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Abstract A major difficulty in inverting geodetic data
for fault slip distribution is that measurement errors
are mapped from the data space onto the solution
space. The amplitude of this mapping is sensitive to
the condition number of the inverse problem, i.e., the
ratio between the largest and smallest singular value of
the forward matrix. Thus, unless the problem is well-
conditioned, slip inversions cannot reveal the actual
fault slip distribution. In this study, we describe a new
iterative algorithm that optimizes the condition of the
slip inversion through discretization of InSAR data.
We present a numerical example that demonstrates the
effectiveness of our approach. We show that the condi-
tion number of the reconditioned data sets are not only
much smaller than those of uniformly spaced data sets
with the same dimension but are also much smaller
than non-uniformly spaced data sets, with data density
that increases towards the model fault.
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1 Introduction

Since the advent of InSAR and its first application
to the mapping of ground displacement in the 1990s
(Massonnet et al. 1993), dense line of sight (LOS)
displacement data are being routinely inverted for
fault slip distributions. An important step in those
slip inversions is the discretization of the InSAR data.
Apart from reducing the size of the data while pre-
serving the important information (Simons et al. 2002;
Jonsson et al. 2002; Lasserre et al. 2005; Lohman
and Simons 2005; Grandin et al. 2009), the data dis-
cretization should be done in a manner that reduces
the sensitivity of the resulting slip distribution to small
variations in the data.

The slip distribution is solved on a set of rectangu-
lar or triangular elastic dislocations, and the forward
relation between the modeled slip, m, and the LOS
displacement data, d, is:

Gm =d, (1

where G is the elasto-static kernel. In cases where
the deformation source is deep, the spatial gradient of
the data vector is expected to be moderate, and use
of a uniform spacing between data points is appropri-
ate. Otherwise, for shallow deformation sources, the
ground displacement gradient may be strong, and it is
important to employ a non-uniform spacing. Previous
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approaches for non-uniform InSAR data discretiza-
tion were based either on the spatial variations in d
(e.g., Simons et al. 2002; Jénsson et al. 2002; Funning
et al. 2007) or a resolution analysis of G (Lohman
and Simons 2005). Data space discretizations that use
variations in the data vector rest on the assumption
that areas of strong surface deformation (or defor-
mation gradient) reflect deformation in the source,
and result in highest density of data points in areas
of strong ground displacement. Lohman and Simons
(2005) pointed out that since some of the variability
in the data space is due to atmospheric noise, errors
in the satellite orbit and analysis errors, these artifacts
may affect the solution. To avoid data oversampling in
noisy areas, Wang and Fialko (2015) implemented an
iterative downsampling algorithm that uses the phase
gradient predicted by the best fitting model.

The data space is “contaminated” with noise and
errors of various sources, and these may introduce
spurious structures in the slip model. Thus, when
designing an inverse problem, one should verify
that the problem is well-conditioned, i.e., that small
changes in the data space do not cause large changes in
the model space. In this study, we describe a new algo-
rithm for InNSAR data discretization that optimizes the
condition of the inverse problem, and present a numer-
ical example that demonstrates the effectiveness of our
approach.

2 Method
2.1 The objective function

The assessment of the problem condition begins with
the singular value decomposition (SVD) of G, to
get: G = U >VT, where U is an orthonormal
matrix of eigenvectors that span the data space, V
is an orthonormal matrix of eigenvectors that span
the model space, and ¥ is a diagonal matrix ¥ =
(o1,...,0y) withoy > 0o > ... > 0, > 0 being
the singular values of G, whose dimension equals n.
Following SVD, the generalized inverse of G is:

G ¢=vxlyT. )

If noise and measurement errors are included, the
forward relation in Eq. 1 becomes:

Gm +dyrr = d. A3)
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From Egs. 2 and 3, the presence of noise introduces
model errors according to:

Merr = VE_IUTderr» “)

which shows that errors in the data space are mapped
into the solution parallel to each eigenvector in V,
with an amplification factor 1/o corresponding to that
eigenvector. Thus, very small singular values render
the solution unstable and unreliable (Menke 1989),
and it makes sense to make the magnitude of the
smallest singular value in the spectrum of G as large as
possible (Barth and Wunsch 1990; Curtis and Snieder
1997). Therefore, the objective function that we seek
to minimize is the condition number (e.g., Goulb and
Van Loan 1996):

o1
CN = —, )
On
where o1 and o, are the first (largest) and last (small-
est) singular values, respectively. The smaller the con-
dition number, the larger the rank of G, the smaller the
null space and the better the condition of the inverse
problem (Barth and Wunsch 1990). Below, we present
anew iterative algorithm for INSAR data discretization
that optimizes the condition of the inverse problem.

