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tors involved in the cellular response to double-strand break (DSB) DNA damage have been
fied as potential therapeutic targets that would greatly sensitize cancer cells to radiotherapy
enotoxic chemotherapy. These targets could disable the repair machinery and/or reinstate normal
cle checkpoint leading to growth arrest, senescence, and apoptosis. It is now clear that a major
of the DNA damage response occurs through specific interactions with chromatin structure

ts modulation. It implicates highly dynamic posttranslational modifications of histones that
itical for DNA damage recognition and/or signaling, repair of the lesion, and release of cell-cycle
Therefore, drugs that target the enzymes responsible for these modifications, or the protein
les reading them, have very high therapeutic potential. This review presents the current state
modu

of knowledge on the different chromatin modifications and their roles in each step of eukaryotic
DSB DNA damage response. Clin Cancer Res; 16(18); 4543–52. ©2010 AACR.
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rder to preserve its genomic integrity, the eukaryotic
eeds to be protected against agents that cause DNA
ge. Indeed, cellular DNA is continuously exposed
genous (such as chemicals, UV radiation, ionizing
ion) as well as endogenous (reactive oxygen species,
ting agents such as S-adenosylmethionine, etc.)
s known to induce various DNA lesions (1). To
eract these injuries, the cell has developed highly
rved DNA damage responses (DDR) that activate dif-
repair pathways specifically adapted to the type of
ge. These include: (i) base-excision repair; (ii)
tide-excision repair; (iii) mismatch repair; and (iv)
e-strand break repair (DSB), which is the most dele-
s form of DNA damage because it can lead to loss of
c material (2). DSBs are mainly repaired by homol-
recombination (HR) and nonhomologous end-
g (NHEJ). HR uses the undamaged homologous
osome or sister chromatid as a template to copy
issing information at the break. In contrast, NHEJ
ts of the direct ligation of the two broken ends,
can produce short deletions.
c cells, DNA damage repair occurs in the
matin. The chromatin is a DNA protein
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ure that exists as a repetition of the basic unit called
cleosome. A nucleosome is formed by an octamer
tones, containing two copies of each H2A, H2B,
nd H4, wrapped with 146 bp of DNA. The chroma-
a dynamic structure that regulates DNA accessibility
g essential nuclear events, such as replication, tran-
on, recombination, and DNA damage repair. Mod-
n of chromatin compaction can be regulated by
nt processes: introduction of histone variants into
ucleosome, which confers different biophysical fea-
posttranslational histone modifications mainly oc-
g on histone tails protruding from the nucleosome;
ependent chromatin-remodeling complexes that
the ability to disrupt, evict, or slide the entire nu-
me on the chromatin fiber; and histone chaper-
which assist in nucleosome assembly and/or
embly (3).
r DNA damage induction, the chromatin needs to
an “open” state in order to allow the repair factors
ess the DNA molecule. This DDR process requires
ple steps, including the initial signaling of the break,
cess to the DNA for efficient repair, and the resto-
of the chromatin to its initial state. In this review,
scribe these steps of DDR involved in DSB repair.
that target the chromatin modifiers' or readers' im-

ed DNA-damage response have very high therapeu-
tential (see refs. 4–6 and accompanying Focus
s; refs. 7–10).

gnition and Signaling of DNA Damage:
Role of γ-H2AX
en DNA damage occurs in the cell, the priority is to
it and to signal it for repair. Even though these
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sses have been intensively studied, it is still not
which factor arrives first at the break to recognize
induce the DDR. Among all chromatin modifica-

linked to DSB damage response (Table 1), it is clear
hosphorylation of the H2A variant H2AX occurs
a few minutes following the break, and is proba-

e first histone modification appearing in its vicinity
wed in refs. 8, 11). This phosphorylation occurs in
ue conserved SQE motif in the C-terminal tail [at
129 (S129) of yeast H2A or S139 of the H2AX hu-
ariant, so-called γ-H2AX; refs. 12, 13]. The kinases
sible for this modification have been identified as
hatidylinositol 3-kinase–related kinases (PIKK): the
-telangiectasia mutated (ATM), ATM- and Rad3-
d (ATR), and the DNA-dependent protein kinase
-PK). ATM and DNA-PK principally function after
ng radiation, whereas ATR responds to replication
and UV irradiation (14–16). In human cells, γ-
spreads over more than 1 Mb on each side of

