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ABSTRACT

A numerical method is described for the computation of eigenpairs which characterize the exact solution of
linear elastostatic problems in three-dimensions in the vicinity of edge singularities. These may be caused by
re-entrant corners, abrupt changes in boundary conditions or material properties.

Such singularities are of great interest from the point of view of failure initiation: The eigenpairs
characterize the straining modes and their amplitudes quantify the amount of energy residing in particular
straining modes. For this reason, failure theories directly or indirectly involve the eigenpairs and their
amplitudes.

This paper addresses the problem of determining the edge eigenpairs numerically on the basis of the
modified Steklov formulation (presented in Reference 1 in a 2-D framework) in conjunction with the
p-version of the finite element method. Numerical results are presented for several cases including isotropic
as well as anisotropic multi-material interfaces. ( 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Realistic mechanical response of structural objects undergoing small displacements is governed
by the equations of three-dimensional linear elasticity. Many three-dimensional objects have
surface boundaries which intersect at curves called edges, and some of these edges intersect at
points called vertices. The behaviour of the elastic solution in the neighbourhood of edges has
been a subject of intensive research during the past 30 years especially with regard to interface
edge cracks and interlaminar stresses in composite laminates. Renewed interest in the solution of
the three-dimensional linear elastic problem at edges occurred due to increasing interest in
laminated composites and electronic devices. In the vicinity of these edges the stress tensor
exhibits singular behaviour, i.e. tends to infinity as the distance from the edge tends to zero. The
displacement solution (associated with the singular stress tensor) is uniquely characterized by
a sequence of discrete eigenpairs and their coefficients (in the neighbourhood of edges). These are
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of great interest in structural mechanics because they provide a basis for predicting failure events
in the vicinity of edges.

Due to the complex treatment of three-dimensional edge eigenpairs, most of the research on
singular stress fields has focused on two-dimensional domains under the assumption of plane
stress or plane strain. The reader is referred to the list of publications1~14 (not exhaustive by any
means), and the references therein which address the analytical as well as numerical computation
of eigen-pairs in two-dimensions.

The fully three-dimensional edge singularities have been less investigated, especially when
associated with anisotropic materials and multi-material interfaces. Analytical methods as in
Reference 15 provide the means for computing the eigenpairs for a two-material interface,
however, requires extensive mathematics. Several numerical methods, mainly based on the
h-version of the finite element method have been suggested lately. Among them are Reference 12
in which an excellent reference list to the subject is provided, and Reference 16. These methods
provide good results, however, they require the solution of a quadratic eigenproblem (which is an
expensive task), do not provide an easy adaptive scheme for assuring the convergence of the
computed values, and in Reference 16 the method presented does not provide information on the
performance for cases where complex eigenpairs appear. It is felt that the methods in References
12 and 16 fail to indicate these cases which give rise to logarithmic stress singularities.

Herein a numerical procedure based on the modified Steklov method, presented in Reference 1 in
a two-dimensional setting, is developed. This method computes efficiently and reliably approxi-
mations for the edge singular solutions when used in conjunction with the p-version of the finite
element method. It is general, that is, applicable to edge singularities associated with corners,
non-isotropic multi-material interfaces and abrupt changes in boundary conditions.

In Section 2, an explicit formulation of the modified Steklov method for edge singularities is
presented. Numerical treatment of the weak modified Steklov formulation by the p-version of the
finite element method is presented in Section 3. In Section 4, numerical examples are provided.
These include edge crack singularities in isotropic and at a bi-material interface, and free edge
effects in a two cross-ply anisotropic laminate. The obtained eigenpairs are compared to the exact
values, demonstrating the efficiency, accuracy and robustness of the method. We conclude with
a summary in Section 5.

2. FORMULATING THE MODIFIED STEKLOV EIGEN-PROBLEM

The elastostatic displacements field in three dimensions, in the vicinity of an edge (which is
sufficiently away from a vertex) can be decomposed in terms of edge eigenpairs and edge stress
intensity functions (ESIFs). Mathematical details on the decomposition can be found e.g. in
References 17—20 and the references therein. A representative three-dimensional domain denoted
by ), which contains typical 3-D singularities is shown in Figure 1. Edge singularities arise in the
neighbourhood of the edges "

ij
, vertex singularities arise in the neighbourhood of vertices A

i
, and

vertex-edge singularities arise close to vertex/edge intersections. Herein, only edge singularities
are treated, whereas the vertex singularities, which are also of major engineering importance, will
be addressed in a future work. It shall be assumed that curved edges which intersect at vertices do
not exist, and that crack faces, if any, lie in a flat plane.

