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The solution u to the Laplace equation in the neighborhood of a vertex in a three-dimensional domain may
be described by an asymptotic series in terms of spherical coordinates u = ∑

i Aiρ
νi fi(θ , ϕ). For conical

vertices, we derive explicit analytical expressions for the eigenpairs νi and fi(θ , ϕ), which are required as
benchmark solutions for the verification of numerical methods. Thereafter, we extend the modified Steklov
eigen-formulation for the computation of vertex eigenpairs using p/spectral finite element methods and
demonstrate its accuracy and high efficiency by comparing the numerically computed eigenpairs to the ana-
lytical ones. Vertices at the intersection of a crack front and a free surface are also considered and numerical
eigenpairs are provided. The numerical examples demonstrate the efficiency, robustness, and high accuracy
of the proposed method, hence its potential extension to elasticity problems. © 2009 Wiley Periodicals, Inc.
Numer Methods Partial Differential Eq 27: 662–679, 2011
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I. INTRODUCTION

It is well known that solutions to the Laplace equation in the vicinity of a vertex in three-
dimensional (3D) domains exhibit singularities. Investigation of such singularities is of interest
in electromagnetic fields and magnetic recording, as well as in heat transfer problems, which may
be described in realistic 3D domains by the Laplace equation. These solutions are also of major
interest in the theory of elasticity, governed by second-order elliptic PDEs, whose characteristics
are similar to the Laplace equation.

Although singular points in 2D domains have been extensively investigated, the vertex singu-
larities in 3D domains received much scant attention because of their complexity. To the best of
our knowledge, numerical methods for the investigation of vertex of conical notches, specifically
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the exponents of the singularity, were first introduced in [1]. Stephan and Whiteman [2] and Bea-
gles and Whiteman [3] investigated analytically several vertices for the Laplace equation in 3D,
mainly with homogeneous Dirichlet boundary conditions (BCs) and analyzed a finite element
method (FEM) for the computation of eigenvalues by discretizing the Laplace-Beltrami equation
(error estimates provided but no numerical results).

Analytical methods for the computation of the singularity exponents for homogeneous Dirich-
let BCs are provided in [3] and in [4, p. 45–48] for axisymmetric cases. In [5] the Laplace equation
in the vicinity of a conical point with Neumann BCs is also discussed, with a graph describing
the behavior of the eigenvalues for different opening angles ω.

In this article, we extend the modified Steklov method, presented in [6] in the context of 2D
problems, for the computation of eigenpairs associated with vertex singularities of the Laplace
equation. We first provide analytical solutions for conical vertices for simplified problems in
section II against which our numerical methods will be compared to demonstrate their conver-
gence rate and accuracy. In section III, we formulate the weak eigenproblem, i.e., the modified
Steklov formulation, and cast it in the form suitable for spectral/p finite element discretization.
This method is aimed at computing the eigenpairs in a very efficient and accurate manner and
may be generalized for multimaterial interfaces and elasticity operator. Numerical examples are
considered in section IV—we first consider two problems for which analytical eigenpairs are pro-
vided in section II to demonstrate the accuracy and efficiency of the proposed numerical methods,
followed by two more complicated example problems for which analytical results are unavailable.

II. ANALYTICAL SOLUTIONS FOR CONICAL VERTICES

Consider a 3D domain � having a rotationally symmetric conical vertex O on its boundary
as shown in Fig. 1 with ω/2 ∈ [0, π ]. We aim at solving the Laplace equation with either
homogeneous Dirichlet BCs in the vicinity of the conical point ρ → 0:

∇2u(ρ, θ , ϕ) = 0 in �, (2.1)

u(ρ, θ = ω/2, ϕ) = 0 on ∂�c, (2.2)

FIG. 1. Typical 3D domain with a rotationally symmetric conical vertex. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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or with homogeneous Neumann BCs:

∂u

∂n
(ρ, θ = ω/2, ϕ) = 1

ρ

∂u(ρ, θ = ω/2, ϕ)

∂θ
= 0 on ∂�c, (2.3)

where ∂�c = 	c is the surface of the cone insert. Following [7], the solution is sought by separation
of variables:

u(ρ, θ , ϕ) = R(ρ)
(θ)�(ϕ). (2.4)