eak (50 kb in yeast; refs. 13, 17–20), thus amplify-
e repair signal, which makes it easily detectable by
nofluorescence and commonly used as a biomarker
A-damage nuclear foci (for review, see ref. 21).
ver, mice deficient for γ-H2AX are radiosensitive
how chromosomal aberrations, strengthening the
l role of γ-H2AX in DDR (22).
still poorly understood which DSB sensor induces
kinase recruitment. Different models have been pro-
to explain ATM relocalization and activation at the
. First, it has been suggested that conformational
es of the DNA activate ATM at the DSB. Another the-

ggests that ATM activation is dependent on initial
damage detection by the Mre11, Rad50, Nbs1

the b
For e

le modific damage

s Histon Type o

ignaling H2AX Phosp
H2A/H Ubiqui
H4 K2 Methy
H3 K7 Methy
H2AX Depho
H4 K9 Mono-
H2AZ Sumoy

pe H4/H2 Acetyl
H3 K9 Acetyl

estoring H2AX Depho
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H4 S1 Phosp
H2B S Phosp
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H3 K1 Acetyl

H2A K119 Mono-ubiq

ancer Res; 16(18) September 15, 2010
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) repair complex (Fig. 1; ref. 23). In addition, it
een shown that inactivation of human histone acet-
sferases (HAT) of H3 and H4, such as hMOF or
, suppresses ATM activation (24–26). Surprisingly,
been found that γ-H2AX foci do not form with
me dynamic on different chromatin regions after
damage, but form more efficiently in euchromatin
8). This phenomenon can be either due to fewer
being generated in heterochromatin, or to the fact
eterochromatin features inhibit the large spreading
air marks near DSBs. In addition, Iacovoni and col-
es showed that γ-H2AX spreads in a bidirectional,
t necessarily symmetrical, manner, being influenced
transcription state of the gene present on the DNA
nding the DSB (29). Another group showed differ-
ynamics and factors regulating γ-H2AX domains
al or distal to the break (30). Finally, the Durocher
obert groups have also used γ-H2AX to map the
e-wide fragile sites in high resolution (31).

lowing H2AX phosphorylation, DDR and repair fac-
ccumulate at the break. Indeed, repair factors and
point proteins (MRN, MDC1, BRCA1, 53BP1,
3/RNF8, RNF168) and chromatin-remodeling com-
(INO80, SWR1, TIP60-p400) will form foci that

alize with γ-H2AX (Fig. 1; refs. 22, 32–34). The
horylation of H2AX itself has been shown to not
chromatin organization, but rather has a role in
calization of repair factors at the break (35). Al-
h the presence of γ-H2AX is not required for the
recruitment of signaling and repair factors (33),
ssential for their accumulation and retention at

reak, and amplification of the signal (22, 32, 36).
xample, MDC1 directly binds to γ-H2AX via its
1. Histone
 ations influencing DNA
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domain, and plays a critical role in the accumula-
f Nbs1 (subunit of MRN), 53BP1, and ATM (Fig. 1;
7–39). As a consequence, Savic and colleagues have
ly proposed a MDC1- and ATM-dependent γ-H2AX
inforcing mechanism that promotes a continued lo-
AX phosphorylation (30). The very large domains
2AX surrounding DSBs are also thought to be
g platforms for cohesins that allow chromosome
ty and keep DNA ends in close proximity for the
process (19).
2AX is the best-characterized DNA damage–induced
ication, but it has been more recently shown that
itination also occurs rapidly at the break in response
A damage. In fact, γ-H2AX mediates the recruitment
UBC13/RNF8 ubiquitin ligase complex, in an
-dependent manner (40–42), resulting in the poly-
itination of γ-H2AX and H2A at the DSB, and this is
inated with other ubiquitin and sumo ligases (Table 1;
4, 43). It has also been shown that RNF8-dependent
biquitination is implicated in the recruitment of

1 and BRCA1-Abraxas-RAP80 complex via direct
g of RAP80 with poly-UbH2AX (Fig. 2; refs. 44–46).
dition, specific mono-ubiquitination of H2A has

ome, resulting in the exposition of H4K20me and H3K79me, recognized
reported at damage sites and can participate in local
atin remodeling (47).

