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[1] Previous studies of rupture nucleation were restricted
to conditions well within the unstable regime. In this study,
we show that positive stress changes applied on intrinsically
stable interfaces can trigger quasi-static slip episodes.
Similar to the onset of ruptures on unstable fractures, the
creep on intrinsically stable fractures too are preceded by
intervals during which the slip is highly localized. The size
of the nucleation patch depends not only on the constitutive
parameters, but also on the stressing history. We examine
the effect of a stress step on the slip history of a seismic
fault interacting with a creeping segment, and show that
stress transfer due to creep may strongly affect the timing of
an impending seismic slip. Finally, we investigate the effect
of a stress step on the slip history of an isolated unstable
strip surrounded by creep, and show that a positive stress
step triggers aftershocks, whose rate decays as 1/time during
most of the sequence, but much faster than 1/time shortly
after the stress step. Citation: Ziv, A. (2007), On the nucleation

of creep and the interaction between creep and seismic slip on rate-

and state-dependent faults, Geophys. Res. Lett., 34, L15303,

doi:10.1029/2007GL030337.

1. Introduction

[2] We investigate the onset of creep events, and examine
consequences of interaction between creep and seismic slip
in the context of the rate- and state-dependent friction.
According to friction experiments, the coefficient of friction
is a logarithmic function of the slip rate, _d, and the contact
state, q, as [Dieterich, 1979; Ruina, 1983]:

m ¼ m1 þ a ln _d= _d1
� �

þ b ln q _d1=Dc

� �
; ð1Þ

where m1 is the steady-state friction when the contact slips
at the reference speed, _d1, a and b are constitutive
parameters, and Dc is a characteristic slip distance. The
state evolves with both slip and time, and experimental data
may be reasonably fit with [Ruina, 1980]:

dq=dt ¼ 1� q _d=Dc: ð2Þ

When at steady-state, q = Dc/ _d and:

m ¼ m1 þ a� bð Þ ln _d= _d1
� �

¼ m1 þ b� að Þ ln q _d1=Dc

� �
:

ð3Þ

Thus, steady-state friction is velocity weakening if a/b < 1,
and velocity strengthening if a/b > 1. While the first
situation favors unstable slip, the latter favors creep and is
said to be intrinsically stable [Marone and Scholz, 1988].
Scientists have long been seeking to understand how
earthquakes begin. Previous studies that employed (1)–(2)
showed that ruptures are preceded by intervals during which
slip is highly localized [Dieterich, 1992; Rice, 1993; Rubin
and Ampuero, 2005]. These investigations were restricted to
conditions well within the inherently unstable regime. In the
first part of this study (section 3) we model slip localization
within the intrinsically stable regime. We shall see that,
similar to seismic ruptures, creep events too develop from a
well defined area over which slip localization takes place.
[3] In the second part of this paper (section 4), we

investigate consequences of interaction between seismic
slip and creep. Specifically, we examine the effect of
a stress step on the rupture time of a seismic segment
adjacent to a creeping segment, and simulate the slip history
resulting from a stress step applied on a brittle patch
surrounded by an otherwise creeping fault. The results of
this study have important implications for the physics
of slow earthquakes, and for time-dependent earthquake
hazard assessments on seismic faults that are located in the
vicinity of creeping segments. Next, we describe the model.

2. Modeling Slip on a Fault Governed by
Rate- and State-Dependent Friction

[4] An in-plane fracture is represented by an array of n
infinitely long dislocations. When modeling multiple
ruptures, it is useful to add a seismic radiation term to the
stress balance equation (as in Rice [1993]). The radiation
damping term is representative of the outflow of energy due
to seismic waves, and it’s incorporation ensures that the slip
rate remain finite at all times. For the modeling of the
localization stage, on the other hand, both quasi-dynamic
and quasi-static approaches are appropriate. In section 3, we
wish to compare the dimensions of the localization patch
with predicted dimensions for quasi-static crack, therefore
we adopt a quasi-static approach. In section 4, on the other
hand, we model multiple cycles and therefore use a quasi-
dynamic approach. We write the stress balance equation as:

s m1 þ a ln _di= _d1
� �

þ b ln qi _d1=Dc

� �� �
¼ t0 þ _t1i t þ

Xn

j¼1

gijdj

� dQD G=2bð Þd _di=dt;
ð4Þ

where the subscripts are dislocation indexes, s is the normal
stress, t0 is a constant, _t1 is the remote stressing rate, gij is
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an elasto-static kernel, d is the slip, G is the shear modulus,
b is the shear wave speed, and dQD is set to be equal to 1
when taking a quasi-dynamic approach, and is set to 0
otherwise. The state on i evolves as:

dqi=dt ¼ 1� qi _di=Dc ð5Þ

For a crack whose long-term slip rate is equal to _d1, the
long-term stressing rate is equal to:

_t1i ¼ �
Xn

j¼1

gi j _d1 ð6Þ

Replacing (6) in (4), and solving for d _di /dt gives:

d _di=dt ¼
Pn

j¼1 gij
_dj � _d1

� �
� bs=qið Þdqi=dt

as= _di þ dQDG=2b
ð7Þ

Equations (5) and (7) are integrated numerically using an
adaptive time-stepping algorithm.
[5] The elastic kernel is wrapped around, resulting in a

periodic boundary conditions with a wavelength that is
equal to n. The kernel is calculated using equations 32–
33 of Dieterich [1992], with a shear modulus and a
Poisson’s ratio that are equal to 10 GPa and 0.25, respec-
tively. The convolution theorem is implemented to calculate
the elastic interaction term (i.e., the sum over gij( _dj � _d1)).
This is done using the FFTW library (www.fftw.org), which
unlike conventional FFT algorithm can transform data of
any length. The fault is represented by 2 � 104 dislocations,
each of which is 0.05 m long. The model parameters that
are identical in all calculations are: a = 0.02, Dc = 0.001 m,
_d1 = 3 � 10�9 m/s (corresponding to 10 centimeters per
year) and s = 100 MPa. In quasi-dynamic calculations we
use: b = 3000 m/s. We carried out calculations with various
a and b (detailed below), and verified that the localization
patch is well resolved in all calculations.

3. Creep Localization Resulting From a Positive
Stress Change

[6] Spontaneous onset of creep events is possible if the
spatial distribution of the constitutive parameters a and (a �
b) is heterogeneous [Liu and Rice, 2005]. In homogeneous
models, however, slip episodes on velocity-strengthening
segments are only possible if the system is externally
perturbed. The stress perturbations that we apply are
position dependent and are given by:

D�ti ¼ D�tmin þ D�tmax �D�tminð Þ sin pi=nð Þ; ð8Þ

where D�tmin and D�tmax are minimum and maximum
stress perturbations, respectively, and the bars indicate
normalization by as. Perturbing the stress in such a way is
convenient, since it forces the nucleation to take place at the
model’s center.
[7] Starting from steady-state, we impose an instantaneous

stress step whose D�tmin and D�tmax are equal to 3 and 4,
respectively. In that case, since the sliding speed after the

stress perturbation is much larger than that during steady-
state, the second term on the right-hand side of (5) is much
larger than a unity. Thus, dq/dt � �q _d/Dc and q decreases
with slip proportionally to exp(�d/Dc) [Dieterich, 1992].
Dieterich [1992] pointed out that this approximation is
valid to the extent that the sliding speed increase over-
whelm the effect of state decrease, and following Rubin
and Ampuero [2005] we refer to it as the ‘‘no-healing’’
approximation.
[8] Profiles of q and _d at successive times during

slip localization are shown in Figures 1a–1b and 1c–1d
for a/b = 0.9 and a/b = 1.1, respectively. Indeed, in both
cases the state drops, and this drop is accompanied by
sliding speed increase. Note that in either case the slip is
highly localized, and the area undergoing rapid slip defines
the localization patch. Despite the apparent similarities in
the rate and state profiles for a/b = 0.9 and a/b = 1.1, the
evolution of the two systems is quite different. To see that it
is useful to examine the evolution of dq/dt (Figures 1c
and 1f). In either case, because the model is subjected to a
positive stress change, the sign of dq/dt is negative and
the contact surface is undergoing weakening. For a/b = 0.9,
dq/dt initially decreases, i.e. the contact surface is undergoing
weakening at an increasing rate. Only at a later stage
during the localization does dq/dt within the slipping patch
increase. For a/b = 1.1, on the other hand, dq/dt increases
for all times, and the rate at which it increases is larger
inside the localization patch than elsewhere. The localization
phase, often referred to as the nucleation phase, is followed
by a propagation phase, during which the crack is expanding.
The propagation is quasi-static if a/b > 1, and since in this
calculation dQD = 0, sliding speed is unbounded if a/b < 1.
[9] From (7), the condition for slip acceleration (i.e.,

d _d/dt > 0) is:

Xn

j¼1

gij _dj � _d1
� �

> bs=qið Þdqi=dt: ð9Þ

Similarly, for a crack of length L embedded within an elastic
medium whose shear modulus is G, one can write:

�hG=Lð Þ _d � _d1
� �

> bs=qð Þdq=dt; ð10Þ

where h is a geometrical constant with a value that is close
to a unity. Neglecting remote stressing, and replacing dq/dt
with it’s ‘‘no-healing’’ approximation, � _dq/Dc, leads to:

L > hGDc=bs 	 LD; ð11Þ

where LD is Dieterich’s prediction for the size of the
localization patch. Thus, according to Dieterich [1992] the
size of the localization patch depends on b and Dc, but not
on a.
[10] As given by Rubin and Ampuero [2005], the size of

the patch is obtained by calculating the distance between the
peaks in the elastic stress profiles (i.e., equation (4)). The
localization patch size, Lmin, is simply the minimum time-
dependent patch length. In Figure 2 we show Lmin/LD as a
function of a/b for various stress steps. Note that the size of
the localization patch depends not only on b, but also on a/b
and the magnitude of the stress application. Note that
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Lmin 
 1.37 LD, and that Lmin approaches 1.37 LD for
increasing D�t and decreasing values of a/b. The effect of
the stress steps is easy to understand; larger positive stress
perturbations push the fault further above the steady-state,
keeping the ‘‘no-healing’’ approximation valid for longer
times and bringing Lmin closer to LD.
[11] Interestingly, negative stress changes too may trigger

creep events. Similar to creep events triggered by positive
stress perturbations, they too are preceded by accelerating
slip within a localization patch, whose size depends on
the magnitude of the stress perturbation (J.-P. Ampuero and
H. Perfettini, manuscript in preparation, 2007).

4. Interaction Between Creep and Seismic Slip

4.1. Why Should Interaction With Creep Be Accounted
for in Hazard Analyses?

[12] To simulate the effect of a stress step on the slip
history of a seismic fault interacting with a creeping
segment, we set a/b = 0.9 for 1 � i � 104, and set a/b =
1.1 for 104 < i � 2 � 104. The distribution of the slip
rate and contact state in such a system is never uniform. In
order to obtain physically sensible initial conditions, it is
necessary to evolve the simulation through several stick-slip

cycles so that the system spontaneously reaches to its limit
circle. For that reason we switch to a quasi-dynamic
scheme, i.e. we set dQD in (7) to be equal to 1. As in
previous quasi-dynamic continuous models that incorporate

Figure 1. Comparison between the evolution of contact state, sliding speed, and dq/dt during slip localization for (a, b, c)
a/b = 0.9 and (d, e, f) a/b = 1.1. The dashed lines in Figures 1b and 1e denote the remote sliding speed, _d1. A contour is
drawn each time a 10-fold increase in the maximum sliding speed is seen.

Figure 2. A plot of Lmin/LD as a function of a/b for various
stress steps.
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rate- and state-dependent creep and stick-slip [Tse and Rice,
1986; Rice, 1993], the model soon produces periodic
repetition of stick-slip cycles. The initial conditions that
we use are snapshots of the rate and state distribution at
various stages of the seismic cycle. To assess the extent to
which interaction with creep is important, we compare the
results of this model with that of a model in which the
boundary condition on 104 < i � 2 � 104 is replaced by a
constant slip rate of _d1. The duration of the seismic cycle in
the model incorporating creep is nearly equal to that in
which creep is replaced by steady slip.
[13] The changes in the failure time caused by uniform

positive and negative stress steps are shown in Figure 3 as a

function of the time of the stress application (with both axes
being normalized by the duration of the unperturbed cycle).
As expected, while positive stress changes advance
the failure time, negative stress steps delay the rupture.
Additionally, the amount of time advance and time delay is
a function of when in the cycle the stress is imposed
[Dieterich, 1994; Gomberg et al., 1998]. The result that
we wish to emphasis here is that interaction with creep may
strongly affect the amount of time advance and delay.
Specifically, in this example, the time advance and delay
may be significantly larger if the seismic segment is
interacting with rate- and state-dependent creep rather than
with steady slip. This has important implications for time-
dependent earthquake hazard assessments on faults that are
located in the vicinity of creeping segments. For example,
the stress change that the 1983 Coalinga-Nuñez earthquakes
induced on the San Andreas fault may have affected the
timing of the Parkfield earthquake [Toda and Stein, 2002].
In the light of our findings, it is very important that the
stress transfer from the creeping section to the north of
the Parkfield segment be also taken into account when
assessing the response of the Parkfield segment to the
Coalinga-Nuñez quakes.