The edges "
ij
, connecting the vertices, A

i
and A

j
, are examined. Moving away from the vertex

a distance d/2 (d'0), and creating a cylindrical domain of radius r"R having the edge "
ij

as its
axis, we define a sub-domain in the vicinity of the edge denoted by Ed,R ("

ij
). Figure 2 shows the
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Figure 1. Typical 3-D singularities

edge singularity sub-domain Ed,R("
12

). The displacements in Ed,R can be decomposed as follows:

u (r, h, z )"
K
+
k/1

S
+
s/0

a
ks

(z )rak (ln r )sf
ks

(h )#w (r, h, z) (1)

where S*0 is an integer which is zero for most practical problems, except for special cases,
a
k`1

*a
k
are called edge eigenvalues, a

ks
(z ) are analytic in z called ESIFs, and can become very

large as they approach one of the vertices, and f
ks

(h) are analytic in h, called eigenfunctions. The
vector function w(r, h, z ) belongs to the Sobolev space [Hq(E )]3, where q depends on K, and can
be made as high as required providing that K is large enough. We shall assume that S"0,
therefore, (1) becomes

u(r, h, z )"
K
+
k/1

a
k
(z )rakf

k
(h)#w (r, h, z ) (2)

u"(u
x

u
y

u
z
)T is the displacement vector, with u

x
(r, h, z ), u

y
(r, h, z) and u

z
(r, h, z ) being

its components in the x, y and z directions, respectively. We denote the tractions on
the boundaries by T"(¹

x
¹

y
¹

z
)T and the Cartesian stress tensor by r

+
, and in vector form

by r"(p
x
p
y
p
z
q
xy

q
yz

q
xz

)T. In the vicinity of the edge we assume that no body forces are
present.

A sub-domain of Ed,R is considered, which is bounded by the surfaces z"0 and z"*, and by
the radii r"R* and r"R. This domain, denoted by )*

R
, is shown in Figure 3.
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Figure 2. The edge neighborhood Ed,R ("
12

)

Figure 3. The modified Steklov domain )*
R

The elastostatic problem in 3-D can be cast in terms of stresses over the domain )*
R
:

L
x
p
x
#L

y
q
xy
#L

z
q
xz
"0

L
x
q
xy
#L

y
p
y
#L

z
q
yz
"0

L
x
q
xz
#L

y
q
yz
#L

z
p
z
"0 H in )*

R
, where

L
x

$%&"

L
Lx

L
y

$%&"

L
Ly

L
z

$%&"

L
Lz

(3)
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while on the boundaries of h"0 and h"u
ij

homogeneous traction boundary conditions are
assumed (T"0). This assumption is only for simplifying the presentation, and the presented
methods are equally applicable to homogeneous displacements as well as homogeneous mixed
boundary conditions. Boundary conditions on the other four surface areas are yet to be specified.

The stress—displacements relationship through the constitutive material law (Hooke’s law) is
given by

r"[E][D]u (4)

where [D] is the differential operator:

[D] $%&"C
L
x

0 0
0 L

y
0

0 0 L
z

L
y

L
x

0
0 L

z
L
y

L
z

0 L
x
D"C

cos h 0 0
0 sin h 0
0 0 0

sin h cos h 0
0 0 sin h
0 0 cos hD L

r
#C

!sin h 0 0
0 cos h 0
0 0 0

cos h !sin h 0
0 0 cos h
0 0 !sin hD

hgggigggj
[A

r
]

hgggggigggggj
[Ah]

Lh
r

#C
0 0 0
0 0 0
0 0 1
0 0 0
0 1 0
1 0 0D L

z
(5)

hgigj
[A

z
]

and [E] is the 6]6 symmetric material matrix which is given for an isotropic material by

[E]"
E

(1#l) (1!2l ) C
(1!l) l l 0 0 0

(1!l) l 0 0 0
(1!l) 0 0 0

(1!2l)/2 0 0
(1!2l)/2 0

(1!2l )/2D
where E is Young’s modulus and l is the Poisson ratio.

Multiplying (3) by vT"(v
x
v
y
v
z
)3[H1 ()*

R
)]3, integrating over the domain )*

R
shown in Figure

3, then using Green’s theorem, and following the steps presented in Reference 21, Chapter 13, one
obtains the weak form for the elastostatic problem:

Seek u3[H1()*
R
)]3 such that

(6)
B (u, v)"F(v), ∀v3[H1 ()*

R
)]3
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where

B (u, v ) $%&"P
*

0
P

R*

R
P

u12

0

([D]v )T[E][D]ur dh dr dz (7)

F(v ) $%&"P PL)*
R

(v)T T dA (8)

If homogeneous displacement boundary conditions are prescribed on the faces h"0, u
12

, then
the weak form (6) remains unchanged except for the spaces in which u and v lie.