(53).
durin

acrjournals.org
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thylation of histones H3K79 and H4K20 has been
to be important in the DSB repair pathway. Even

e marks are not induced by DDR but are constitutive-
sent on chromatin, evidence shows that H4K20me
3K79me help in the recruitment of repair factors at
SB. In fission yeast, H4K20me allows the recruitment
b2 (fission yeast homolog of 53BP1) through its
r domain (48), and Crb2 can also bind γ-H2AX
gh its BRCT domain (49). Mammalian 53BP1 can di-
bind H4K20me2 (50), and this binding may work in
nction with its BRCT domain–dependent binding to
AX (Figs. 1 and 2). Furthermore, H4K91 mono-
itination by hBBAP plays a role in association with
0me in 53BP1 recruitment during DDR (51). In bud-
east, methylation of H3K79, catalyzed by yDot1 and
oted by H2BK123Ub, has been implicated in DNA re-
oth H3K79me and H2AS129ph are required for the
tment of yRad9 (h53BP1) to chromatin, through di-
cognition of histone marks by its Tudor and BRCT
ins, allowing Rad53/Chk2-dependent checkpoint ac-
n (52–55). It has been suggested that yRad9 is then
horylated by ATM, oligomerizes, and forms a plat-
for DDR proteins resulting in checkpoint activation

checkpoint protein 53BP1.
Model of histone modifications and chromatin remodeling during DNA DSB repair, step 1: Recognition and signaling of a DSB. γ-H2AX plays a
in DNA damage signaling, acting as a platform of assembly for the repair factors as well as for checkpoint proteins. Immediately following
arition of a DSB, the MRN complex binds DNA ends and participates in ATM kinase recruitment. ATM then rapidly phosphorylates the H2AX
variant at the site of the break. Phospho-H2AX, also called γ-H2AX, allows the binding, retention, and accumulation at the break of the complexes
d in the DDR. The simultaneous presence of the RSC remodeling complex at the break may facilitate the access of the recruited repair factors.
the mediator protein MDC1 is recruited to the DSB and binds γ-H2AX, where it promotes further ATM and MRN accumulation. As a consequence,
bidirectionally spreads out from the DSB (approximately 2 Mb), thus increasing the accumulation of repair factors. MDC1 also recruits RNF8/UBC13
n ligase, which ubiquitinates H2A and H2AX, which, in turn, is recognized by RNF168-UBC13 H2AX-ubiquitin–ligase complex, resulting in the
ation of γ-H2AX polyubiquitination near the DSB. In parallel, γ-H2AX also permits TIP60 HAT recruitment at the break, followed by the acetylation of
The specific role of these constitutive methyl marks
g DNA repair could be explained by the fact that

Clin Cancer Res; 16(18) September 15, 2010 4545
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amagemay inducechromatin conformationchanges,
g to the exposition of K20me and K79me, which
act like docking sites for the recruitment of signal
ers, such as the checkpoint protein 53BP1; however,
data cast doubts on such a model (52).
re recently, Xiao and colleagues identified that WSTF
ne (Y) kinase constitutively phosphorylates H2AX on
and this phosphorylation is critical for the DDR
They show that H2AX Y142ph decreases when γ-
is induced. They propose that dephosphorylation
AX Y142 could enhance MDC1 and ATM recruit-
to extend and maintain γ-H2AX after DSB forma-
At the same time, EYA1 was shown to be the
hatase targeting H2AX Y142ph, influencing apopto-

omplex accumulates at the break through direct interaction of its RAP80
repair complex recruitment to γ-H2AX in response to TIP60
of yE
ySWR
ties sh
Indee
ylate
like h
damage (57).

Repair Factors Access to DNA: Chromatin
s to Be Remodeled at the Break
achieve accurate DNA damage repair, the chromatin
to be opened in order to facilitate access for the re-

unmo
mode

ancer Res; 16(18) September 15, 2010

American Association Copyright © 2010 
clincancerres.aacrjournaDownloaded from 
actors at the site of the DNA lesion. Histone modi-
and ATP-dependent chromatin remodelers are
ted at the break to modulate the chromatin architec-
he destabilization of the nucleosome is thought to
e acetylation of histones through the action of HATs
as hTip60/yNuA4 (reviewed in ref. 58). Human
and yeast NuA4 HAT, as well as the INO80 and
Swi2-family ATP-dependent remodelers, are re-

