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Abstract. Computation of eigen-pairs characterizing the linear elastostatic solution in three-dimensional anisotrop-
ic domains in the vicinity of edge singularities is addressed. The singularities may be caused by re-entrant corners,
abrupt changes in boundary conditions or material properties. Edge singularities in three-dimensional domains
are of great interest from the point of view of failure initiation: The eigen-pairs characterize the straining modes
and their amplitudes quantify the amount of energy residing in particular straining modes. For this reason, failure
theories directly or indirectly involve the eigen-pairs and their amplitudes.

Herein we address the problem of determining the edge eigen-pairs numerically on the basis of the modified
Steklov formulation in conjunction with the p-version of the finite element method. The method is very accurate,
efficient and robust, and provides complex eigen-pairs if they exist. Several practical problems are studied, and
examples are presented for cases including multi-material inclusion problems, cracks in dissimilar materials, and
multi-material interfaces at free and clamped edges.

Key words: Singularities, Finite Element Methods, Steklov method, multi-material interfaces, p-version, delami-
nation, three-dimensional elasticity, fracture-mechanics.

1. Introduction

This paper addresses the mechanical response of linearly elastic three-dimensional domains,
subject to small displacements, in the vicinity of edges. Edges are curves created by the
intersection of surface boundaries of a three-dimensional domain, and in their neighborhood
the stress tensor exhibits singular behavior, i.e. tends to infinity as the distance from the edge
tends to zero.

Due to the complex treatment of three-dimensional edge singularities, most of the research
on singular stress fields has focused on two-dimensional domains under the assumption of
plane-stress or plane-strain. The reader is referred to the list of publications (Barsoum, 1988
to Costabel and Dauge, 1995; Dempsey and Sinclair, 1979; Gu and Belytschko, 1994 to
Papadakis and Babuška, 1995; Ting, 1986; Williams, 1952; Ying, 1986 and Yosibash and
Szabó, 1995) (not exhaustive by any means), and the references therein which address the
analytical as well as numerical computation of eigen-pairs in two-dimensions.

Renewed interest in the solution of the three-dimensional linear elastic problems at edges
occurred due to increasing interest in anisotropic laminated composites and electronic devices.
The displacement solution (associated with the singular stress tensor) is uniquely characterized
by a sequence of discrete eigen-pairs and their coefficients (in the neighborhood of edges).
These are of great interest in structural mechanics because they provide a basis for predicting
failure events in the vicinity of edges.

It is assumed that the edge of interest lays along a straight edge coinciding with the z

Cartesian axis, with the geometry and material properties independent of it. Let us denote the
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222 Z. Yosibash

three displacement fields u def
= (ux; uy; uz)

T . In some cases, for instance isotropic domains as
well as some special orthotropic domains (if in each sub-domain the orthotropy axis coincides
with the z-axis), the problem for uz is uncoupled with the problem for ux; uy . The two
displacements ux; uy satisfy the genuine two dimensional elasticity problem, and uz is a
solution of an elliptic equation. However, for anisotropic domains, the problem of computing
the edge eigen-pairs is fully coupled.

Three-dimensional edge singularities have been less investigated, especially when associ-
ated with anisotropic materials and multi-material interfaces. Analytical methods as in (Ting
and Chou, 1981; Wang and Choi, 1982) provide the means for computing the eigen-pairs for a
two-material interface however requires extensive mathematics. Several numerical methods,
mainly based on the h-version of the finite element method have been suggested lately. Among
them (Leguillon and Sanchez-Palencia, 1987), where a determinant method is developed for
the computation of the eigen-pairs, (Gu and Belytschko, 1994) in which an excellent reference
list to the subject is provided, and (Pageau and Biggers, 1996). These methods provide good
results, and the eigen-pairs are obtained by solving a quadratic eigen-problem. An inherent
difficulty associated with h- version FE methods is the fact that an adaptive scheme for assur-
ing the convergence of the computed values is not always available. The applicability of the
above methods is not demonstrated for displacements homogeneous boundary conditions,
and it is felt that they fail to indicate these cases which give rise to power-logarithmic stress
singularities.

Herein, a short description of new procedures for computing the edge eigen-pairs, limited
to the most essential features are briefly outline in Section 2, whereas the full details are
provided in (Yosibash, 1997b). In Section 3 numerical examples are provided.

New results on the performance of the numerical algorithms applied to problems at multi-
material internal interfaces, and fixed-free edges are reported herein for the first time. These
include edge crack singularities at a bi-material anisotropic interface, free edge effects in a
two cross-ply anisotropic laminate, a multi-material internal interface, and composite patches
bonded to a metallic structure. The obtained eigen-pairs are compared to the exact values when
available, demonstrating the efficiency, accuracy and robustness of the method. We conclude
with conclusions in Section 4.