2.1. Notations and mathematical relationships

Some new notations and mathematical relationships are derived to simplify the manipulations
required for deriving the modified Steklov eigenformulation. In view of (2), we seek for functions
u in )

R* (respectively, v) which can be represented by pairs of a and f(h) as follows:

u $%&"A(z)ra G
f
x
(h)

f
y
(h)

f
z
(h)H"A(z )raf (h), v $%&"B (z)raf (h) (9)

We also denote the in-plane variation of the displacements as follows:

u8 (r, h) $%&" u/A (z ) v8 (r, h ) $%&" v/B(z ) (10)

Applying (5)—(9) one obtains

[D]u"
A(z )

r
(a[A

r
]#[Ah]Lh)raf#A@(z )[A

z
]raf (11)

The relationship between tractions and the stress on a face having an outer normal vector n is
given by

T"r
+

n"C
n
x

0 0 n
y

0 n
z

0 n
y

0 n
x

n
z

0
0 0 n

z
0 n

y
n
xD r (12)

hggggiggggj
[n]

Using (11) and (4) in conjunction with (12) one obtains

T"ra[n][E] G
A(z)

r
(a[A

r
]f#[Ah]f @)#A@ (z)[A

z
]fH (13)

The relationship (13) can also be stated in terms of u8 :

T"[n][E] G
A(z )

r
(a[A

r
]u8 #[Ah]Lhu8 )#A@(z)[A

z
]u8 H (14)
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2.2. Modified Steklov eigenformulation

The right-hand side in (6) is being considered. F(v ) is split into three parts; the first part, F
1
, is

defined on the two straight faces of )
R* , z"0 where nT"(0 0!1), and z"* where

nT"(0 0 1):

F
1
(v)"P

R

R* P
u12

0
G(B (z)rafT)ra[n][E] C

A (z)

r
(a[A

r
]f#[Ah]f @)#A@ (z)[A

z
]fD K

z/*

#(B (z)rafT)ra[n][E] C
A(z)

r
(a[A

r
]f#[Ah]f @)#A@(z )[A

z
]f D K

z/0
H r dr dh.

Notice that on the face z"0, [n]"![A
z
]T, and on the face z"*, [n]"[A

z
]T, then F

1
be-

comes

F
1
(v)"A (z)B (z) K

z/*

z/0

r2a`1

2a#1 K
r/R

r/R* P
u12

0

fT[A
z
]T[E](a[A

r
]f#[Ah]f @ ) dh (15)

#A@ (z)B (z) K
z/*

z/0

r2a`2

2a#2 K
r/R

r/R* P
u12

0

fT[A
z
]T[E] [A

z
]f dh (16)

The second part, F
2
, is defined on the two cylindrical faces of )

R* , r"R where nT"(cos h
sin h 0), and r"R* where nT"!(cos h sin h 0):

F
2
(v)"P

*

0
P

u12

0

B (z)v8 T[n][E] G
A(z)

r
(a[A

r
]u8 #[Ah]Lhu8 )#A@(z )[A

z
]u8 H r K

r/R

#B(z )v8 T[n][E] G
A(z)

r
(a[A

r
]u8 #[Ah]Lhu8 )#A@(z )[A

z
]u8 H r K

r/R*

dz dh

On the cylindrical face r"R*, [n]"![A
r
]T, and on the face r"R, [n]"[A

r
]T, then F

2
(v)

becomes

F
2
(v)"AP

*

0

A(z)B (z) dzB Ga P
u12

0

v8 T[A
r
]T[E] [A

r
]u8 K

r/R

r/R*

dh (17)

#P
u12

0

v8 T[A
r
]T[E][Ah]Lhu8 K

r/R

r/R*

dhH (18)

#P
*

0

A@(z )B(z) dz P
u12

0

rv8 T[A
r
]T[E][A

z
]u8 K

r/R

r/R*

dh (19)

The third part of the linear formF, defined of the straight faces h"0 and h"u
12

, vanishes. This
is because we assume T"0 on these faces.
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The bi-linear form in (6) is being considered. Substitute (11) into (7), we may split B(u, v ) into
three parts B $%&"B

1
#B

2
#B

3
, given by

B
1
"AP

*

0

A(z )B(z ) dzB P
R

R* P
u12

0
GA[Ar

]L
r
#[Ah]

Lh
r B v8 H

T
[E] GA[Ar

]L
r
#[Ah]

Lh
r B u8 H r dr dh

(20)

B
2
"AP

*

0

A(z)B@(z) dzB
r2a`1

2a#1 K
r/R

r/R* P
u12

0

fT[A
z
]T[E](a[A

r
]f#[Ah]f @ ) dh

#AP
*

0

A@(z )B (z) dzB
r2a`1

2a#1 K
r/R

r/R* P
u12

0

(fTa[A
r
]T#f @T[Ah]T )[E][A

z
]f dh (21)

B
3
"AP

*

0

A@(z )B@(z) dzB P
R

R* P
u12

0

v8 T[A
z
]T[E][A

z
]u8 r dr dh (22)

Examining the bi-linear form B
2

it can be shown that for any material matrix,

fT[A
z
]T[E](a[A

r
] f#[Ah]f @)"(fTa[A

r
]T#f @T[Ah]T) [E][A

z
]f (23)

and integrating by parts one obtains

P
*

0

A(z)B@(z ) dz#P
*

0

A@(z )B (z) dz"A(z)B (z) K
z/*

z/0

(24)

As a result, substituting (23) and (24) into (21), B
2

becomes

B
2
"A(z )B (z) K

z/*

z/0

r2a`1

2a#1 K
r/R

r/R* P
u12

0

fT[A
z
]T[E](a[A

r
]f#[Ah]f @ ) dh (25)