d to the DSB (Fig. 2), and they can directly interact
γ-H2AX through their common yArp4 subunit
malian BAF53; refs. 17, 59–61). hTip60/yNuA4 is
f the first modifiers appearing at the break, where
ylates H4 and H2A and promotes the relaxation of
romatin at the DSB (17, 62, 63). The mammalian
complex comprises both Tip60 HAT homologous
sa1 in NuA4 and p400/Domino homologous of
1 (64). This overlap of HAT and remodeling activi-
ow that they probably act together on chromatin.
d, a study in Drosophila showed that TIP60 can acet-
DNA damage–induced phosphoH2Av (a γ-H2AX–
istone variant), mediating the exchange with an

t with poly-UbH2A(X).
Model of histone modifications and chromatin remodeling during DNA DSB repair, step 2: Opening of chromatin to repair the break. Once the DSB
n recognized and signaled, it is time to repair the break. Histones need to be removed from chromatin in the vicinity of the break to allow
to the DNA to the repair factors. Chromatin remodelers are then recruited to the DSB. TIP60 complex recruited at the DSB comprises HAT activity,
as histone exchange ability. Following acetylation-dependent nucleosome destabilization, TIP60 complex can remove H2A(X)-H2B histone
from chromatin at the break. INO80 is also recruited at the break, where it helps to remove histones close to the DSB. The SWI/SNF/RSC/BRG-1
ling complex is also present at the break, where it can associate with γ-H2AX and promote histone eviction or exchange. Such histone eviction
ssociation of the ssDNA-binding protein RPA with resected DNA and subsequent recruitment of repair factors such as Rad51. Moreover, BRCA1-A
dified H2Av at the DSB (65). However, whether this
l applies to other species is currently unclear, even
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h two studies showed persistence of γ-H2AX in
alian cells depleted of Tip60 activity (66, 67).
is known to remodel chromatin through its ability
orporate the H2A variant H2AZ at promoters and
omeric regions (68–70). Evidence from yeast mod-
gests that SWR1 may play a role in H2AZ deposition
hromatin surrounding DSB in absence of INO80
In addition, Altaf and colleagues have recently
ed that H2A and H4 acetylation by yNuA4 directly
lates SWR1-dependent incorporation of H2AZ-
ining H2A-H2B dimers into the nucleosome (72).
ver, the model of SWR1-dependent H2AZ incorpora-
t DSBs has been debated by Van Hattikum and
gues, whose studies have shown that there is no
ulation of H2AZ at the DSB during repair (60). Nev-
ess, Kalocsay and colleagues have recently shown
2AZ is transiently deposited close to the break,

ts sumoylation, in combination with Rad51 DNA
g, participates in the relocalization of a persistent
o the nuclear periphery (73). Thus, further studies
to investigate the function of SWR1 during DSB re-
nd whether Tip60/NuA4-dependent acetylation of
and H4 may be required for γ-H2AX exchange at
eak. One report suggests that Tip60-dependent acet-
n and removal of H2AX functions through stimula-
f the histone ubiquitination by UBC13 (67).
O80 complex is rapidly recruited close to the DSB by
rect interaction of its Arp4 and/or Nhp10 subunits
-H2AX and influenced by NuA4-dependent acetyla-
17, 59, 61). INO80 has been reported to mediate re-
l of core histones, containing or not containing
and H2AX, from the region surrounding the DSB
). This nucleosome remodeling then allows resec-
f DNA at the DSB (60, 74). Furthermore, studies
lso shown that yINO80 is required for maintaining
level of γ-H2AX during DNA repair (71).
ther chromatin remodeler, RSC (member of the
NF family), is present at the break before INO80
WR1. In opposition to INO80 and SWR1, its pres-
t the break is not γ-H2AX–dependent, and it was
to interact with MRN (Fig. 1; refs. 75, 76). RSC

en shown to be required for yeast Tel1/Mec1 kinases
ologs of mammalian ATM/ATR) and yRad9 recruit-
at the break (77), suggesting that RSC is an early sen-
the DSB (66). However, it is not clear whether RSC
N appears first at the break, their recruitment being
dent on each other (76, 78). Furthermore, it has
proposed that in mammalian cells, chromatin de-
nsation in the vicinity of DSB is dependent on
ependent chromatin remodelers, but not on phos-
lation of H2AX, suggesting a very early function in
epair (79). In fact, mammalian SWI/SNF remodeler
ical for efficient induction of γ-H2AX (80), because
tion of its catalytic core subunits, BRG1 and Brm,
romises phosphorylation of H2AX and γ-H2AX foci
tion. More recently, Lee and colleagues have shown