4.2. On the 1/time Decay of Repeating Aftershocks

[14] How may the 1/time decay of repeating aftershocks
arise from interaction with creep? Vidale et al. [1994]
suggested that repeating earthquakes are occurring on brittle
patches that are embedded within an otherwise creeping
fault. In that case, the stressing rate acting on the
brittle patches, and therefore also the recurrence interval
of repeating ruptures are directly proportional to the creep
rate (assuming ruptures are of constant stress drop). Thus,
1/time decay of repeating aftershocks is expected if the
creep rate is inversely proportional to time. Differentiating
(3) with respect to time suggests that the creep rate may
indeed vary as 1/time [Schaff et al., 1998]. This argument,
however, rests on the assumption that the conditions on
the creeping segment are close to steady-state. This may
be true during most of the aftershock sequence, but it
is certainly not true shortly after a stress perturbation.
Because it is not evident when and for how long
the steady-state assumption is valid, it is instructive to
investigate this model numerically.
[15] To simulate the effect of a stress step on the slip

history of an isolated unstable patch trapped within a
creeping fault, we set a/b to 1.1, except within a small
region that is 50 meters long (i.e., 1000 dislocations) at the
center of the model, where we set a/b to 0.9. Since the
objective here is to model repeating ruptures, we use
aquasi-dynamic approach. In Figures 4a and 4b we show
the evolution of slip resulting from a uniform stress step
of D�t = 1 applied 10% and 90% into the seismic cycle,
respectively. Early in the cycle, i.e. shortly after a co-seismic
slip, the velocity strengthening area near the brittle patch is
highly stressed and is closer to failure than the velocity
strengthening area far from the brittle patch. For that
reason, the creep event nucleates close to the brittle patch
if the stress is perturbed early in the cycle, and nucleates far
from the brittle patch if the system is perturbed near the
cycle end.

Figure 3. The change in failure time caused by uniform
stress steps of D�t = +1 and D�t = �1 as a function of the
time of the stress application, with both axes being
normalized by the duration of the unperturbed cycle, and
the time of the stress application measured since the
previous slip episode. Models incorporating velocity
strengthening and steady slip are indicated by solid and
dashed lines, respectively.
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[16] The inverse of the rupture recurrence times as a
function of time since the stress step are shown in Figure 4c.
Indeed, during most of the aftershock activity (between 106

and 108 seconds) the rupture rate decays asymptotic to
1/time. For times less than 106 seconds, however, since the
state of stress is well above the steady-state, the decay of
the creep rate, and therefore also the failure rate exceeds
notably the 1/time curve. To the best of our knowledge,
such a transition in the decay rate of repeating quakes has
not been reported.
[17] Finally, it is interesting to compare the magnitude of

the seismicity rate change emerging from this model with

that predicted by Dieterich’s aftershock model [Dieterich,
1994]. While according to Dieterich’s model a stress step of
1sa results in an e-fold increase in the seismicity rate, the
seismicity rate here increased by more than 4 orders of
magnitude. Thus, the mechanism suggested by Schaff et al.
[1998] is a very efficient one, in the sense that a modest
stress perturbation may give rise to a large increase in
earthquake production rate.

5. Conclusions

[18] Wemodel slip nucleation on rate- and state-dependent
fault, and show that positive stress changes applied on
conditionally stable fractures can trigger quasi-static slip
episodes. Similar to the onset of ruptures on inherently
unstable fractures, the creep on conditionally stable frac-
tures too are preceded by intervals during which the slip is
highly localized. The size of the localization patch depends
on the constitutive parameters a/b, Dc, as well as on the
stressing history. Specifically, Lmin 
 1.37 LD, and Lmin

approaches 1.37 LD for increasing D�t and decreasing
values of a/b.
[19] We examine the effect of a stress step on the slip

history of a seismic fault interacting with a creeping
segment. We show that stress transfer due to creep may
strongly affect the timing of an impending seismic slip. This
has important implications for time-dependent earthquake
hazard assessments on faults that are interacting significantly
with aseismic segments.
[20] We model slip on an isolated brittle patch trapped

within a creeping fault. We show that the effect of a positive
stress step is to increase the rate of repeating earthquakes.
The decay of aftershock rate is asymptotic to 1/time during
most of the aftershock activity, but is much faster than 1/time,
shortly after the stress step when the state of stress on the
creeping portion of the model is well above steady-state.
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