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The Relation between Ground Acceleration and Earthquake

Source Parameters: Theory and Observations

by Itzhak Lior and Alon Ziv

Abstract A simple relation between the root mean square (rms) of the ground ac-
celeration and earthquake spectral (or source) parameters is introduced:
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in which Ω0 is the low-frequency displacement spectral plateau, f0 is the corner fre-
quency, κ is an attenuation parameter, and T is the data interval. This result uses the
omega-square model for far-field radiation and accounts for site-specific attenuation.
The main advantage of the new relation with respect to that of Hanks (1979) is that it
relaxes the simplifying assumption that the spectral corner frequency is much smaller
than the maximum corner frequency resulting from attenuation, and that the spectrum
may be approximated as being perfectly flat between the two frequencies. The newly
proposed relation is tested using a composite dataset of earthquake records from Ja-
pan, California, Mexico, and Taiwan. Excellent agreement is found between observed
and predicted ground acceleration for any combination of corner frequencies. Thus,
use of the above relation enables the extrapolation of ground-motion prediction equa-
tion inferred from the frequent small-magnitude earthquakes to the rare large magni-
tudes. This capacity is extremely useful near slow-slip plate boundaries, where the
seismic moment release rates are low.

Introduction

Understanding how ground motion depends on earth-
quake source parameters is of interest to both earthquake
seismologists and earthquake engineers. The former can
use this understanding to constrain source parameters
(e.g., Baltay et al., 2013; Lior et al., 2016), and the latter
may incorporate it into ground-motion prediction equa-
tions that are key ingredients in any seismic-hazard assess-
ment (e.g., Boore and Atkinson, 2008; Campbell and
Bozorgnia, 2008; Abrahamson et al., 2014). A commonly
utilized relation between ground acceleration and source
parameters is
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(Hanks, 1979; McGuire and Hanks, 1980), in which
Arms is the ground acceleration root mean square (rms), with
the superscript referring to McGuire and Hanks (1980), Δτ is
the stress drop, f0 is the corner frequency, and fmax is the
frequency above which the acceleration spectrum drops
steeply (Hanks, 1982). As several approximations were made

throughout the derivation of this expression, it is instructive to
revisit this result and assess the extent to which relaxing the
simplifying assumptions underlying its derivation improves
ground acceleration prediction.

In this study, an exact solution for Arms is obtained.
Owing to its complex form, an analytical approximation to
the exact solution is provided. Finally, the performance of the
newly derived Arms prediction is compared with previous re-
sults (Hanks, 1979; McGuire and Hanks, 1980; Hanks and
McGuire, 1981), using a composite dataset of earthquake
records from Japan, California, Mexico, and Taiwan. Next,
for the sake of completeness, the approach leading to equa-
tion (1) is described, and the various approximations and
simplifying assumptions that enter its derivation are stated.

The Simplifying Assumptions Underlying AMH
rms

The point of departure in the derivation of equation (1) is
Brune’s earthquake source model (Brune, 1970), according
to which the far-field spectral amplitude of the ground
acceleration reads as
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in which f is the frequency, f0 is the corner frequency, and
Ω0 is the spectral plateau of the low-frequency displacement
spectrum. The two spectral parameters Ω0 and f0 hold
fundamental information regarding the physical attributes
of the earthquake source. The former is a function of the seis-
mic moment and the hypocentral distance according to
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with Uφθ being the radiation pattern, Fs being a free-surface
correction factor, CS being the S-wave velocity, R being the
hypocentral distance, and ρ being the density. The corner
frequency is related to the stress drop and the seismic
moment as
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with k being a constant. From equation (2), the acceleration
spectral amplitude increases as f2 at frequencies below the
corner frequency and approaches asymptotically to
"2πf0#2Ω0 above it (Fig. 1). In practice, however, the accel-
eration spectral plateau is attenuated due to anelastic and
near-site effects (dotted line in Fig. 1), and is truncated by
the Nyquist frequency. While for local earthquakes, the effect
of the distance-dependent anelastic attenuation is usually mi-
nor (Wu et al., 2005; Wu and Zhao, 2006; Lior et al., 2016),
that of the near-site attenuation is not. The spectral amplitude
subject to site-specific attenuation may be expressed as
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in which κ is a site-specific attenuation parameter (Anderson
and Hough, 1984). This attenuation introduces an additional
corner frequency that is hereafter referred to as fκ:
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(Hanks, 1979). The rms of the ground-motion acceleration
may be obtained by inserting the ground acceleration spec-
trum !Ω"f # into Parseval’s theorem:
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with T being the data interval. From this point onward,
Hanks (1979) and McGuire and Hanks (1980) disregarded
the possibility that f0 could be larger than fκ. By setting
fκ to be equal to fmax, and approximating the acceleration
spectrum as being equal to "2πf0#2Ω0 between f0 and
fmax (thick black line in Fig. 1), they obtained
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in which MH1 stands for McGuire and Hanks’ first set of
approximations. For most moderate-to-large earthquakes,
it is expected that fmax will be much larger than f0, in which
case the above expression may be further simplified as
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in which MH2 signifies McGuire and Hanks’ additional
approximation, namely fmax ≫ f0. Further setting the data
interval to be equal to the rupture duration, 1=f0, and sub-
stituting equations (3) and (4) into equation (9) leads to
equation (1).