Substituting (2.4) in (2.1) one obtains a set of three ODEs as follows:

ρ2R′′ + 2ρR′ − ν(ν + 1)R = 0, (2.5)

�′′ + µ2� = 0, (2.6)

− sin2(θ)
′′ − sin(θ) cos(θ)
′ − (ν(ν + 1) sin2(θ) − µ2)
 = 0, (2.7)

where ν(ν + 1) and µ2 are separation constants. In (2.6) we chose the separation constant as µ2

because it has to be positive if a periodic solution in ϕ is sought (for conical reentrant corners).
The solution to (2.5) is of the form:

R(ρ) = Aρν , (2.8)

where A is a generic constant. The restriction ν ≥ 0 has to hold true to obtain solutions that are in
the Sobolev space H 1(�) (functions which have square zero and first derivatives integrable over
the domain �, see [8]). The periodic solution to (2.6) is as follows:

� = B sin(µϕ) + C cos(µϕ), (2.9)

where B and C are generic constants. The periodicity constrain is �(ϕ) = �(ϕ+2nπ), therefore

µ has to be a positive integer, i.e., µ = 0, 1, 2, . . .
def= m. The case m = 0 is associated with

axisymmetric solutions, independent of ϕ.
Changing variables z = cos(θ), the ODE (2.7) becomes:

(1 − z2)
d2


dz2
− 2z

d


dz
+

[
ν(ν + 1) − m2

1 − z2

]

 = 0, (2.10)

with homogeneous Dirichlet BCs:


(z0) = 0 ⇒ 
(cos ω/2) = 0, (2.11)

or homogeneous Neumann BCs:

1

ρ

d
(z0)

dθ
= 0 ⇒ d
(cos ω/2)

dθ
= 0. (2.12)

z in general may be a complex variable, and m, ν are parameters that may take arbitrary real or
complex values, called spherical harmonics.

The solution to (2.10) consists of a linear combination of first and second kind associated
Legendre functions of degree ν and order m, denoted by P m

ν (z) and Qm
ν (z), respectively. That is,


(z) = DP m
ν (z) + EQm

ν (z) ⇒ 
(cos θ) = DP m
ν (cos θ) + EQm

ν (cos θ), (2.13)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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where D and E are generic constants. For m = 0 the Legendre functions of the second kind tend
to ∞ along the axis of symmetry of the domain, hence we set E ≡ 0. Furthermore, for m > 0
the leading term of Qm

ν (z) is as follows:

2m/2−1	(m) cos(mπ)(1 − z)−m/2,

then at θ = 0, i.e., z = 1, Qm
ν (cos 0) is unbounded, thus one must choose E = 0, which reduces

the solution (2.13) to:


(cos θ) = DP m
ν (cos θ), (2.14)

where P m
ν (cos(ω/2)) is the associated Legendre function of the first kind. For example, for

the case m = 0, the Legendre function Pν can be computed using the Mehler-Dirichlet
formula [7, (7.4.10)]:

Pν(cos ω/2) =
√

2

π

∫ ω/2

0

cos
(
ν + 1

2

)
t√

cos t − cos(ω/2)
dt . (2.15)

It is important to notice that [7]

P m
ν (cos θ) = P m

−1−ν(cos θ), (2.16)

which has the following important implication on the solution: if a given P m
ν is a solution then so

is P m
−1−ν , i.e., if a given ν is found to satisfy the BCs, so will −1 − ν.

Because there are an infinite number of νs that are determined by the BCs (detailed in the next
subsection), each being a root of the Legendre function P m

ν�
, we denote them by two indices ν

(m)

� ,
so the overall solution can be represented by:

u(ρ, θ , φ) =
∑
m=0

∑
�=1

ρν
(m)
�

[
Am,� sin(mϕ) + Bm,� cos(mϕ)

]
P m

ν�
(cos θ). (2.17)

A. Homogeneous Dirichlet BCs

Consider for example the domain in Fig. 1 with the conical point at the apex of a cone insert
having a solid angle ω = 6π/4. There is an infinite number of νs for which the homogeneous
Dirichlet BC (2.2) holds true. These νs are found by the root of (2.2):

P m
ν (cos 3π/4) = 0, (2.18)

m = 0 - Axisymmetric Solution. For the case m = 0 (2.18) reads Pν(cos 3π/4) = 0. Using
Mathematica [9] one may easily obtain the following first four non-negative ν(0)s for which (2.18)
holds true:

ν
(0)

1 = 0.463098561780106, ν
(0)

2 = 1.81322787311022

ν
(0)

3 = 3.153048711303707, ν
(0)

4 = 4.48976080342872.