We are now in the stage where we can gather all parts that contribute to the weak formulation.
Substituting (15)— (22), into (6), and noting that (25) is identical to the first part of F

1
given in (15)

one obtains

AP
*

0

A(z )B(z ) dzB P
R

R* P
u12

0
GA[Ar

]L
r
#[Ah]

Lh
r B v8 H

T
[E] GA[Ar

]L
r
#[Ah]

Lh
r B u8 H r dh dr

#AP
*

0

A@ (z)B@(z) dzB P
R

R* P
u12

0

v8 T [A
z
]T[E][A

z
]uJ r dr dh

"AP
*

0

A (z)B (z) dzB Ga P
u12

0

v8 T[A
r
]T[E][A

r
]u8 K

r/R

r/R*

dh

#P
u12

0

vJ T[A
r
]T[E][Ah]Lhu8 K

r/R

r/R*

dhH#
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#A@ (z)B (z) K
z/*

z/0
P

R

R* P
u12

0

vJ T[A
z
]T[E][A

z
]u8 r dh dr

#P
*

0

A@(z )B(z ) dz P
u12

0

rv8 T[A
r
]T[E][A

z
]u8 K

r/R

r/R*

dh (26)

Rearranging (26), using integration by parts, and dividing by :*
0

A (z)B(z ) dz, (26) becomes

P
R

R* P
u12

0
GA[Ar

]L
r
#[Ah]

Lh
r B v8 H

T
[E] GA[Ar

]L
r
#[Ah]

Lh
r B u8 H r dh dr

!P
u12

0

v8 T[A
r
]T[E][Ah]Lhu8 K

r/R

r/R*

dh

"a P
u12

0

v8 T[A
r
]T[E][A

r
]u8 K

r/R

r/R*

dh

#

P
*

0

A@@(z )B(z ) dz

P
*

0

A(z )B (z) dz
P

R

R* P
u12

0

v8 T[A
z
]T[E][A

z
]uJ r dh dr

#

P
*

0

A@ (z)B (z) dz

P
*

0

A(z)B(z ) dz
P

u12

0

rv8 T[A
r
]T[E][A

z
]u8 K

r/R

r/R*

dh (27)

The obtained formulation is an eigen-problem cast in the weak sense. However, the edge eigen
pairs are independent of the coordinate z, i.e. are independent of the edge stress intensity factors
A(z) or their derivatives. Thus, the two last expressions in (27) must vanish, obtaining the
Modified Steklov formulation for the edge eigenpairs

Seek a3C, 0Ou8 3[H1()3 *
R
)]3, such that, ∀v8 3[H1()3 *

R
)]3

BI (u8 , v8 )![N
R
(u8 , v8 )!N

R*(u8 , v8 )]"a[M
R
(u8 , v8 )!M

R* (u8 , v8 )] (28)

)3 *
R

is the two-dimensional domain which is the flat surface bounded by 0)h)u
12

and
R*)r)R and

BI (u8 , v8 ) $%&"P
R

R* P
u12

0
GA[Ar

]L
r
#[Ah]

Lh
r B v8 H

T
[E] GA[Ar

]L
r
#[Ah]

Lh
r B u8 H r dh dr (29)

N
R
(u8 , v8 ) $%&"P

u12

0

v8 T[A
r
]T[E][Ah]Lhu8 K

r/R

dh (30)

M
R
(u8 , v8 ) $%&"P

u12

0

v8 T[A
r
]T[E][A

r
]u8 K

r/R

dh (31)
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Figure 4. A typical finite element mesh in the domain )3 *
R

Remark 1. Although the test and trial functions have three components, the domain over
which the weak eigenformulation is defined is two-dimensional, and excludes any singular points.
Therefore the application of the p-version of the FEM for solving (28) is expected to be very
efficient.

Remark 2. The bilinar forms N
R

and N
R* are non-symmetric with respect to u8 and v8 , thus the

problem formulated in the weak sense loses its self-adjoint property. As a consequence, the
‘minimax principle’ does not hold, therefore the approximated eigenvalues (obtained by a series of
hierarchical family of trial functions) cannot be considered as an upper bound of the exact ones
and the monotonic behaviour of the error is lost as well. Nevertheless, convergence is assured
(with a very high rate as will be shown by the numerical examples) under a general proof provided
in Reference 22.

Remark 3. Note that the weak eigenformulation (28) is not limiting the domain )3 *
R

to be
isotropic, and in fact (28) can be applied to multi-material anisotropic interface, as will be
demonstrated by numerical examples.

3. NUMERICAL TREATMENT BY THE FINITE ELEMENT METHOD

In the following, the weak eigenformulation (28) is discretized by considering a finite dimensional
sub-space of [H1()3 *

R
)]3, employing the p-version of the finite element method.