2. Formulating the eigen-problem

The elastostatic displacements field in three-dimensions, in the vicinity of an edge (which
is sufficiently away from a vertex) can be decomposed in terms of edge eigen-pairs and
edge stress intensity functions (ESIFs). Mathematical details on the decomposition can be
found e.g. in (Dauge, 1988; Andersson et al., 1995; Grisvard, 1992) and the references
therein. A representative three-dimensional domain denoted by 
, which contains typical 3-D
singularities is shown in Figure 1. Edge singularities arise in the neighborhood of the edges
�ij and these will be addressed in the following. It shall be assumed that curved edges which
intersect at vertices do not exist, and that the crack faces, if any, lay in a flat plane.

In the neighborhood of an edge, we create a cylindrical domain of radius r = R having
the edge �ij as its axis, see Figure 2. The displacements in the edge neighborhood can be
decomposed as follows

u(r; �; z) =
KX
k=1

SX
s=0

aks(z)r
�k(ln r)sfks(�) + w(r; �; z); (1)
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Figure 1. Typical 3-D singularities.

Figure 2. The edge neighborhood.

where S > 0 is an integer which is zero for most practical problems, except for special cases,
�k+1 > �k are called edge eigen-values, aks(z) are analytic in z called edge stress intensity
functions (ESIFs), and can become very large as they approach one of the vertices, and fks(�)
are analytic in �, called edge eigen-functions. The vector function w(r; �; z) belongs to [H2]3

(H denotes the usual Sobolev space in one-dimension). We shall address herein only these
cases where S = 0, therefore, (1) becomes

u(r; �; z) =
KX
k=1

ak(z)r
�k fk(�) + w(r; �; z): (2)

u = (ux uy uz)
T is the displacements vector, with ux(r; �; z); uy(r; �; z) and uz(r; �; z) being

its components in the x; y and z directions respectively. We denote the tractions on the
boundaries by T = (Tx Ty Tz)

T . In the vicinity of the edge we assume that no body forces are
present.
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224 Z. Yosibash

Figure 3. The modified Steklov domain 

�

R.

A two-dimensional sub-domain is constructed which is in a plane perpendicular to the edge
(z-axis) and bounded by the radii r = R� and r = R. This domain, denoted by 
�

R, is shown
in Figure 3.

On the boundaries � = 0 and � = !ij of the sub-domain 
�

R either homogeneous traction
boundary conditions (T = 0), or homogeneous displacements boundary conditions, or a
combination of these are prescribed.

In view of (2), u in 
R� (respectively v) has the functional representation

u def
= A(z)r�

8><
>:
fx(�)

fy(�)

fz(�)

9>=
>; = A(z)r�f(�); v def

= B(z)r�f(�): (3)

We also denote the in-plane variation of the displacements as follows

~u(r; �) def
= u=A(z) ~v(r; �) def

= v=B(z): (4)

Following the steps presented in detail in (Yosibash, 1997), an eigen-problem is cast in a
weak form which is an integral equation over a two dimensional domain involving the three
displacement fields. This weak formulation is called the weak Modified Steklov form

Seek � 2 C; 0 6= ~u 2 [H1(
�

R)]
3; such that; 8~v 2 [H1(
�

R)]
3

B(~u;~v)� [NR(~u;~v)�NR�(~u;~v)] = �[MR(~u;~v)�MR�(~u;~v)]
(5)


�

R is the two dimensional domain which is the flat surface bounded by 0 6 � 6 !12 and
R� 6 r 6 R as shown in Figure 3, and

B(~u;~v) def
=

Z R

R�

Z !12

0

��
[Ar]@r + [A�]

@�

r

�
~v
�T

[E]

��
[Ar]@r + [A�]

@�

r

�
~u
�
r d� dr (6)

NR(~u;~v)
def
=

Z !12

0
~vT [Ar]

T [E][A�]@�~u

�����
r=R

d� (7)
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MR(~u;~v)
def
=

Z !12

0
~vT [Ar]

T [E][Ar ]~u

�����
r=R

d�: (8)

where,

[Ar]
def
=

2
66666666664

cos � 0 0

0 sin � 0

0 0 0

sin � cos � 0

0 0 sin �

0 0 cos �

3
77777777775

[A�]
def
=

2
66666666664

� sin � 0 0

0 cos � 0

0 0 0

cos � � sin � 0

0 0 cos �

0 0 � sin �

3
77777777775

(9)

and [E] is the 6� 6 symmetric material matrix connection the strain vector " = ("x "y "z xy
yz xz)

T to the stress vector � = (�x �y �z �xy �yz �xz)
T .

