Chuestsu 37.29 138.86
2005/03/20 6.6  Fukuoka 33.73 130.17
2007/07/16 6.6  Chuestsu 37.55 138.60
offshore
2008/06/14 6.9  Iwate—Miyagi 39.03 140.88
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Example spectra. (a) Spectra of records whose discrepancy parameter is much less than 0.5. (b) Spectra of records whose

discrepancy parameter is greater than 0.5. Observed and modeled spectra are indicated by gray and black curves, respectively. The spectra are
resampled at equal log-of-frequency spacing (black dots). Vertical bars indicate the corner frequencies. Event IDs, station names, and catalog

M., are indicated next to each example.

resolve the source parameters. Indeed, visual examination of
the time-integrated accelerograms (not shown) correspond-
ing to a discrepancy parameter greater than 0.5 reveals that
most of them are strongly distorted by tilt and/or permanent
offset. A smaller fraction of these records do not show signs
for such distorting effects and are simply incompatible with
the omega-square model. Furthermore, a plot of observed
versus theoretical v, calculated using equation (5) reveals
a fairly good agreement between theory and observations for
data points whose discrepancy parameter is smaller than 0.5
(Fig. 4). Thus, here, results whose discrepancy parameter
exceeds 0.5 are treated as outliers. As the fraction of these
records is about 10% (inset of Fig. 4), disregarding them
does not result in a severe data loss.

The reciprocal of the corner frequency 1/ f and the dis-
tance-corrected spectral plateau {),R as a function of the
catalog magnitude are shown in Figure 5, with circles and
crosses indicating results whose discrepancy parameter is
smaller than or greater than 0.5, respectively. Both 1/f
and QR associated with small discrepancy parameters are
strongly correlated with the catalog M,,. In contrast, many
of the data points associated with large discrepancy param-
eters plot outside the main cluster and are clearly uncorrelated
with the catalog M,,. Thus, the discrepancy parameter is an
effective tool for real-time quality control and model consis-
tency checks.

The reciprocal of the corner frequency as a function of the
real-time M, is shown in Figure 6a, along with lines of con-
stant stress drop (dashed lines) and a best-fitting curve (solid
line) as follows: logo(1/f) = —2.04 4+ 0.45M,, with cor-
relation coefficient and standard deviation of 0.9 and 0.15
(in log;q units), respectively. That the inclination of the line
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Figure 4. Observed versus theoretical v, (i.e., right side of

equation 5). Gray circles and black crosses indicate results whose
discrepancy parameter is lesser or greater than 0.5. Record count as
a function of the discrepancy parameter is shown at the top-left cor-
ner. The percentage of greater than 0.5 discrepancy parameters
equals 11%.

of best-fitting curve is less steep than those of the constant
stress drop indicates larger stress drop for larger magnitudes.
Individual stress-drop estimates span two orders of magni-
tudes, with an average value of about 4 MPa (Fig. 6b). This
result is in agreement with Oth (2013), who used standard
procedure for stress-drop calculation of Japanese earthquakes.
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The spectral parameters as a function of the catalog M,,. (a) The reciprocal of the corner frequency 1/f as a function of the

catalog M,. Dashed lines indicate constant stress drops of 0.1, 1, 10, and 100 MPa, and the solid line indicates the linear regression fit to
log(1/fo) versus M. (b) The distance-corrected spectral plateau (23R as a function of the catalog M,,. Circles and crosses indicate dis-
crepancy parameters lesser than or greater than 0.5, respectively, and the color code indicates the closing data interval.
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Figure 6. A summary diagram of the closing results, that is, the last outputs of the individual station analyst (ISA) module. (a) The
reciprocal of the corner frequency 1/ f as a function of M,,. Dashed lines indicate constant stress drops of 0.1, 1, 10, and 100 MPa, and the
solid line indicates the linear regression fit to log(1/f) versus M, . (b) The stress drop as a function of M,,. The solid horizontal line indicates
the average stress drop; black stars indicate event-average values; and the color code indicates the closing data interval.

Of the 347 earthquakes analyzed in this study, 23 were re-
corded by more than three stations (and 63 were recorded
by more than two). Event-average stress drops of these
well-recorded earthquakes span only one order of magnitude,

between 1 and 10 MPa (black stars in Fig. 6b). Nevertheless,
the tendency for larger earthquakes to have larger stress
drops is still apparent for this subset of the data. Comparison
between real-time and catalog M, reveals excellent agreement



Real-Time Moment Magnitude and Stress Drop with Implications for Real-Time Shaking Prediction

L L l L L l
/|
7
7 1:1 line: X/
rms err=0.29
1 ave err=0.23 i
6 — -
= !
-
£
g 5T i
U
z .
i linear L
regression:
a,=0.19
4 - a,=0.94 |-
R=0.92
. rms err=0.26 |
// ogpX ave err=0.21
3 T [ T I T '| T I
3 4 5 6 7
Catalog M,,
Figure 7. The M, obtained in this study as a function of

the catalog M,,. Gray circles and black crosses indicate results
whose discrepancy parameters are lesser and greater than 0.5,
respectively. The solid line is a best-fitting curve to real-time
M,, = a; + a, catalog M,,, with the fitting coefficients (a; and a,),
the correlation coefficient (R), the root mean square (rms), and the
average M,, discrepancies reported at the bottom-right corner. The
rms and the average M,, discrepancies with respect to the 1:1 line
(dashed line) are reported at the top-left corner.

between the two (Fig. 7). Linear regression yields real-time
M,, = 0.19 + 0.94 catalog M,,, with correlation coefficient
and an average M, discrepancy that are equal to 0.92 and
0.21, respectively.