Assume that the domain )3 *
R

consists of three different materials as shown in Figure 4.
We divided )3 *

R
into, let us say 3 finite elements, through a meshing process. Let us consider

a typical element, element number 1, shown in Figure 4, bounded by h
1
)h)h

2
. A standard

element in the m, g plane such that !1(m(1, !1(g(1 is considered, over which
the polynomial basis and trial functions are defined. These standard elements are then mapped
by appropriate mapping functions onto the ‘real’ elements (for details see Reference 21,
Chapters, 5, 6). The functions uJ

x
, uJ

y
, uJ

z
are expressed in terms of the basis functions '

i
(m, g) in the
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standard plane:

uJ
x
(m, g )"

N
+
i/1

a
i
'

i
(m, g)

uJ
y
(m, g )"

N
+
i/1

a
N`i

'
i
(m, g)

uJ
z
(m, g )"

N
+
i/1

a
2N`i

'
i
(m, g) H (32)

or

u8 "C
'

1
. . .'

N
0 . . . 0 0 . . . 0

0 . . . 0 '
1
. . .'

N
0 . . . 0

0 . . . 0 0 . . . 0 '
1
. . .'

N
D G

a
1
F

a
3N
H $%&" [']a (33)

where a
i
are the amplitudes of the basis functions, and '

i
are products of integrals of Legendre

polynomials in m and g. u8 and v8 lie in the same space, therefore, we define similarly v8 $%&" [']b.

Using (33) the unconstrained stiffness matrix corresponding to BI (u8 , v8 ) on the typical element is
given by

[K] $%&"P
R

R* P
h2

h1 GA[Ar
]L

r
#[Ah]

Lh
r B [']H

T
[E] GA[Ar

]L
r
#[Ah]

Lh
r B [']H r dh dr (34)

We concentrate our discussion now on N(u8 , v8 ). We start by evaluating the required expressions
involved in the computation. The mapping of m, g"!1 (side 1 of the standard element) onto
!
3

is given by the following:

h"
h
2
!h

1
2

m#
h
2
#h

1
2

(35)

so that dh"1
2
(h

2
!h

1
) dm, and the expression [Ah]Lhu8 dh becomes

[Ah]Lhu8 dh"[Ah]Lmu8 dm (36)

On side 1 the basis and trial functions '
i
(m, g"!1) are nothing more than integrals of Legendre

polynomials P
i
(m) for i'3, and P

1
(m )"(1!m)/2, P

2
(m)"(1#m )/2 (see, for details, Reference

21, Chapters 3, 6). By defining the following matrix:

[LP] $%&
"C

!P@
1

sin h . . . !P@
N

sin h 0 . . . 0 0 . . . 0

0 . . . 0 P@
1

cos h . . . P@
N

cos h 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0

P@
1

cos h . . . P@
N

cos h !P@
1

sin h . . . !P@
N

sin 0 0 . . . 0

0 . . . 0 0 . . . 0 P@
1

cos h . . . P@
N

cos h
0 . . . 0 0 . . . 0 !P@

1
sin h . . . !P@

N
sin hD
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(36) becomes

[Ah]Lmu8 dm"[LP]a dm (37)

We also define the matrix

[PI ] $%&"C
P
1

cos h . . . P
N

cos h 0 . . . 0 0 . . . 0
0 . . . 0 P

1
sin h . . . P

N
sin h 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0
P
1

sin h . . . P
N

sin h P
1

cos h . . . P
N

cos h 0 . . . 0
0 . . . 0 0 . . . 0 P

1
sin h . . . P

N
sin h

0 . . . 0 0 . . . 0 P
1

cos h . . . P
N

cos hD
so that the expression v8 T[A

r
]T becomes

v8 T[A
r
]T"bT[PI ]T (38)

Substituting (37) and (38) into (30) we obtain the expression for N
R
(uJ , vJ )

N
R
(u8 , v8 )"bT AP

1

~1

[PI ]T[E][LP] Kg/~1

dmB a $%&" bT[N
R
]a (39)

The entries of [N
R
] are computed using the Gauss quadrature

(N
R
)
ij
"

M
+

m/1

¼
m

6
+

l,k/1

PI
li
(m

m
)E

lk
LP

kj
(m

m
) (40)

where ¼
m

and m
m

are the weights and abscissas of the Gauss quadrature points, respectively.
Using the same arguments as above, the expression M

R
(u8 , v8 ) in (31) is evaluated

M
R
(u8 , v8 )"bT A

h
2
!h

1
2 P

1

~1

[PI ]T[E][PI ] Kg/~1

dmB a $%&" bT[M
R
]a (41)

and

(M
R
)
ij
"

h
2
!h

1
2

M
+

m/1

¼
m

6
+

l,k/1

PI
li
(m

m
)E

lk
PI
kj

(m
m
) (42)

The matrices [N
R*] and [M

R*] have same values as those of [N
R
] and [M

R
], but of opposite sign.

This is because the shape functions on the artifical boundaries !
3

and !
4

are the same (except for
some sign changes), and so is the mapping to the standard plane. Denoting the set of amplitudes
of the basis functions associated with the artificial boundary !