WI/SNF binds to γ-H2AX–containing nucleosomes
interaction between its bromodomain-containing

dynam
pendi

acrjournals.org
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subunit with GCN5-dependent acetylated H3, and
inding is important for DSB repair (81).
ether, data from the literature indicate that specific
inations of chromatin marks and ATP-dependent
nd healing of the DNA lesion.

ling the End of Repair: Restoration of
matin to Its Initial State

dulation of chromatin architecture that is mediated
romatin modifiers and remodelers is an essential
ss for DNA damage repair. First, it allows repair fac-
ccess to the damaged DNA (as discussed above), and
lso an important mechanism for switching off the
damage signal. Thus, after repair has been complet-
e cell clears the marks associated with the DNA dam-
nal and restores chromatin organization to its initial
These processes are essential to recover from the
point arrest and reenter the cell cycle.
rder to signal to the cell that the repair process is
ed, γ-H2AX is eliminated from chromatin surround-
e repaired DSB, by either eviction or dephosphory-
(Fig. 3). It has been speculated that the presence of
at the break may allow γ-H2AX removal from chro-
surrounding the DSB (82). Some data suggest that

80 and ySWR1 function antagonistically at the DSB;
80 maintaining the high level of γ-H2AX, and
1 replacing it with the H2AZ variant (71). Another
e mechanism to get rid of γ-H2AX would be its de-
horylation (Fig. 3). The HTP-C complex, containing
h3 phosphatase catalytic subunit, has been identi-
yeast as the γ-H2AX phosphatase, whereas the hu-
hosphatase function is attributed to both PP2A and
(83–86). These reports suggest that yPph3 and

C (human Pph3 ortholog) have a function in the
point termination. Interestingly, yPph3 is thought
hosphorylate γ-H2AX after its removal from chro-
, whereas hPP4C-dependent dephosphorylation
to take place in the chromatin. It still remains to

termined if hPP2A dephosphorylates γ-H2AX direct-
chromatin or displaced γ-H2AX. Very recently, other
hatases have been characterized: hPP6 and hWip1
8). hPP6 has been shown to contribute to γ-H2AX
sphorylation and subsequent checkpoint release
hWip1, whose expression is induced after DNA dam-
an bind to chromatin, colocalizes with γ-H2AX foci,
gulates γ-H2AX dephosphorylation during recovery
It is interesting to notice that yeast γ-H2AX spreads
er 50 kb surrounding the DSB, but is less abundant
se as 1 or 2 kb from the DSB, where INO80 and
are most present (17, 20). It is then logical to spec-
that γ-H2AX is evicted from chromatin proximal to
whereas it is dephosphorylated in the chromatin far-
way. This model is supported by two different

ics of γ-H2AX accumulation and/or removal, de-

ng on the position relative to the break (30).
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e described above, the relaxation of chromatin for
nt repair involves HAT activities at the DSB, where
duce an increase of acetylation. Several histone dea-

ses (HDAC) have thus been implicated in the DDR,
ainly once repair has been completed (Fig. 3; refs.
). In opposition to HAT inducing chromatin “open-
DAC may have a role in chromatin restoration. In

Sin3/Rpd3, Sir2, and Hst1 HDAC have been shown
litate DNA repair (89–91). In addition, mammalian
has been linked to DNA damage repair, but its ex-

le is still unknown (92).
east, the Sin3/Rpd3 HDAC complex interacts with
sein kinase [casein kinase 2 (CK2)] responsible for
phosphorylation, and this modification has been
n to increase at the break at the end of repair
3; refs. 91, 93). Interestingly, the phosphorylation
S1 inhibits acetylation of the adjacent lysine residues
A4, suggesting that H4S1ph appears at the break af-
air completion to prevent new acetylation and to
ze the nucleosome.
mammalian cells, histone H2B has also been re-

d to be phosphorylated on S14 following DNA
ge (94). H2BS14ph appears at late time points

Gcn5
acetyl

ted by HDACs. ySin3/Rpd3 HDAC associates with CK2, which is responsible for
by blocking reacetylation.