The associated Legendre functions of first kind are shown in Fig. 2.
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FIG. 2. First four eigenfunctions, Dirichlet BCs for conical point having a solid angle 3π/4.

For each of the ν
(0)

i s a solution of the form

ui(ρ, θ , ϕ) = Aiρ
ν
(0)
i P

ν
(0)
i

(cos θ)

is obtained, so that the overall solution is a linear combination:

u(ρ, θ , ϕ) =
∑

i

Aiρ
ν
(0)
i P

ν
(0)
i

(cos θ). (2.19)

Remark 2.1. Notice that since ν
(0)

1 < 1 the first derivative is unbounded as ρ → 0

m = 1, 2, 3, . . .. For an arbitrary m the solution of P m
ν (cos 3π/4) = 0 is obtained with 15 digits

accuracy using the numerical algorithms within Mathematica [9]. We summarize in Table I the
first four νs for m = 0, 1, 2, 3.

In Fig. 3 we plot the variation of the smallest eigenvalues ν
(0)

1 , ν
(1)

1 , and ν
(2)

1 as a function of ω

starting from a flat plate ω/2 = π/2 till a reentrant line ω/2 = π .

TABLE I. First four νs for m = 0, 1, 2, 3 for Dirichlet BC associated with ω = 6π/4.

ν
(m)

1 ν
(m)

2 ν
(m)

3 ν
(m)

4

m = 0 0.46309856178010 1.81322787311022 3.153048711303707 4.48976080342872
m = 1 1.24507709100149 2.54898557133218 3.868541068328044 5.19403335518201
m = 2 2.13656665895361 3.37380855301073 4.655359106556064 5.95715662710399
m = 3 3.07712950983885 4.25338593246190 5.492126885263152 6.76456426448560
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FIG. 3. ν
(0)

1 , ν
(1)

1 , and ν
(2)

1 , as a function of the cone reentrant angle ω, Dirichlet BCs. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

B. Homogeneous Neumann BCs

For the same domain as in subsection A with ω = 6π/4 the homogeneous Neumann BC (2.3)
reads:

1

ρ

dP m
ν (cos θ)

dθ

∣∣∣∣
θ=3π/4

= 0 ⇒ − sin θ
dP m

ν (cos θ)

d cos θ

∣∣∣∣
θ=3π/4

= 0. (2.20)

By using the recursive formula [7, (7.12.16) on p. 195]:

(
z2 − 1

)dP m
ν (z)

dz
= νzP m

ν (z) − (ν + m)P m
ν−1(z), (2.21)

the BC (2.20) becomes:

cos(3π/4)νP m
ν (cos 3π/4) − (ν + m)P m

ν−1(cos 3π/4) = 0, (2.22)

for which an infinite number of νs exists.
The smallest non-negative eigenvalue is 0, associated with the so-called rigid body motion

(known to exist for homogeneous Neumann BCs) and is of no interest as it describes a constant
solution.
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FIG. 4. First four eigenfunctions associated with m = 0, Neumann BCs, ω = 6π/4.

Axisymmetric Solution. The first four non-negative (and nonzero) νs for m = 0 for which
(2.22) holds true are as follows:

ν
(0)

1 = 1.24507709100149, ν
(0)

2 = 2.548985521168983

ν
(0)

3 = 3.86854093155942, ν
(0)

4 = 5.194033355182022

The associated Legendre eigenfunctions of the first kind are shown in Fig. 4.
For an arbitrary m we summarize in Table II the first four (nonzero) νs for m = 0, 1, 2, 3.