2.2 The algorithm

The data discretization algorithm proceeds along the
following steps:

1. Setup a pre-determined model fault geometry.

2. Setup a starting set of uniformly spaced data
points. The size of the starting data set is chosen
such that the inverse problem is slightly overde-
termined.

3. [Iterate over all data points, and for each:

(a) Perform a quad-division and replace that
point with a set of four new data points

(b) Recalculate a new elastic kernel, G.

(c) Compute the SVD of G.

(d) Compute and store the condition number
CN;, with i being the index of the data point
in question.

4. Extract the subset of data points whose condi-
tion number is amongst the lowest 5 %, and
form a new data set by replacing each such data
point by four new data points obtained through a
quad-division.
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Fig. 1 Results of synthetic data discretization. a The pre-
determined fault discretization used in this study. b The condi-
tion number as a function of the number of data points. Results
for the reconditioned and uniformly-spaced grids are shown in
solid and dashed curves, respectively. The three solid symbols
correspond to the three data distribution maps shown in Fig. 2.
¢ The trace of the resolution matrix normalized by the model
size as a function of the number of data points. Values close to a
unity indicate perfectly determined models. Note that an inverse
problem can be poorly conditioned (i.e., large C N) despite the
model being perfectly determined

5. Repeat steps 3 and 4, or quit after verifying that
further increasing the number of data points does
not improve the condition number.

In reality, some of the data are missing due to phase
decorrelation, and it is sensible to weight each entry
in G in proportion to the fraction of valid data points
within the data quad corresponding to that entry.

3 Numerical examples

Results presented here were calculated for a vertical
strike-slip fault striking at an azimuth of 80° with
respect to the satellite orbit and discretized into 100
rectangular dislocations (Okada 1985) as shown in
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Fig. 2 The three data grids used for the error sensitivity
analyses (whose results are summarized in Figs. 3 and 4). a
Reconditioned grid. b A data grid whose spacing is proportional
to the variance of the LOS displacement due to the model fault
slipping uniformly by 0.5 m. ¢ A uniformly spaced data grid.
The number of data points and the value of CN corresponding
to each grid are indicated

Fig. 1a. The starting data set consisted of 20 by 20 uni-
formly spaced data points. The CN as a function of
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the number of data points is shown in Fig. 1b. Increas-
ing the data set from 400 to 2000 data points results
in four orders of magnitude decrease in the condition
number. Beyond that point, however, the condition
number curve becomes nearly flat. In Fig. 2a, we show
a reconditioned data set consisting of about 1800 data
points (corresponding to the solid triangle in Fig. 1b).
Clearly, this data distribution map differs markedly
from what one would obtain through application of the
previously used data downsampling methods (Simons
et al. 2002; Jonsson et al. 2002; Lohman and Simons
2005).

In order to assess the extent to which our algo-
rithm improves the condition of the inverse problem,
we compare the CN of reconditioned data configura-
tions with those of uniformly spaced data sets (dashed
curve in Fig. 1b). We find that the condition num-
bers of the reconditioned data configurations are much
smaller than those of uniformly spaced data of simi-
lar size. For example, the CN of a reconditioned data
configuration consisting of 1831 data points (Fig. 2a)
and a uniformly distributed data set consisting of
1936 data points (Fig. 2c) are equal to 104 and 7623,
respectively. Furthermore, we computed the CN of a
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data grid, whose density increases proportionally to
the gradient of the LOS displacement resulting from
the entire model fault slipping uniformly by 0.5 m
(Fig. 2b), and found that it is by a factor of 7 larger
than that of the reconditioned grid. We thus conclude
that the condition number of reconditioned data grids
is not only much smaller than those of uniformly
spaced data sets with the same dimension, but are also
much smaller than non-uniformly spaced data sets,
with data density that increases toward the fault trace.