3
by a

R
, and those associated with

the artificial boundary !
4
by a

R* , the eigenpairs can be obtained by solving the generalized matrix
eigen problem:

[K]a!([N
R
]a

R
![N

R*]aR* )"a ([M
R
]a

R
![M

R*]aR* ) (43)
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Augmenting the coefficients of the basis functions associated with !
3

with those associated with
!
4
, and denoting them by the vector a

RR* , (43) becomes

[K]a![N
RR*]a

RR*"a[M
RR*]a

RR* (44)

We assemble the left-hand side of (44). The vector which represents the total number of nodal
values in )3 *

R
may be divided into two vectors such that one contains the coefficients a

RR
* , and the

other contains the remaining coefficients: aT"MaT
RR* , aT*/

N. By partitioning [K], we can write the
eigenproblem (44) in the form

C
[K

RR*]![N
RR*]

[K
*/~RR*]

[K
RR*~*/

]

[K
*/

] D G
a
RR*

a
*/
H"a C

[M
RR*]

[0]

[0]

[0]D G
a
RR*

a
*/
H (45)

The relation in (45) can be used to eliminate a
*/

by static condensation, thus obtaining the reduced
eigenproblem

[K
S
]a

RR*"a[M
RR*]a

RR* (46)

where

[K
S
]"([K

RR*]![N
RR*])![K

RR*~*/
][K

*/
]~1[K

*/~RR*]

It is possible to eliminate the unknowns a
*/

from the matrix [K], because the relevant equations
do not involve the as yet unknown eigenvalues a.

For the solution of the eigenproblem (46), it is important to note that [K
S
] is, in general, a full

matrix. However, since the order of the matrices is relatively small, the solution (using Cholesky
factorization to compute [K

*/
]~1) is not expensive. Details on the implementation issues for

solving the generalized eigenvalue problem can be found in Reference 23.

Remark 4. There is the possibility that an eigenvalue is repeated m times with less than
m corresponding eigenvectors (the algebraic multiplicity is higher than the geometric multipli-
city). This is associated with the special cases when the asymptotic expansion contains logarith-
mic terms, and this behavior triggers the existence of ln(r) terms.

Remark 5. Although we derived our matrices as if only one finite element exists along the
boundary !

3
and !

4
, the formulation for multiple finite elements is identical, and the matrices

[K], [N
R
] and [M

R
] are obtained by an assembly procedure.

4. NUMERICAL INVESTIGATION

The performance of the modified Steklov weak formulation is demonstrated in the following
subsections on several test cases for which the exact eigenvalues are known. We first consider
a plane crack in an isotropic material, and at the interface of a bi-material interface, followed by
the computation of eigenpairs associated with free edge effects in two cross-ply anisotropic
laminate. These three examples demonstrate the robustness, efficiency and accuracy of the
proposed numerical methods for extracting eigenpairs.

4.1. Plane crack in isotropic domains

Consider a plane crack in an isotropic material as shown in Figure 5. The material properties
are E"1 and l"0·3. The exact first three eigenpairs for this example problem are
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Figure 6. Finite element mesh used for the plane crack in isotropic domain

Figure 5. A typical plane crack in isotropic domains

a
1
"a

2
"a

3
"0·5, and in linear elastic fracture mechanics terminology they are associated with

deformation modes I, II and III. This example problem has been used to demonstrate the
accuracy which is typically achieved with the proposed numerical method.

A four-element mesh has been used as shown in Figure 6, and over each element the
polynomial degree of the shape functions has been increased from 1 to 8. In all examples R"1.
As will be shown in the following the magnitude of R* has virtually no influence on the accuracy
of the obtained eigenpairs, and as R*P 1 the accuracy of the results slightly improves, therefore
the value R*"0·99 is used in all computations. The relative error (%) in the ith eigenvalue is
defined by

eai (%)"100
aFE
i
!a

i
a
i

(47)
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sComputations performed on a SGI Indigo2 machine, with a R4400 200 MHz processor, Specfp92"131

Figure 7. Convergence of approximated eigenvalues for plane crack edge in isotropic domain

Table I. Relative error (%) in the first 3 eigenvalues—Plane crack edge in isotropic domain

p-level p"1 p"2 p"3 p"4 p"5 p"6 p"7 p"8
DOF 30 69 108 159 222 297 384 483
CPU (s) 0·17 0·48 2·4 2·2 3·9 6·4 10·8 16·4

e-val d
ea1 0·06 !0·199 !0·004 !0·00007 !0·0000030 0·0000011 !0·000000019 !0·000000039
ea2 1·97 !0·0977 !0·00078 !0·000016 0·0000021 !0·00000057 !0·000000031 0·000000032
ea3 2·57 0·0256 0·0001 0·00000028 !0·0000000015 0·0000000097 0·000000005 !0·0000000035

We summarize the relative error (%) in the first 3 eigenvalues, the number of degrees of freedom
before performing static condensation, and the CPU elapsed times required for the computation
in Table I. The rate of convergence of the eigenvalues (reported in Table I) is clearly visible when
plotted on a log—log scale as shown in Figure 7. This shows the rapid but non-monotonic
convergence rate as expected. To demonstrate the influence of R* on the obtained results, Figure
8 presents the absolute relative error (%) in the first three eigenvalues at p"8 as R* varies from
0·5 to 0·99.