III. THE MODIFIED STEKLOV WEAK FORM AND FINITE ELEMENT DISCRETIZATION

Herein, we develop the formulation and numerical procedures that will efficiently and reliably
compute approximations for the singular solutions (eigenpairs) for such problems when used in
conjunction with the spectral/p-version of the FEM. The proposed method, named the “modi-
fied Steklov method” [6, 10], is in general, applicable to singularities associated with corners,
nonisotropic multimaterial interfaces and abrupt changes in BCs.

TABLE II. First four νs for m = 0, 1, 2, 3 for Newmann BC associated with ω = 6π/4.

ν
(m)

1 ν
(m)

2 ν
(m)

3 ν
(m)

4

m = 0 1.2450770910 2.54898552117 3.86854093156 5.19403335518
m = 1 0.8571676765 2.00000000000 3.27090467124 4.57561722130
m = 2a 1.8742536963 2.88678057132 4.08498821549 5.35319993628
m = 3b 2.9130094418 3.84636536605 4.96120003163 6.18222599268
aFor m = 2, ν = 1 is also an eigensolution, but P 2

1 (cos θ) ≡ 0.
bFor m = 3, ν = 1, 2 are also eigensolutions, but P 3

1 (cos θ) = P 3
2 (cos θ) ≡ 0.
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FIG. 5. The subdomain �R in the vicinity of the vertex. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

Consider (2.1–2.2) or (2.3) in the vicinity of the vertex, in an artificial subdomain �R created
by the intersection of � with two spheres of radii R1 < R2 as shown in Fig. 5. As the solution in
the vicinity of the vertex is of the form u = ρνf (θ , ϕ) on the surface of the sphere R1 one obtains:

∂u

∂n
(ρ = R1) = −∂u

∂ρ
(ρ = R1) = −νRν−1

1 f (θ , ϕ) = − ν

R1
u(R1, θ , ϕ). (3.1)

Similarly, on the surface of the sphere R2, one obtains:

∂u

∂n
(ρ = R2) = ∂u

∂ρ
(ρ = R2) = ν

R2
u(R2, θ , ϕ). (3.2)

Thus, the strong (classical) modified Steklov formulation in �R (see [6]) is obtained:

∇2u(ρ, θ , ϕ) = 0 in �R (3.3)

1

ρ

∂u(ρ, θ = ω/2, ϕ)

∂θ
= 0 or u(ρ, θ = ω/2, ϕ) = 0 on 	c

def= ∂�c, (3.4)

∂u

∂n
(ρ = R1) = − ν

R1
u(R1, θ , ϕ) on 	R1 , (3.5)

∂u

∂n
(ρ = R2) = ν

R2
u(R2, θ , ϕ) on 	R2 . (3.6)

The strong modified Steklov formulation may be brought to a weak form by multiplying (3.3)
by a test function v(ρ, θ , ϕ) integrating over �R and using Green’s theorem to obtain:

∫∫∫
�R

(∇u) · (∇v)d� =
∫∫

∂�R

∂u

∂n
vdS (3.7)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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For homogeneous Neumann or Dirichlet BCs on ∂�c that part of the boundary diminishes in
the RHS of (3.7), and considering (3.5)–(3.6) one finally obtains the weak modified Steklov
eigen-formulation:

Seek ν ∈ 
 and 0 �= u ∈ E(�R) such that ∀v ∈ E(�R)

B(u, v) = ν
(MR2(u, v) − MR1(u, v)

)
, (3.8)

where

B(u, v)
def=

∫ R2

ρ=R1

∫ ω
2

θ=0

∫ 2π

ϕ=0

(
ρ2 sin θ

∂u

∂ρ

∂v

∂ρ
+ sin θ

∂u

∂θ

∂v

∂θ
+ 1

sin θ

∂u

∂ϕ

∂v

∂ϕ

)
dρ dθ dϕ, (3.9)

ν
(MR2(u, v) − MR1(u, v)

) def= ν

(
R2

∫ ω
2

θ=0

∫ 2π

ϕ=0
u v

∣∣
R2

sin θ dθ dϕ

− R1

∫ ω
2

θ=0

∫ 2π

ϕ=0
u v

∣∣
R1

sin θ dθ dϕ

)
. (3.10)

Here, E(�R) denotes the energy space, containing of all functions which have finite square first
derivatives integrable over the domain �R , see [8].