Example Multistation Timelines

Representative multistation timelines of stress-drop and
M, estimates are shown in Figure 8 for two earthquakes,
with thin gray lines corresponding to individual station es-
timates, and thick black lines indicating the multistation
average. The source parameters of small-to-moderate earth-
quakes may be estimated quite accurately within 5 to 10 s
since the first trigger (Fig. 8c,d). For larger magnitudes, that
is, M, > 6, the assessment of these parameters takes longer.
In particular, the M|, estimates of such earthquakes rise with
time after the first trigger and stabilize only after 20-30 s
(Fig. 8a,b). The exceptionally large within-event stress drop
and M, variability of M, 6.2 (Fig. 8a,b) may be due to di-
rectivity and other rupture propagation effects.

Implications for Ground-Motion Prediction

Substituting equations (1) and (3) into equation (5)
yields a ground-motion prediction equation (GMPE) for v,
in terms of the hypocentral distance, the seismic moment,
and the stress drop:
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in which the term inside the square brackets collects all the
medium and site-specific constants, and the term inside the
round brackets contains the source parameters and the data
interval. Because the value of the stress-drop spans two
orders of magnitude, it may have a dramatic effect on the
ground-motion intensity, and earthquakes releasing similar
seismic moments may give rise to radically different ground-
motion amplitudes if their stress drops differ notably.

Plots of v,,,; as a function of the term inside the round
brackets of equation (7) are shown, once with the stress drop
replaced by the average stress drop of the entire population
(Fig. 9a) and once with the stress drop being the earthquake-
specific stress drop (Fig. 9b). In either case, the slope of the
least-square fit is close to —1, thus validating the scaling of
the above expression. Although in Figure 9a large stress
drops plot above small ones, in Figure 9b different stress-
drop values plot on top of each other. The switch from a pop-
ulation average stress drop to earthquake-specific stress
drops reduces the rms error by 30%, from 0.22 to 0.16 (in
log,o units), and reduces the average error (also in log
units) from 0.18 to 0.14.

Linear regression of log(PGV) versus log(v,,s) yields
log(PGV) = 0.3 4+ 0.87log(v,y) Wwith correlation coeffi-
cient of 0.9 (Fig. 10). Consequence of the close-to-linear re-
lation between peak ground velocity (PGV) and v, is that
PGV and the term inside the round brackets of equation (7)
are also strongly correlated (Fig. 10). The following relation
is obtained: log(PGV) = —9.82 — 0.8R[AT/(M,A7)]'/?,
with correlation coefficient and average error (in log;( units)
equal to —0.75 and 0.18, respectively. Thus, once the epicen-
ter, the seismic moment, and the stress drop are determined
using a few stations nearest to the epicenter, their values can
be plugged into the linear regression lines in Figures 9b and
10 to assess the ground-motion intensity at sites further away
from it.

Summary

A new real-time evolutionary algorithm for stress drop
and M, is described. It consists of two distinct modules: one
processes data recorded by individual stations and another
computes event-average stress drops and M. To speed up
the analysis, the real-time algorithm deviates from standard
procedures of stress-drop determination using unfiltered data
by implementing an evolutionary scheme with data intervals
starting at the time of the first P-wave arrivals, and by not
accounting for the anelastic and near-site attenuations. To
make up for these time-saving measures, a quality-control
parameter is introduced that quantifies the discrepancy be-
tween the observed and modeled ground motion. Results
whose quality-control parameter exceeds some prespecified
value are disregarded.
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Figure 9.  Observed v,y as a function of calculated R(AT/AzM,,)">. (a) The Az is replaced by the average stress drop of the population.
(b) The Az is set to be equal to the earthquake-specific stress drop, that is, the closing outputs of the ISA module. Solid lines are best-fitting
curves to log(v,ms) = a; + a, log[R(AT/AzM,)°~]. The fitting coefficients (a; and a,), the correlation coefficients (R), and the rms of the
discrepancy between predicted and observed velocities are reported on each panel. The color code is indicative of the stress drop.
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Figure 10.

Empirical relations for peak ground velocities (PGVs). (a) Observed PGV as a function of observed v,;,;, with best-fitting

curve to 10g(PGV) = a; + a,10g(vm,). (b) Observed PGV as a function of calculated R(AT/AtM,)%3, with best-fitting curve to
log(PGV) = a; + a, log[R(AT/AtM,)%3). Fitting coefficients along with relevant statistical parameters are reported on each panel.

The algorithm is tested using offline KiK-borehole data
from Japan. It is shown that it is possible to recover the M,
and the stress drops in real time. A couple of example time-
lines of seismic moment and stress drop are presented. These
show that the source parameters of small-to-moderate mag-
nitudes may be estimated quite accurately within 5 to 10 s
since the first trigger, whereas those of larger magnitudes
(i.e., M, >6) take 20-30 s. Finally, GMPEs for v, and
PGV are presented. Once the hypocenter, the seismic mo-
ment, and the stress drop are determined using a few stations
nearest to the epicenter, their values can be plugged into
those equations to get the ground-motion intensity at sites
further away from it.

Data and Resources

The seismograms used in this study were obtained from
the KiK-net strong-motion networks accessible through http://
www.kyoshin.bosai.go.jp/ (last accessed January 2016).
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