ancer Res; 16(18) September 15, 2010
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ccumulates in repair foci in a γ-H2AX–dependent
er. Phosphorylation of H2BS14 by hMst1 kinase
role in apoptotic-dependent chromatin compac-
so we can propose that an increased level of
14ph at the site of repaired DNA may contribute
omatin stabilization after restoration.
logical to predict that histone chaperones, such as
atin Assembly Factor 1 (CAF1), Asf1, or FACT, are
ed and required for chromatin remodeling. Indeed,
re recruited to the site of DNA damage, where they
te nucleosome disassembly and reassembly (re-
d in ref. 95). To date, no evidence shows that chaper-
lay an active role in chromatin disassembly during
repair, whereas they are clearly implicated in nucle-
e reassembly. In yeast and human, the CAF1 chaper-
recruited to UV-damaged sites and DSBs, and with
lp of Asf1, deposits H3-H4 onto the DNA (Fig. 3;
6–99). CAF1 is also required for hRing1b-dependent
119 mono-ubiquitination, a mark involved in chro-
restoration after UV-induced damages (100). Asf1
ation with yeast Rtt109 and human CBP/p300 or

HAT is essential for H3K56 acetylation, and, in yeast,
ation of H3K56 is required for effective DDR (Fig. 3;
Model of histone modifications and chromatin remodeling during DNA DSB repair, step 3: Chromatin restoration after DNA break repair. When
f the DSB is completed, the chromatin needs to be restored, and the repair-specific histone marks need to be removed in order to release
actors and cell-cycle checkpoints. Thus, γ-H2AX has to disappear from the repaired site. Phosphatases such as PP2A and PP4C dephosphorylate
and allow release of checkpoint factors like 53BP1. In order to restore chromatin, new histones are deposited onto the DNA. Histone chaperones
FACT and CAF1 have been implicated in this process. Moreover, H3-H4 histones deposited by CAF1 are first acetylated by Hat1, and then by
00/Rtt109-Asf1, as marks of new synthesized histones. This incorporation of new histones is though to occur at the site of the repaired DNA. More
the site, repair marks are removed from nucleosomal histones in the chromatin context. Acetyl marks associated with chromatin “opening” are
subsequent phosphorylation of H4S1, reinforcing nucleosome
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01–108). It has been suggested that Asf1 and CAF1
on would be mainly required for checkpoint recov-
d chromatin restoration after repair, and that
6ac would signal the completion on chromatin reas-
y (109, 110), followed by its deacetylation by Hst2/
irtuins (111, 112).
ddition to H3K56ac, H3K14/K23 acetylation and
transferase yHat1 are also linked to chromatin resto-
. In fact, epistasis analysis has determined that yHat1
nces DSB-repair chromatin reassembly through an
ction with Asf1 but not CAF1 (Fig. 3; ref. 113). Fur-
ore, Hat1 has been reported to acetylate free H4 on
d K12, and H4K5/K12ac would also play a role dur-
NA damage recovery (114, 115). Finally, whereas
e H4 ubiquitination has been linked to DDR, it is
nown that acetylation of the same residue is impor-
or chromatin assembly after repair (116). Further
s will be required to investigate the exact function
se marks during chromatin reassembly following
epair.

lusion and Future Directions

intenance of genomic stability in eukaryotic cells
es a tight regulation of histone modifications that
pany DDR. Although DNA-damage repair kinetics
een extensively studied, the exact order of histone

fiers, repair factors, and remodeler recruitment re-
imprecise. It seems more evident that a number
ruited factors regulate each other's accumulation
ctivation, rendering the study of the specific function
h factor more difficult. Here, we have mentioned the
f histone modifications during the full process of
DSB repair. It is clear that the timing and cross-talk
en histone marks are critical in the process of the
atin dynamic.

reover, in addition to histone marks appearing at the
to signal, recruit repair factors, and promote chroma-
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modeling), other histone modifications induced by
damage have been identified but not discussed in
view. Recent studies have shown an effect of DNA
ge–induced histone modifications on transcription
tion. For example, ATM and histone ubiquitination
been linked to transcription silencing near DSBs
. Furthermore, loss of H3T11 phosphorylation by
1 has been shown to repress transcription of cyclinB
dk1 after DNA damage induction, through loss of
-dependent promoter acetylation (118). hEco1,
is an acetyltransferase important for sister cohesion

g S phase and DDR, has also been shown to repress
ription by interaction with the hLSD1 histone de-
lase (119, 120).
ill be interesting, then, to continue to investigate the
ration of the factors involved in the repair of DNA
as well as to investigate the direct or indirect effect
ription regulation.
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