REMARK 1. Although the test and trial functions have three components, the domain over
which the weak eigen-formulation is defined is two-dimensional, and excludes any singular
points. Therefore the application of the p-version of the FEM for solving (5) is expected to be
very efficient.

REMARK 2. The bilinear forms NR and NR� are non-symmetric with respect to ~u and ~v,
thus is not self-adjoint. As a consequence, the ‘minimax principle’ does not hold, and any
approximation of the eigenvalues (obtained using a finite dimension supspace of [H1(
�

R)]
3)

cannot be considered as an upper bound of the exact ones and the monotonic behavior of
the error is lost as well. Never-the-less, convergence is assured (with a very high rate as will
be shown by the numerical examples) under a general proof provided in (Babuška and Aziz,
1972).

REMARK 3. Note that in (5) we do not limit the domain 
�

R to be isotropic, and in fact (5)
can be applied to multi-material anisotropic interface, as will be demonstrated by numerical
examples.

REMARK 4. When homogeneous displacement boundary conditions are applied, one has to
restrict the spaces to [H1

0 (

�

R)]
3, or a variation of it, so as to apply the essential boundary

condition restrictions on the spaces in which ~u and ~v lay.

2.1. NUMERICAL TREATMENT BY THE FINITE ELEMENT METHOD

In the following, the weak eigen-formulation (5) is discretised by considering a finite dimen-
sional sub-space of [H1(
�

R)]
3, employing the p-version of the finite element method.

Assume that the domain 
�

R consists of three different materials as shown in Figure 4.
We divided 
�

R into, let’s say 3 finite elements, through a meshing process. Let us consider a
typical element, element number 1, shown in Figure 4, bounded by �1 6 � 6 �2. A standard
element in the �; � plane such that �1 < � < 1;�1 < � < 1 is considered, over which the
polynomial basis and trial functions are defined. These standard elements are then mapped by
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226 Z. Yosibash

Figure 4. A typical finite element in the domain 

�

R.

appropriate mapping functions onto the ‘real’ elements (for details see (Szabó and Babuška,
1991), Chapter 5–6). The functions ~ux; ~uy; ~uz are expressed in terms of the basis functions
�i(�; �) in the standard plane

~ux(�; �) =
PN

i=1 ai�i(�; �)

~uy(�; �) =
PN

i=1 aN+i�i(�; �)

~ux(�; �) =
PN

i=1 a2N+i�i(�; �)

9>>>=
>>>;
; (10)

or

~u =

2
664
�1 : : : �N 0 : : : 0 0 : : : 0

0 : : : 0 �1 : : : �N 0 : : : 0

0 : : : 0 0 : : : 0 �1 : : : �N

3
775
8>>><
>>>:

a1

...

a3N

9>>>=
>>>;

def
= [�]a; (11)

where ai are the amplitudes of the basis functions (sometimes called the ‘nodal values’), and
�i are products of integrals of Legendre polynomials in � and �. ~u and ~v lay in the same space

therefore, we define similarly ~v def
= [�]b.

The unconstrained stiffness matrix corresponding to B(~u;~v) on the typical element is given
by

[K]
def
=

Z R

R�

Z �2

�1

��
[Ar]@r + [A�]

@�

r

�
[�]

�T
[E]

��
[Ar]@r + [A�]

@�

r

�
[�]

�
r d� dr: (12)
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By defining the following matrices

[@P ]
def
=

2
66666666664

�P 0

1 sin � : : : �P 0

N sin � 0 : : : 0 0 : : : 0

0 : : : 0 P 0

1 cos � : : : P 0

N cos � 0 : : : 0

0 : : : 0 0 : : : 0 0 : : : 0

P 0

1 cos � : : : P 0

N cos � �P 0

1 sin � : : : �P 0

N sin � 0 : : : 0

0 : : : 0 0 : : : 0 P 0

1 cos � : : : P 0

N cos �

0 : : : 0 0 : : : 0 �P 0

1 sin � : : : �P 0

N sin �

3
77777777775

[ ~P ]
def
=

2
66666666664

P1 cos � : : : PN cos � 0 : : : 0 0 : : : 0

0 : : : 0 P1 sin � : : : PN sin � 0 : : : 0

0 : : : 0 0 : : : 0 0 : : : 0

P1 sin � : : : PN sin � P1 cos � : : : PN cos � 0 : : : 0

0 : : : 0 0 : : : 0 P1 sin � : : : PN sin �

0 : : : 0 0 : : : 0 P1 cos � : : : PN cos �

3
77777777775
;

where Pi(�) for i > 3 are integrals of Legendre polynomials, and P1(�) = (1��)=2; P2(�) =