4.2. Plane crack at bi-material interface

Consider a bi-material interface which is composed of two homogeneous materials, with
continuity of tractions and displacements across interface maintained. The two materials are
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Figure 8. R* influence on eigenvalues accuracy (plane crack edge in isotropic domain)

Figure 9. Plane crack at bi-material interface

isotropic, both having Poisson ratio 0·3, the upper material having E"10 and the lower E"1.
We are interested in plane cracks at the interface of the two materials as shown in Figure 9. This
example problem has been chosen to demonstrate the method’s performance for cases where
complex eigenpairs arise. The exact first three eigenpairs for this example problem are
a
1,2

"0·5$i0·07581177769 and a
3
"0·5. In linear elastic fracture mechanics terminology a

1
and a

2
are associated with deformation in the x—y plane (where mode I and mode II are coupled

in this case), and a
3

is the out-of-plane mode.
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Figure 10. Cross-ply anisotropic laminate

Table II. Relative error (%) in the first eigenvalues—plane crack edge at bi-material interface

p-level p"1 p"2 p"3 p"4 p"5 p"6 p"7 p"8

e-val d
eRa1,2 1·03 !0·196 !0·011 !0·00050 !0·000014 5·2e!11 !0·0000000028 !0·0000000025
eI.a1,2 !95 !15·5 !1·118 !0·0425 0·0010 !0·000017 0·000000013 0·000000079

ea3 2·59 0·0256 0·0001 0·00000028 !0·0000000015 0·0000000097 0·000000005 !0·0000000035

The same four-element mesh as shown in Figure 6 has been used for the computations. The
relative error (%) in the first two eigenvalues is split in two: one defining the relative error in the
real part and being denoted by eRa1,2 and the other defining the relative error in the imaginary
part eI.a1,2

eRa1,2 (%)"100
RaFE

1
!Ra

1
Ra

1

, eI.a1,2 (%)"100
ImaFE

1
!Ima

1
Ima

1

(48)

Since we are using exactly the same mesh as in the previous example problem, the number of
degrees of freedom and the CPU elapsed time for computations remain as reported in Table I. We
summarize the relative error (%) in the first 3 eigenvalues in Table II. The method provides
excellent results for complex eigenpairs as well, with no deterioration in the performance.

4.3. Two cross-ply anisotropic laminate

We study edge singularities associated with a two cross-ply anisotropic laminate. Consider
a composite laminate with ply properties typical of a high modulus graphite—epoxy system, as
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Figure 11. Finite element mesh used for the cross-ply anisotropic laminate

Table III. Relative error (%) in the first 5 non-integer eigenvalues—Cross-ply anisotropic laminate

p-level p"1 p"2 p"3 p"4 p"5 p"6 p"7 p"8
DOF 18 39 60 87 120 159 204 255
CPU (s) 0·12 0·23 0·48 0·92 1·54 2·41 4·19 6·08

e-val d
ea1 !7·5 !0·44 !0·38 0·056 !0·018 !0·0067 !0·000825 !0·00006

eRa2,3 !30·4 !15·21 !0·298 !0·228 !0·053 !0·0064 !0·0022 !0·00033
eI.a2,3 ** ** !15·71 !3·196 0·112 0·106 0·0077 !0·00004

eRa4,5 !7·75 6·11 4·05 0·315 !0·187 !0·122 !0·013 !0·0034
eI.a4,5 ** ** !18·52 !11·43 !1·13 !0·041 0·073 0·0135

**No imaginary part

shown in Figure 10. The orientation of fibres differs from layer to layer. Referring to the principle
direction of the fibres, we define

E
L
"20]106 psi E

T
"E

z
"2.1]106 psi

G
LT

"G
Lz
"G

Tz
"0·85]106 psi l

LT
"l

Lz
"l

Tz
"0·21

where the subscripts ¸, ¹, z refer to fibre, transverse and thickness directions of an individual ply,
respectively. The material matrix [E] for a ply with fibres orientation rotated by an angle b about
the y-axis is given by

[E]"[¹(b)]T[E
0
][¹(b )]
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Figure 12. Convergence of approximated eigenvalues for the cross-ply anisotropic laminate

where

[¹ (b )]"A
s2 0 c2 0 0 c · s
0 1 0 0 0 0
c2 0 s2 0 0 !c · s
0 0 0 s c 0
0 0 0 !c s 0

!2c · s 0 2c · s 0 0 s2!c2
B , c $%&" cos(b ), s $%&" sin(b)

[E
0
]"» A

(1!l
Tz

l
zT

)E
L

(l
LT

#l
Lz

l
zT

)E
T

(l
zL
#l

zT
l
TL

)E
L

0 0 0

(1!l
Lz

l
zL

)E
L

(l
zT
#l

LT
l
zL

)E
T

0 0 0

(1!l
LT

l
TL

)E
z

0 0 0
G

Tz
»