In summary, equation (1) is model based (Brune, 1970),
and rests on two simplifying assumptions: (1) fmax ≫ f0,
and (2) the spectrum may be approximated as being equal
to "2πf0#2Ω0 between f0 and fmax. Hanks and McGuire
(1981) further assumed that the peak ground acceleration
(PGA) occurs within 1=f0 from the time of the first S-wave
arrival, and related Arms to PGA.

Exact Solution and Analytical Approximation
for Arms

The exact solution for Arms is obtained via insertion of
!Ω"f # (equation 5) into equation (7) as follows:
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The solution of the above integral is

Frequency

Hanks’ approximation

Figure 1. Schematic diagram illustrating the effect of near-site
attenuation on the acceleration spectra. The omega-square model
and the near-site attenuation are indicated by solid and dashed gray
lines, respectively, and the acceleration spectrum subject to near-site
attenuation is indicated by a dotted line. The horizontal thick black line
between f0 and fκ represents Hanks’ approximation (Hanks, 1979).
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(corrected equation A3 of Luco, 1985), with α0 ! πκf0 !
f0=fκ, and Ci and Si being the cosine integral function and
the sine integral function, respectively. For α0 → 0, the sit-
uation considered in Hanks (1979), the rms of the ground ac-
celeration is asymptotic to "2π#2Ω0α20="
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p
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for α0 → ∞, the ground acceleration intensity is independent
of f0 and is asymptotic to "2π#2Ω0
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the complex form of the above result, it is sensible to seek a
simpler expression. An analytical approximation that satisfies
the two asymptotic solutions is
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or equivalently
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with the ∼exact signifying analytically approximated exact
solution. Inspection of normalized Arms as a function of α0
(Fig. 2) reveals an excellent agreement between the exact
and the analytically approximated solution when f0 is much
larger than or much smaller than fκ, and a maximum misfit of
6.5% when f0 ∼ fκ. The agreement between the exact solu-
tion and the two approximate solutions, MH1 (equation 8) and
MH2 (equation 9), is excellent when f0 ≪ fκ (i.e., α0 → 0),
and that with MH1 is still quite good when f0 ∼ fκ. Beyond
their range of validity, in which f0 ≥ fκ (i.e., α0 > 1), MH2
diverges rapidly from the exact solution, and MH1 becomes
imaginary.

Finally, substituting equations (3) and (4) into (12b)
yields an equivalent expression for A∼exact

rms in terms of the seis-
mic moment, the stress drop, and the hypocentral distance as
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next section, the goodness of the A∼exact

rms prediction is com-
pared with that of AMH1

rms and AMH2
rms using a composite dataset

of earthquake records.

Data and Analysis

The Composite Catalog

The dataset used in this study (Fig. 3) consists of 6311
three-component seismograms, with signal-to-noise ratio
that is greater than 20 and whose hypocentral distances