(1+ �)=2 (see for details (Szabó and Babuška, 1991), Chapter 3–6), we obtain the expression
for NR(~u;~v)

NR(~u;~v) = bT

0
@Z 1

�1
[ ~P ]T [E][@P ]

�����
�=�1

d�

1
A a def

= bT [NR]a: (13)

The entries of [NR] are computed using Gauss quadrature.
Similarly, the expressionMR(~u;~v) is evaluated by

MR(~u;~v) = bT

0
@�2 � �1

2

Z 1

�1
[ ~P ]T [E][ ~P ]

�����
�=�1

d�

1
A a def

= bT [MR]a: (14)

The matrices [NR� ] and [MR� ] have same values as those of [NR] and [MR], but of opposite
sign. This is because the shape functions on the artificial boundaries �3 and �4 are the same
(except for some sign changes), and so is the mapping to the standard plane. Denoting the
set of amplitudes of the basis functions associated with the artificial boundary �3 by aR, and
those associated with the artificial boundary �4 by aR� , the eigen-pairs can be obtained by
solving the generalized matrix eigen-problem

[K]a� ([NR]aR � [NR� ]aR�) = �([MR]aR � [MR� ]aR�): (15)

Augmenting the coefficients of the basis functions associated with �3 with those associated
with �4, and denoting them by the vector aRR� , (15) becomes

[K]a� [NRR� ]aRR� = �[MRR� ]aRR� : (16)

We assemble the left hand part of (16). The vector which represents the total number of
nodal values in 
�

R may be divided into two vectors such that one contains the coefficients
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228 Z. Yosibash

aRR� , and the other contains the remaining coefficients: aT = faTRR� ; aTing. By partitioning
[K], we can write the eigen-problem (16) in the form"

[K]� [NRR� ] [KRR��in]

[Kin�RR� ] [Kin]

#(
aRR�

ain

)
= �

"
[MRR� ] [0]

[0] [0]

#(
aRR�

ain

)
: (17)

The relation in (17) can be used to eliminate ain by static condensation, thus obtaining the
reduced eigen-problem

[KS ]aRR� = �[MRR� ]aRR� ; (18)

where

[KS ] = ([K]� [NRR� ])� [KRR��in][Kin]
�1[Kin�RR� ]:

It is possible to eliminate the unknowns ain from the matrix [K], because the relevant
equations do not involve the as yet unknown eigenvalues �.

For the solution of the eigen-problem (18), it is important to note that [KS ] is, in general,
a full matrix. However, since the order of the matrices is relatively small, the solution (using
Cholesky factorization to compute [Kin]

�1) is not expensive. The implementation issues for
solving the generalized eigenvalue problem can be found in the LAPACK documentation
(Anderson et al., 1994).

REMARK 5. There is the possibility that m multiple eigenvalues exist with less than m

corresponding eigenvectors (the algebraic multiplicity is higher than the geometric multi-
plicity). This is associated with the special cases when the asymptotic expansion contains
power-logarithmic terms, and this behavior triggers the existence of ln(r) terms.

REMARK 6. Although we derived our matrices as if only one finite element exists along the
boundary�3 and �4, the formulation for multiple finite elements is identical, and the matrices
[K]; [NR] and [MR] are obtained by an assembly procedure.

REMARK 7. In case of periodic boundary conditions, i.e. multi-material internal interfaces,
the matrices [K]; [NRR� ] and [MRR� ] are constrained according to ((Leguillon and Sanchez-
Palencia, 1987), p. 73).

Homogeneous displacements boundary conditions are applied by modifying the generated
matrices. This is done by setting to zero only those rows and columns which correspond to
the ‘nodal variables’ of the boundary conditions and then assigning the value of �1 to the
relevant diagonal elements. This generates artificial eigen-values�1 with a multiplicity equal
to the number of modified rows, however, negative integer eigen-values are not of interest in
any case. As a result of the treatment, the order of the eigen-value problem to be solved is not
reduced.

3. Numerical investigation

The modified Steklov weak-formulation is used in the following subsections for the investi-
gation of the eigen-pairs occurring in several practical problems. Five different test cases are
addressed:
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Computing edge singularities in elastic anisotropic 229

Figure 5. Plane crack at a bi-material interface.