0 0
G

Lz
»

0
G

LT
»

B
» $%&" (1!l

LT
l
TL

!l
Tz

l
zT
!l

Lz
l
zL
!2l

LT
l
Tz

l
zL

)~1

l
TL

"l
LT

E
T

E
L

, l
zT
"l

Tz

E
z

E
T

, l
zL
"l

Lz

E
z

E
L
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Figure 13. Eigenfunctions associated with a
1

for the cross-ply anisotropic laminate

We first investigate the eigenpairs associated with the singularities near the junction of the free
edge and the interface, edge A in Figure 10, for a commonly used [$b] angle-ply composite. Of
course, the eigenpairs depend on b and we chose b"45° for which the first 12 exact non-integer
eigenpairs are reported in [15] with 8 decimal significant digits: a

1
"0·974424342,

a
2,3

"1·88147184$i0·23400947, a
4,5

"2·5115263$i0·79281732, . . . .
We use in our computation the two-element mesh shown in Figure 11. We summarize the

relative error (%) in the first 5 non-integer eigenvalues, the number of degrees of freedom before
performing static condensation, and the CPU elapsed time required for the computation in Table
III. The rate of convergence of the eigenvalues (reported in Table III) is clearly visible when
plotted on a log—log scale as shown in Figure 12. Again one obtains a rapid convergence rate. The
three-dimensional eigenfunctions (displacement fields) associated with a

1
obtained at p"8 are

illustrated in Figure 13.
The variation of the eigenvalues for different [$b] cross-ply laminate is investigated in the

following. We use the same mesh presented in Figure 11, with different material properties which
reflect a laminate with fibers rotated at an angle $b about the y-axis. The obtained eigen values
reported in Table IV are accurate up to the 5 decimal digit shown. This accuracy is guaranteed
because these digits have not been changed while increasing the polynomial level over the finite
element mesh.

Delamination. Once a crack starts propagating between two lamina, the behaviour of the
singular stress tensor changes dramatically, and the eigenpairs are different. We consider a plane-
crack with a tip at the edge denoted by edge B in Figure 10. Again we consider a [$45°] cross-ply
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Table IV. Eigenvalues for different [$b] fibre orientation cross-
ply laminate

[$b] 15° 30° 45° 60° 75°

a
1

0·99936 0·98834 0·97442 0·97665 0·99105

Table V. First 3 eigen-values for a crack between two laminas in a cross-ply anisotropic laminate

p-level p"1 p"2 p"3 p"4 p"5 p"6 p"7 p"8
DOF 30 69 108 159 222 297 384 483

RaFE
1,2

0·517095 0·498988 0·500189 0·4999305 0·499995 0·500005 0·500002 0·500000
ImaFE

1,2 * 100 3·472695 3·464185 3·518766 3·467100 3·444288 3·437041 3·435015 3·434454
aFE
3

0·516157 0·510878 0·499144 0·499133 0·499847 0·500039 0·500020 0·500001

laminate, and use a four-element mesh (as the one in Figure 6) for the computations. The first
three eigenvalues and the number of DOFs at each p-level are summarized in Table V. Observing
the obtained results we may conclude with a high degree of confidence that a

1,2
"0·500000$

i0·0343 and a
3
"0·50000.

5. SUMMARY AND CONCLUSION

We have described a numerical method, based on the modified Steklov formulation, for the
reliable computation of eigenpairs resulting from three-dimensional edge singularities due to
reentrant-corners, abrupt changes in material properties or boundary conditions. The formula-
tion has been solved by means of the p-version of the finite element method, and is suitable for
implementation in finite element programs. Numerical experiments for isotropic as well as
anisotropic multi-material interfaces indicate that the computed values converge strongly, are
accurate and inexpensive from the points of view of human time needed for input data prepara-
tion, and required CPU time. As demonstrated, the convergence behaviour is non-monotonic,
however, using p-extensions excellent convergence rates were obtained.

The modified Steklov method also provides eigenpairs corresponding to infinite strain energy
(i.e. a

i
(0), which may be required for extracting stress intensity functions by the dual singular

method. This is achieved because the singular point is excluded from the solution domain. This
also allows a smaller domain to be analyzed and higher efficiency, due to the fact that radial
refinements towards the singular edge are not required.

Although not demonstrated, the robustness of the method is maintained also when power-
logarithmic stress singularities arise: the two computed distinct but adjacent eigenvalues and their
corresponding eigenfunctions collapse into one as the number of degrees of freedom is increased,
indicating the presence of these kind of singularities.

Computations of edge eigenpairs is important because they provides a rigorous quantitative
basis for investigating failure events, such as delamination of composite materials, and failure in
electronic devices. Having obtained the eigenpairs, a research project is underway for computing
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the ‘edge stress intensity functions’ by the complementary energy principle, as described in
Reference 24 in a two-dimensional setting.
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