Remark 3.1. Notice that in 2D [6] the RHS of the weak form is independent of the radius of the
circular domain, whereas in 3D there is an explicit dependency on R1 and R2.

Remark 3.2. For homogeneous Dirichlet BCs, the energy space E(�R) is restricted to functions

that automatically satisfy these (see also [6] for the space
◦
E (�R)).

Remark 3.3. The third term in the integrand in (3.9) is singular due to the term 1
sin θ

. A remedy
for this difficulty may be obtained if a nonsymmetric weak formulation is considered.

Remark 3.4. The weak formulation (3.8) may be generalized to cases that involve a V-notch or
a crack front (see e.g., Figs. 8–10). In these cases, the integral on the variable ϕ is to be performed
from 0 to ϕ2 (the solid angle of the V-notch opening – a crack is a V-notch for which ϕ2 = 2π ).
We generalize the formulation for these latter cases in the following.

A. A Nonsymmetric Weak Eigenform

In view of remark 3.3, we multiply (3.3) by a special test function sin θw(ρ, θ , ϕ) and follow the
steps described earlier to obtain a nonsymmetrical weak modified Steklov eigen-formulation that
does not contain singular terms:

Seek ν ∈ 
 and 0 �= u ∈ E(�R), such that ∀w ∈ E(�R)

B̃(u, w) = ν
(M̃R2(u, w) − M̃R1(u, w)

)
, (3.11)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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where

B̃(u, w)
def=

∫ R2

ρ=R1

∫ ω
2

θ=0

∫ ϕ2

ϕ=0

(
ρ2 sin2 θ

∂u

∂ρ

∂w

∂ρ
+ sin2 θ

∂u

∂θ

∂w

∂θ

+ ∂u

∂ϕ

∂w

∂ϕ
+ sin(2θ)

2

∂u

∂θ
w

)
dρ dθ dϕ, (3.12)

ν
(M̃R2(u, v) − M̃R1(u, v)

) def= ν

(
R2

∫ ω
2

θ=0

∫ ϕ2

ϕ=0
u w

∣∣
R2

sin2 θ dθ dϕ

− R1

∫ ω
2

θ=0

∫ ϕ2

ϕ=0
u w

∣∣
R1

sin2 θ dθ dϕ

)
. (3.13)

For convenience of numerical application (and for future use of the p-FE method), we perform
a change of variables in (3.12–3.13) as follows:

ρ = 1 − ξ

2
R1 + 1 + ξ

2
R1 → dρ = R2 − R1

2
dξ , (3.14)

θ = 1 + η

2

ω

2
→ dθ = ω

4
dη, (3.15)

ϕ = 1 + ζ

2
ϕ2 → dϕ = ϕ2

2
dζ , (3.16)

so that (3.12–3.13) become:

B̃(u, w) = ωϕ2

4(R2 − R1)

∫∫∫ 1

−1
ρ2(ξ) sin2 θ(η)

∂u

∂ξ

∂w

∂ξ
dξ dη dζ ,

+ (R2 − R1)ϕ2

ω

∫∫∫ 1

−1
sin2 θ(η)

∂u

∂η

∂w

∂η
dξ dη dζ ,

+ (R2 − R1)

4

(
ω

ϕ2

∫∫∫ 1

−1

∂u

∂ζ

∂w

∂ζ
dξ dη dζ

+ ϕ2

∫∫∫ 1

−1

sin(2θ(η))

2

∂u

∂η
w dξ dη dζ

)
, (3.17)

ν
(M̃R2(u, v) − M̃R1(u, v)

)
= ν

ωϕ2

8

[∫∫ 1

−1

(
R2(u w)

∣∣
ξ=1

− R1(u w)
∣∣
ξ=−1

)
sin2 θ(η) dη dζ

]
. (3.18)

Application of p/Spectral Finite Element Methods. The weak form (3.11) may be rep-
resented in terms of a matrix formulation using the p-version or spectral FEM. The finite
dimensional space corresponding to the weak form is spanned by a set of shape functions
Ni(ξ , η, ζ ), i = 1, . . . , (p + 1)(q + 1)(s + 1), where (p + 1) represents the number of basis