(a) First, we consider a plane crack at the interface of a bi-material interface, for which
analytical eigen-values exist, thus we may demonstrate the accuracy and efficiency of the
method.

(b) Free edge effects in a two cross-ply anisotropic laminate are addressed, for which analyt-
ical eigen-values exist.

(c) An anisotropic multi-material internal interface.

(d) A composite patch terminating at different angles attached to a metallic structure.

(e) A composite patch attached to a metallic structure constrained against movement in the
vertical direction.

In all example problems we use R = 1 and R� = 0:99 (R� has virtually no influence on
the accuracy of the obtained eigen-pairs, and as R� ! 1 the accuracy of the results slightly
improves, see (Yosibash, 1997b)). Over each element in the used meshes the polynomial
degree of the shape functions has been increased from 1 to 8.

3.1. PLANE CRACK AT A BI-MATERIAL INTERFACE

Consider a bi-material interface which is composed of two homogeneous materials, with
continuity of tractions and displacements across interface maintained. The two materials are
isotropic, both having Poisson ratio 0.3, the upper material having E = 10 and the lower
E = 1 (E represents the Young modulus). We are interested in plane cracks at the interface of
the two materials as shown in Figure 5. This example problem has been chosen to demonstrate
the method’s performance for cases where complex eigen-pairs arise. The exact first three
eigen-pairs for this example problem are �1;2 = 0:5 � i0:07581177769 and �3 = 0:5. In
linear elastic fracture mechanics terminology �1 and �2 are associated with deformation in
the x�y plane (where mode I and mode II are coupled in this case), and�3 is the out-of-plane
mode.

The four-element mesh shown in Figure 6 has been used for the computations. The relative
error (%) in the first two eigen-values is split in two: one defining the relative error in the real
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230 Z. Yosibash

Figure 6. Finite element mesh used for the plane crack at a bi-material interface.

Figure 7. Cross-ply anisotropic laminate.

part and being denoted by eR�1;2 and the other defining the relative error in the imaginary part
eF�1;2

eR�1;2(%) = 100
R�FE1 �R�1

R�1
; eF�1;2(%) = 100

F�FE1 � F�1

F�1
: (19)

We summarize the number of degrees of freedom, the CPU elapsed time1 and the relative
error (%) in the first 3 eigenvalues in Table 1. The results in Table 1 show that the method
provides excellent results for complex eigen-pairs.

3.2. TWO CROSS-PLY ANISOTROPIC LAMINATE

We study edge singularities associated with a two cross-ply anisotropic laminate. Consider
a composite laminate with ply properties typical of a high-modulus graphite-epoxy system,
as shown in Figure 7. The orientation of fibers differs from layer to layer. Referring to the
principle direction of the fibers, we define

EL = 1:38� 105 MPa(20� 106 psi) ET = Ez = 1:45� 104 MPa(2:1� 106 psi)

1 Computations performed on a SGI Indigo2 machine, with a R4400 200 Mhz processor, Specfp 92 = 131.
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232 Z. Yosibash

GLT = GLz = GTz = 0:586� 104 MPa(0:85� 106 psi) �LT = �Lz = �Tz = 0:21;

where the subscripts L; T; z refer to fiber, transverse and thickness directions of an individual
ply, respectively. The material matrix [E] for a ply with fibers orientation rotated by an angle
� about the y-axis is given by

[E] = [T (�)]T [E0][T (�)];

where,

[T (�)] =

0
BBBBBBBBBB@

s2 0 c2 0 0 c�s

0 1 0 0 0 0

c2 0 s2 0 0 �c�s

0 0 0 s c 0

0 0 0 �c s 0

�2c�s 0 2c�s 0 0 s2 � c2

1
CCCCCCCCCCA
;

c
def
= cos(�); s

def
= sin(�);

[E0] = V

0
BBBBBBBBBBB@

(1� �Tz�zT )EL (�LT + �Lz�zT )ET (�zL + �zT �TL)EL 0 0 0

(1� �Lz�zL)EL (�zT + �LT �zL)ET 0 0 0

(1� �LT �TL)Ez 0 0 0

GTz

V
0 0

GLz

V
0

GLT

V

1
CCCCCCCCCCCA
; (20)

V
def
= (1� �LT�TL � �Tz�zT � �Lz�zL � 2�LT�Tz�zL)

�1;

�TL = �LT
ET

EL

; �zT = �Tz
Ez

ET

; �zL = �Lz
Ez

EL

:

We first investigate the eigen-pairs associated with the singularities near the junction of the free
edge and the interface, edge A in Figure 7, for a commonly used [��] angle-ply composite.
Of course, the eigen-pairs depend on � and we chose � = 45� for which the first 12 exact non-
integer eigen-pairs are reported in (Wang and Choi, 1981) with 8 decimal significant digits:
�1 = 0:974424342; �2;3 = 1:88147184� i0:23400497; �4;5 = 2:5115263� i0:79281732 : : :

The two-element mesh shown in Figure 8 is used in our computation. We summarize the
relative error (%) in the first 5 non-integer eigenvalues, the number of degrees of freedom
before performing static condensation, and the CPU elapsed time required for the computation
in Table 2. The rate of convergence of the eigen-values (reported in Table 2) is clearly visible
when plotted on a log-log scale as shown in Figure 9. Again one obtains a rapid convergence
rate. The three-dimensional eigen-function vector (displacement fields) associated with �1

obtained at p = 8 is illustrated in Figure 10.
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Figure 8. Finite element mesh used for the cross-ply anisotropic laminate.

Figure 9. Convergence of approximated eigen-values for the cross-ply anisotropic laminate.

The variation of the eigen-values for different [��] cross-ply laminate is investigated in
the following. We use the same mesh presented in Figure 8, with different material properties
which reflect a laminate with fibers rotated at an angle �� about the y-axis. The obtained
eigen-values reported in Table 3 are accurate up to the 5 decimal digit shown. This accuracy is
guaranteed because these digits have not been changed while increasing the polynomial level
over the finite element mesh.

Table 3. Eigenvalues for different [��] fiber orientation cross-ply laminate.

[��] 15� 30� 45� 60� 75�

�1 0.99936 0.98834 0.97442 0.97665 0.99105
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Figure 10. Eigen-functions associated with �1 for the cross-ply anisotropic laminate.

Delamination: Once a crack starts propagating between two lamina, the behavior of the
singular stress tensor changes dramatically, and the eigen-pairs are different. We consider a
plane-crack with a tip at the edge denoted by edge B in Figure 7. Again we consider a [�45�]
cross-ply laminate, and use a four-element mesh (as the one in Figure 6) for the computations.
The first three eigen-values and the number of DOFs at each p-level are summarized in
Table 4. Observing the obtained results we may conclude with a high degree of confidence
that �1;2 = 0:500000� 0:0343 and �3 = 0:50000.

3.3. ANISOTROPIC MULTI-MATERIAL INTERNAL INTERFACE

Figure 11 depicts a three material internal interface. Each of the three materials, denoted by
I, II and III is the same fiber/resin composite. Composite’s properties, when referring to the
principle direction of the fibers, are

E1 = E3 = 0:105; E2 = 1:0 G12 = G13 = G23 = 0:0425;

�12 = 0:02205; �13 = 0:21; �23 = 0:21;

where the subscripts 1, 2, 3 refer to fiber, transverse and thickness directions of an individual
composite, respectively. The material matrix [E] for a ply with fibers orientation rotated by
an angle �i about the x-axis is given by

[E] = [T (�i)]
T [E0][T (�i)];
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Figure 11. Anisotropic multi-material internal interface problem.

where in this case,

[T (�i)] =

0
BBBBBBBBBB@

1 0 0 0 0 0

0 c2 s2 0 c�s 0

0 s2 c2 0 �c�s 0

0 0 0 c 0 �s

0 �2c�s c�s 0 c2 � s2 0

0 0 0 s 0 c

1
CCCCCCCCCCA
;

c
def
= cos(�i); s

def
= sin(�i)

and [E0] is given in (20). The fiber orientation of the three materials differ from each other, and
are measured from the y-axis in the y � z plane by the angles �I; �II and �III for the materials
I, II and III, respectively.

This example problem is provided to show the ease with which the method can be used for
complicated material arrangements, to demonstrate computation of eigen-pairs for an internal
interface edge, and because numerical results are available in (Pageau and Biggers, 1996).
For the case of �I = ��III = �45�, and �II = 0�, we compute the first three eigen-pairs using
the finite element mesh shown in Figure 12. Table 5 summarizes the first three eigen-values
obtained while increasing the polynomial level over the elements from 2 to 8, and the relative
error in percents between two consecutive eigen-values (computed at p and p+ 1 polynomial
levels). We may conclude with high confidence that the first three eigen-values, accurate
within 6 significant figures are

�1 = 0:917456 �2 = 0:981241 �3 = 1:000000:

These values correspond well with the values �1 = 0:915760 and �2 = 0:980782 report-
ed in (Pageau and Biggers, 1996) which are quoted to be accurate to within 0.5%. The
three-dimensional eigen-function vector (displacement fields) associated with�1 = 0:917456
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Figure 12. Finite element mesh used for the anisotropic multi-material internal interface.

obtained at p = 8 is illustrated in Figure 13. The eigen-function vector reported in Figure 14
in (Pageau and Biggers, 1996) is expressed in a polar co-ordinate system, and after transfor-
mation to the Cartezian co-ordinate system is very similar to the one presented in Figure 13.
Since the exact eigen-functions are not available, one may question on the correctness of
the reported eigen-function vector. To address this question an adaptive process has been
adopted, and the residual has been computed. Namely, the eigen-stress tensor computed from
the eigen-pairs has been substituted in the three first-order partial differential equations of
equilibrium. Were the eigen-stress tensor exact, its substitution in the equilibrium equations
would have satisfied the equations identically. However, because of the numerical errors, a
residual is obtained, which converges to zero as the p-level is increased (a manuscript with
detailed discussion and examples on a-posteriori error estimates for eigen-pairs computed
numerically will be published in the future). At p = 8 the residual obtained for the first eigen-
pair is less than 10�5 for all three equilibrium equations, for any angle, and at most angles is
10�8. This a-posteriori estimation increases the confidence in the results.

We investigate the first three eigen-values when keeping �I = ��III = �45�, and changing
�II from 0 to 90 degrees. The third eigen-value (�3) is 1.0 for all �II, so we summarize
in Table 6 the first two eigen-values as �II changes. The behavior of the first two eigen-
values, as a function of the angle �II is best illustrated in the graph presented in Figure 14.
This demonstrates that when �I = ��III = �45�, and �II � 45�, complex eigen-pairs are
obtained, and the stress-tensor has ‘oscillatory singularity’. However, the strongest singularity
is obtained at �II = 0.

3.4. COMPOSITE PATCH ATTACHED TO A METALLIC STRUCTURE

In recent years laminated composite patches have been used for the repair of aging aircraft with
fatigue cracks. These patches are usually bonded to metallic structures and typically terminate
at an angle  as illustrated in Figure 15. We assume that the adhesive layer between the
composite patch and the metallic structure has zero thickness, so that the composite is in full
contact with the metal. Herein we investigate the edge singularities along the composite patch
edge at the intersection of face A and B. The composite is taken to be the graphite-epoxy
lamina with material properties as given in subsection 3.2, with fibers orientation rotated
by an angle � about the y-axis. The metallic structure is AL7075-T6 with Young modulus
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Figure 13. Eigen-function vector associated with �1 for the anisotropic multi-material internal interface.

Table 6. First two eigen-values for an
anisotropic multi-material internal inter-
face, �I = ��III = �45�, while �II = 0� to
90�.

�II �1 �2

0� 0.91745669 0.98124118
10� 0.92115292 0.97998158
20� 0.93066075 0.97609411
30� 0.94231127 0.96948293
40� 0.95296001 0.96041106
41:5� 0.95471248 0.95856376
43� 0.95655454 � i0.00173538
45� 0.95639415 � i0.00268324
47� 0.95618821 � i0.00260695
48:5� 0.95601132 � i0.00202495
50� 0.95545474 0.95618789
60� 0.94876581 0.96048084
70� 0.95000906 0.95885802
80� 0.95337122 0.95759159
90� 0.94909612 0.96356568

E = 7:17 � 104 MPa(10:5 � 106 psi), and � = 0:3. The finite element mesh contains six
elements, with two elements representing the composite and four elements representing the
metal.

We first investigate the eigen-pairs obtained with fiber orientation � = 45� while changing
the terminating angle  from 20� to 90�. The first two eigen-values are summarized in Table 7,
with�3 being 1.0. It is interesting to remark that if the patch would have been made of AL7075-
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Figure 14. Variation of eigen-values as �II changes for an anisotropic multi-material internal interface, �I =

��III = �45�.

Figure 15. Composite patch attached to a metallic structure.

T6, and  = 90�, the first three eigen-values would be �1 = 0:54448373; �2 = 0:66666667
and �3 = 0:90852919, which give rise to a ‘stronger’ edge singularity.