are less than 60 km. It includes 3042 velocity seismograms
and 286 accelerograms recorded by the California Integrated
Seismic Network, 2917 accelerograms recorded by Japan’s
K-NET and KiK-net surface accelerometers, and 66 accel-
erograms from the Pacific Earthquake Engineering Re-
search–Next Generation Attenuation of Ground Motions
(PEER NGA) database (Ancheta et al., 2014). These data
are associated with 542 southern California earthquakes
whose magnitude is between 3 and 6, 196 Japan earthquakes
whose magnitude is between 4 and 7.3, the 1999 Mw 7.6
Chi-Chi earthquake, and the 2010 Mw 7.2 El Mayor–
Cucapah earthquake. P-phase arrivals were picked manually,
zero-offset corrections were applied, and acceleration
time series were high-pass filtered at 0.02 Hz. The rms
of the ground acceleration Arms is calculated according
to
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, in which AZ, AE, and
AN are the acceleration amplitudes along the vertical, east,
and north directions, respectively, and n is the number of
samples within the data interval. The start and end times
of the data intervals were determined with the objective of
including the direct S waves that are emitted from the source,
while excluding, as much as possible, the weaker coda waves
that follow. With this in mind, the start time of the data in-
terval is set to be equal to the first S-wave arrival Tstart !
TP $ R=8, with TP being the time of the first P-phase arrival
and R being the hypocentral distance (in kilometers, derived
from the earthquake catalog); the duration of the data interval
is set to be equal to the sum of the S-wave travel time and the
rupture duration Tend − Tstart ! R=CS $ 1=f0, with CS
being an average S-wave velocity of 3:2 km=s, and the corner
frequency is estimated from equation (4) using a stress drop
of 1 MPa (later, the corner frequency will be obtained
through spectral inversion). Thus, the data interval of small
earthquakes (i.e., short rupture durations) ends approxi-
mately when the elapsed time since the earthquake origin
time is twice the S-wave travel time, which according to
coda-wave studies marks the onset of coda waves (Rautian
and Khalturin, 1978; Herraiz and Espinosa, 1987). The ad-
dition of the distance-dependent term R=CS to the data in-
terval accounts for the increase of the wave-packet spread
with distance from the earthquake source (Boore and
Thompson, 2014).

Modeling κ, f0, and Ω0

The spectral parameters κ, f0, and Ω0 are obtained in
two steps. First, κ is modeled by fitting the high-frequency
portion of the acceleration spectra to
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with A"f # being the spectral amplitudes, and a and κ being
the fitting parameters (Anderson and Hough, 1984). The fit
to the above function is done for frequencies between 10 and
25 Hz (Oth et al., 2011). The distribution of individual re-
cords and station-average κ are shown in Figure 4a. Average
κ for California and Japan are similar and equal to 0.04 s.
This κ distribution is similar to previously reported distribu-
tions from California, Japan, and Taiwan (Oth et al., 2011;
Van Houtte et al., 2011).

After having determined κ, the remaining spectral
parameters f0 and Ω0 are determined via grid-search ap-
proach, with the objective function being the absolute dif-
ference between the logarithm of the observed spectra and
the logarithm of the attenuated Brune’s predicted spectra
(equation 5), with κ set to be equal to the individual record
value obtained in the previous step. This approach is equiv-
alent to solving f0 and Ω0 using equation (2) and the
κ-corrected spectra. Furthermore, because here κ is deter-
mined per seismogram, it embodies both site and path ef-
fects (Anderson and Hough, 1984). The above analysis
indicates that the f0 to fκ ratio of most of the Mw <5 and
about 50% of the 5 ≤ Mw < 6:5 are inconsistent with the
MH2 approximation (Fig. 4b).

Comparison between Observed and Predicted Arms

The performances of A∼exact
rms and AMH2

rms predictions are
compared in Figure 5. Similar comparison with Aexact

rms is not
shown, because it is not visually distinguishable from A∼exact

rms .
A comparison with AMH1

rms is not shown either, because this
expression is mathematically restricted to f0 < fκ, and thus
cannot be directly compared with the others. The standard de-
viations of the discrepancies between observed and predicted
Arms (reported at the top panels of Fig. 5) indicate that A∼exact

rms

exhibits smaller discrepancies than AMH2
rms . Inspection of these

discrepancies as a function of α0 reveals similarly good agree-
ment between observed and predicted Arms for the two predic-
tions when f0 ≪ fκ. Not surprisingly, the discrepancy
between the observed and the MH2-predicted Arms is α0 de-
pendent, and the prediction ofAMH2

rms becomes less reliablewith
increasing α0 beyond ∼0:1. In contrast, the discrepancy be-
tween the observed and the ∼exact-predicted Arms remains
fairly small when the small corner-frequency condition is not
met. Thus, the robustness of A∼exact

rms for ground-motion predic-
tion for all α0 values is established. It must be emphasized that
the MH solutions were never intended to apply for f0 > fκ,
and the observed behavior is as expected.