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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functions that span the functional space in ξ ((q + 1), (s + 1) correspond to the number of basis
functions in η and ζ correspondingly). In terms of the shape functions and their coefficients,
one has u = ∑(p+1)(q+1)(s+1)

i=1 aiNi(ξ , η, ζ ) = �aT
tot

�N and similarly v = w = �NT �btot. Denoting by
�aR and �bR the coefficients that multiply basis functions that are nonzero on 	R1 and 	R2 , (3.8)
or (3.11) becomes:

[K]�atot = ν


[MR1 ] [0]

[0] [MR2 ]


 �aR , (3.19)

where [K] is the stiffness matrix, and [MRi
] are the generalized mass matrices corresponding to

the terms in �aR on the boundaries 	Ri
.

We may partition �atot = {�aR , �ain}. By partitioning [K], we may represent the eigenproblem
(3.19) in the form:


 [KR] [KR−in]

[Kin − R] [Kin]


 {�aR , �ain } = ν


[MR1 ] [0]

[0] [MR2 ]


 �aR . (3.20)

The relation in (3.20) can be used for eliminating �ain by using static condensation, thus obtaining
the reduced eigenproblem:

[KS]�aR = ν


[MR1 ] [0]

[0] [MR2 ]


 �aR , (3.21)

where:

[KS] = [KR] − [KR−in][Kin]−1[Kin−R].
For the solution of (3.21), it is important to note that [KS] is, in general, a full matrix. However,

as the order of the matrices is relatively small, the solution is inexpensive.

Remark 3.5. For conical vertices the solution in �R is regular and the p/spectral FEM will
converge exponentially [11], and furthermore also the dual eigenpairs are obtained as solutions
of the form ρ−ν−1 ∈ E(�R).

Remark 3.6. Homogeneous Dirichlet BCs on one or more of the boundaries are applied in the
numerical algorithm according to [12]. We substitute 0s in the rows and columns corresponding
to unknown values on the boundaries in the matrices [K], [MRi

], except the diagonal terms which
is set equal to 1 in [K] and a small value, let us call it b, in [MRi

]. This procedure is equivalent to

restricting the space in which the functions belong to
◦
E (�R). If we perform this procedure on n

rows, for example, we obtain n “artificial eigenvalues” equal to 1/b. In our numerical examples,
we chose b = 0.01 to produce very large “artificial eigenvalues” all equal to 100.

The Basis Functions. We construct the basis functions so that the first 2(q + 1)(s + 1) are
nonzero on the two boundaries ρ = R1 and ρ = R2, whereas all the other are zero on these two
boundaries. A polynomial basis (in terms of the variable −1 ≤ t ≤ 1, based on the Legendre
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polynomials [11]) is chosen to represent the solution in ρ(ξ) , θ(η), or ϕ(ζ ) (t is replaced by ξ or
η or ζ ):

P1(t) = (1 − t)/2,

P2(t) = (1 + t)/2,

P3(t) =
√

3

8
(t2 − 1),

P4(t) =
√

5

8
t(t2 − 1),

P5(t) =
√

7

128
(5t4 − 6t2 + 1),

P6(t) =
√

9

128
t(7t4 − 10t2 + 3),

P7(t) =
√

11

512
(21t6 − 35t4 + 15t2 − 1),

P8(t) =
√

13

512
t(33t6 − 63t4 + 35t2 − 5),

P9(t) =
√

15

32768
(429t8 − 924t6 + 630t4 − 140t2 + 5).

If the domain of interest has a conical vertex as shown in Fig. 1, the basis functions have to be
periodic in ϕ with a period of 2π . Therefore, in this case, a sin and cos basis are chosen as the
basis functions in ϕ:

Qk(ζ ) =
{

cos(k 1+ζ

4 ϕ2) k = 0, 2, 4, 6, . . .

sin((k + 1) 1+ζ

4 ϕ2) k = 1, 3, 5, 7, . . .
. (3.22)

Otherwise, for nonperiodical solutions as the vertices in the domains shown in Figs. 8 and 10, the
polynomial basis is chosen to represent the solution in ϕ variable.