We next investigate the influence of the fiber orientation, the angle �, on the eigen-values,
while keeping  = 90�, and summarize in Table 8 the first three eigen-values. To visualize
the influence of both the fiber orientation angle �, and the termination angle () on the
eigen-values, we present in Figure 16 two 3-D plots. These plots enable the visualization
of the optimal combination of angles � and  to produce the highest first two eigen-values.
Equivalently, given the fiber orientation angle �, one may determine the terminating angle
 so as to obtain the maximum first eigen-value. For this example problem these angles
may be easily realized intuitively without such 3-D plots, however, for complicated material
combinations and geometries the intuitive answers may not be trivial. It is also interesting to
remark that the third eigen-value is 1.0 for most angles 20� 6  < 90�, except at  � 90� (as
seen in Table 8).
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Table 7. First two eigen-values for the
composite patch, � = 45�, attached to a
metallic structure, while  = 20� to 90�.

 �1 �2

20� 0.82836708 0.96616009
30� 0.78665173 0.94669953
40� 0.75869470 0.92347722
50� 0.73757931 0.89475984
60� 0.71958205 0.85975886
70� 0.70233672 0.82065223
80� 0.68411600 0.78274434
90� 0.66418434 0.75085365

Table 8. First three eigen-values for the composite patch,
 = 90�, attached to a metallic structure, while � = 0� to
90�.

� �1 �2 �3

0� 0.63637988 0.80945736 0.95767412
10� 0.63766263 0.80302942 0.96071226
20� 0.64161807 0.78792249 0.96721225
30� 0.64846848 0.77096564 0.97363849
40� 0.65829079 0.75641055 0.97871748
45� 0.66418434 0.75085365 0.98071187
50� 0.67048739 0.74692325 0.98236759
60� 0.68248688 0.74642680 0.98475523
70� 0.68962767 0.76087624 0.98607408
80� 0.69167996 0.78946576 0.98656827
90� 0.69201351 0.80945736 0.98661486

Figure 16. First two eigen-values as a function of the fiber orientation angle (�), and terminating angle  for the
composite patch attached to a metallic structure.
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Figure 17. Composite patch attached to a metallic structure, constrained against vertical movement.

3.5. COMPOSITE PATCH ATTACHED TO A METALLIC STRUCTURE CONSTRAINED AGAINST
MOVEMENT

We consider herein a similar composite patch attached to a metallic structure, only that the
metallic structure is constrained against movement in the vertical direction immediately where
the patch ends. Referring to Figure 17, we assume that face A of the patch is traction free,
while face B (which belongs to the metallic structure) is constrained: uy = 0, but Tx = 0
and Tz = 0. This situation is a typical representation of a patched aluminum plate in the
vicinity of a titanium beam (as the wing skin in an aircraft between two main beams). A
five element-mesh is used, having two elements representing the composite patch and three
elements representing the AL7075-T6 metallic structure. The p-level over the elements is
increased from 1 to 8, observing an excellent convergence of the eigen-values. The first three
eigen-values at p-level = 8, for fiber orientation angles � from 0� to 90� are plotted in
Figure 18. It is interesting to observe that the first eigen-value is almost independent of �, and
is smaller than 0.5 (first eigen-value corresponding to a crack tip); thus, the singularity of this
configuration is more severe than a crack tip. Also, were the patch made of the same material
as the metallic structure (AL7075-T6), the first eigen-value would have been 1

3 , giving rise to
a more severe singularity.

4. Conclusions

A numerical method for reliable computation of three-dimensional edge eigen-pairs in aniso-
tropic domains, based on the modified Steklov formulation and the p-version of the FEM,
has been described. The method is very general in that it is applicable to many kinds of edge
singularities, and it has been demonstrated on several problems including reentrant-corners,
abrupt changes in material properties or boundary conditions, and internal material interfaces.
Although some of the example problems have been treated in the past (and have been used for
comparison purposes), many new results are presented as well. The numerical experiments
indicate that the computed values converge strongly, are accurate and inexpensive from the
points of view of human time needed for input data preparation, and required CPU time.

Power-logarithmic stress singularities could be detected by monitoring the two computed
distinct but adjacent eigenvalues and their corresponding eigen-functions. When these collapse
into one as the number of degrees of freedom is increased, this indicates the presence of these
kind of singularities. This has been demonstrated in a 2-D setting in (Yosibash, 1997a).
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Figure 18. First three eigen-values as a function of the fiber orientation angle (�), for the constrained metallic
structure.

Investigation of edge singularities is important because it provides a rigorous quantitative
basis for investigating failure events, such as delamination of composite materials, and failure
in electronic devices. The edge eigen-pairs are the first step in a general method which is
intended to provide also the series coefficients, namely the edge stress intensity functions
(ESIFs). The obtained eigen-pairs are used for extracting the ESIFs by methods as the com-
plementary energy method (described in (Szabó and Yosibash, 1996) in a 2-D setting), and
this will be reported in a following paper.
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