PGA–Arms Relation

The PGA is a key parameter in earthquake-hazard analy-
ses, design of building codes, algorithms for earthquake early
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Figure 3. Waveform distribution according to magnitude and
hypocentral distances derived from the earthquake catalogs. Red
triangles indicate seismograms recorded by the California Inte-
grated Seismic Network, green circles indicate accelerograms re-
corded by the K-NET and KiK-net surface accelerometers, and
blue squares indicate accelerograms from the Pacific Earthquake
Engineering Research–Next Generation Attenuation of Ground
Motions (PEER NGA) database associated with two earthquakes
from Taiwan and Mexico.
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Figure 2. Comparison between Aexact
rms and the three approximate

solutions A∼exact
rms , AMH1

rms , and AMH2
rms (Arms is the ground acceleration

root mean square [rms], MH1 is the McGuire and Hanks (1980) first
set of approximations, and MH2 signifies McGuire and Hanks’ ad-
ditional approximation). (a) The logarithm of normalized Arms,
hArmsi ! Arms

!!!!
T

p
"πκ#2:5=""2π#2Ω0#, as a function of the logarithm

of α0. (b) Discrepancy between the logarithm of Aexact
rms and A∼exact

rms ,
AMH1
rms , and AMH2

rms , as a function of the logarithm of α0.
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Figure 4. Histograms showing the distribution of κ and α0. (a) The distributions of record-specific and station-average κ values are
indicated in light and dark gray, respectively. (b) The distribution of α0 according to magnitude bins. The area left of the vertical dashed
line indicates the region where the f0 ≪ fκ approximation is valid.
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Figure 5. Observed versus predicted Arms. (a) The logarithm of observed Arms as a function of the logarithms of A∼exact
rms . (b) The logarithm

of observed Arms as a function of the logarithms of AMH2
rms . (c) log"Arms# − log"A∼exact

rms # as functions of α0. (d) log"Arms# − log"AMH2
rms # as

functions of α0.
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warning, and more. Thus, it is instructive to establish a re-
lation between PGA and Arms. Hanks and McGuire (1981)
obtained the following equation:
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The above relation has been validated against large datasets
(e.g., Baltay et al., 2013), including the data used in this
study (not shown). Yet, because it is mathematically re-
stricted to f0 < 2fmax, it is useful to establish a PGA–Arms
relation that is assumption free. The log–log diagram of PGA
as a function of Arms is shown in Figure 6, with the former
calculated according to max"
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gression analysis yields the following scaling:
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The above empirical relation may be combined with equa-
tion (13) to get a ground-motion prediction equation for PGA.

Summary

A simple relation between Arms and source (or spectral)
parameters is introduced that is based on Brune’s omega-
square model for far-field radiation (Brune, 1970). The main
advantage of the new relation with respect to the commonly
utilized AMH

rms relation (Hanks, 1979; McGuire and Hanks,
1980) is that it relaxes the simplifying assumption fmax ≫ f0
and the assumption that the spectrum may be approximated as
being perfectly flat between f0 and fmax.

The prediction of the newly derived relation is compared
with that of AMH

rms using a composite dataset of earthquake
records from Japan, California, Mexico, and Taiwan. The
spectral parameters κ, f0, and Ω0 are obtained in two steps
via spectral inversion. On average, the values of κ for Cal-
ifornia and Japan are similar and are close to 0.04 s (Fig. 4a).
The ratio between f0 and fκ of most Mw <5 and half of the
5 ≤ Mw < 6:5 are inconsistent with the MH2 approximation
(Fig. 4b). Thus, use of A∼exact

rms , whose prediction is nearly
independent of α0, is advantageous.

In summary, the availability of a single formulation that
is valid for any value of α0 provides a powerful tool for
ground-motion prediction, as it enables the extrapolation of
GMPE inferred from the frequent small-magnitude earth-
quakes to the rare large magnitudes. This capacity is extremely
important near slow-slip plate boundaries, where the seismic
moment release rates are low.
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www.kyoshin.bosai.go.jp/, last accessed January 2016), and
from the Pacific Earthquake Engineering Research (PEER)
Ground Motion Database (http://ngawest2.berkeley.edu/site/,
last accessed January 2016).
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