The errors in the final model due to random errors
in the data were quantified using a Monte Carlo pro-
cedure. We generated a synthetic LOS displacement
distribution, and used that as our error-free data set.
Next, we generated 1000 perturbed data sets by adding
randomly generated number to each of the error-
free data point. We consider two types of random
errors, a spatially-uncorrelated normally distributed
random number with a zero mean and a spatially-
correlated noise with a zero mean and maximum
absolute amplitude of 1 cm (Fig. 3). In addition, we
consider two slip distributions that may be regarded
as end-members with respect to their slip variabil-
ity. In the first, the synthetic LOS displacement is
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Fig. 4 Sensitivity to spatially uncorrelated random data errors
(standard deviation of 5 mm) of a fault slipping uniformly by
0.5 m. The standard deviation of 1000 slip inversions are shown
for a reconditioned data grid, b a grid whose spacing is pro-
portional to the variance of the LOS displacement, and ¢ a
uniform grid. The number of data points and CN of each grid
are indicated in Fig. 2

due to the entire model fault slipping uniformly by
0.5 m, and in the second the LOS displacement is
due to the model fault slipping randomly between 0
and 1 m. We then used the nonnegative least squares
algorithm of Lawson and Hanson (1974) to invert

Fig. 5 Sensitivity to
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random data errors
(standard deviation of
1 mm) of a fault with 10
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each of the perturbed data set. After obtaining a
suite of 1000 slip models, we computed the average
modeled slip and the standard deviation of the discrep-
ancies between the modeled and the true (i.e., input)
slip on each of the 100 dislocations comprising the
model fault.

The results for the spatially-uncorrelated random
noise are summarized in Figs. 4 and 5, and those
for the spatially-correlated noise are shown in Fig. 6.
Inspection of the standard deviation of the slip dis-
crepancies associated with the three data maps in these
figures reveals a clear reduction in the slip discrep-
ancy with decreasing condition number. Thus, use of
our data discretization scheme successfully reduces
the effect of noise. While the standard deviation of
the slip discrepancies are very sensitive to the choice
of the data discretization, the average modeled slip is
not and is nearly identical to the input slip distribu-
tion (left-hand panels in Fig. 5). We wish to emphasize
that in contrast to the common practice in fault slip
inversions, we did not impose any smoothing on the
solutions. Yet, despite the omission of the smoothing
constraint, we are able to recover similarly well the
input slip distributions of the two tests.

As mentioned previously, minimizing CN reduces
the quasi-null space of the inverse problem, i.e., the
number of very small eigenvalues, and guarantees
that the problem is fully determined (Barth and Wun-
sch 1990). A quantity that measures the number of
linearly independent parameters is the trace of the
resolution matrix, R, given by: tr(R) = tr(GG™8).
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Fig. 6 Sensitivity to spatially correlated random data errors.
The standard deviation of 1000 slip inversions are shown for a
reconditioned data grid and a fault slipping uniformly by 0.5 m,
b a grid whose spacing is proportional to the variance of the
LOS displacement and a fault slipping uniformly by 0.5 m,
¢ a uniform grid and a fault slipping uniformly by 0.5 m, d

The closer this quantity to the model size, the better
the model resolution. In Fig. 1c, we show normalized
tr(R) (i.e., divided by the model size) as a function
of the number of data points. We find that the recon-
ditioned data grids are fully determined for data sets
greater than about 500 data points. This shows that an
inverse problem can be poorly conditioned despite the
model being perfectly determined, and further high-
lights the advantage of the conditioning optimization
over resolution-based optimization algorithms.

4 Summary and conclusions

We described a simple algorithm for dense geode-
tic data discretization for fault slip inversion, whose
objective function is the condition number of the
matrix G in Eq. 1. Minimizing the condition num-
ber is equivalent to minimizing of the null space
of the inverse problem, and has the effect of sta-
bilizing the solution with respect to small changes
in the data.

We showed that the condition number of recondi-
tioned data grids are not only much smaller than those
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grid are indicated in Fig. 2

of uniformly spaced data sets with the same dimension
but are also much smaller than non-uniformly spaced
data sets, with data density that increases towards the
fault trace. We presented the results of Monte Carlo
tests, illustrating the reduction in model errors (due
to noise added to the data space) with decreasing
condition number. We thus conclude that use of the
reconditioning scheme can improve the accuracy and
the reliability of slip models.

Our algorithm takes as an input a pre-determined
fixed model configuration. Rather than fixing the
model configuration and discretizing the data space,
one could fix the distribution of the data points and
parameterize the model space (e.g., Page et al. 2009;
Barnhart and Lohman 2010). It is worth noting that
the approach for optimizing the condition of the slip
inversion described in this study, with only slight mod-
ifications to our algorithm, may also be implemented
for the parameterization of the model space.

In summary, optimizing the condition of inverse
problems is an effective technique for reducing the
effect of noise and analysis errors. Unless the inverse
problem is well-conditioned, slip inversions cannot
reveal the actual fault slip distribution.
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