Therefore, the basis functions are defined as:

Ni+(s+1)(j−1)+(s+1)(q+1)(k−1)(ξ , η, ζ ) =
{

Pi(ξ)Pj (η)Qk(ζ ) Periodical solutions

Pi(ξ)Pj (η)Pk(ζ ) Nonperiodical solutions

i = 1, . . . , p + 1, j = 1, . . . , q + 1, k = 1, . . . , s + 1, (3.23)

resulting in a (p+1)(q +1)(s +1)× (p+1)(q +1)(s +1) stiffness matrix [K] which after static
condensation is reduced to a 2(q + 1)(s + 1) × 2(q + 1)(s + 1) eigenproblem. The formulation
described herein was implemented using the Mathematica package [9] for the generation of the
required matrices and the computation of the eigenvalues and eigenvectors.
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TABLE III. Conical point with ω/2 = 3π/4 and homogeneous Neumann BCs.

p, q, s 1,1,1 1,2,2 1,4,4 1,6,6 1,8,8 2,8,8
DOFs 8 DOFs 18 DOFs 50 DOFs 98 DOFs 162 DOFs 243 DOFs

ν
(1)

1 = 0.85716767 0.83175 0.85812 0.85728 0.857172 0.857169 0.857168
(−2.96%) (0.11%) (1.3E−2%) (1.0E−3%) (1.5E−4%) (4.0E−5%)

ν
(0)

1 = 1.24507709 1.21102 1.25547 1.24441 1.24503 1.24503
(−2.73%) (8.3E−1%) (−5.4E−2%) (−3.8E−3%) (−3.8E−3%)

ν
(2)

1 = 1.87425369 1.87508 1.87439 1.87438 1.87425
(4.4E−2%) (7.0E−3%) (6.7E−3%) (−2E−4%)

ν
(1)

2 = 2.00000000 2.09971 2.0664 2.00036 2.00018 2.00018 2.000001
(4.99%) (3.32%) (1.8E−2%) (9.0E−3%) (9.0E−3%) (5E−5%)

ν
(0)

2 = 2.54898552 2.72871 2.57948 2.54832 2.54971 2.54915
(7.05%) (1.19%) (−2.6E−2%) (2.8E−2%) (6.4E−3%)

ν
(2)

2 = 2.88678057 2.89257 2.88773 2.88774 2.88678
(2.0E−1%) (3.3E−2%) (3.3E−2%) (−2E−5%)

ν
(3)

1 = 2.91300944 2.914 2.91401 2.91301
(3.4E−2%) (3.4E−2%) (2E−5%)

Convergence of first seven e-values (except first e-value, which is 0) for R1 = 0.95 as the approximation functional space
is enriched.
In parenthesis the relative error in % is reported.

IV. NUMERICAL EXAMPLES

Four example problems are considered. The first two correspond to a conical vertex with either
homogeneous Neumann or homogeneous Dirichlet BCs for which analytical solutions are avail-
able, so that the convergence rate of the modified Steklov nonsymmetric method can be assessed.
The third example problem is a vertex generated at the intersection of a crack front and a flat
plane with homogeneous Neumann BCs. This case is considered because the artificial subdomain
contains a singular edge (along the crack front), therefore the convergence rate is slower. This
example problem does not have an analytical solution and numerical approximations are provided.
The last example problem corresponds to a vertex at the intersection of a V-notch front with a
conical reentrant corner, with homogeneous Neumann BCs where a singular edge also exists in
the subdomain along the V-notch front.

A. Conical Vertex, ω/2 = 3π/4, Homogeneous Neumann BCs

We demonstrate the accuracy and efficiency of the modified Steklov nonsymmetric eigenformula-
tion by considering a conical vertex with ω/2 = 3π/4. We chose R1 = 0.95 and R2 = 1 because
the eigenvalues are insensitive to R1 (keeping R2 = 1) for R1 > 0.9. This is because the exact
solution is in the form ρν , which may be well represented by polynomials for 0.9 < ρ < 1 (see
also the 2D case in [6]). We first consider homogeneous Neumann BCs on 	c and summarize the
first seven computed eigenvalues in Table III, together with the relative error in % defined as:

Relative error % = 100(νFE
i − νEX

i )

νEX
i

To better demonstrate the accuracy and fast convergence rate of the modified nonsymmetric
Steklov method, we plot in Fig. 6 the relative error in percentage of the first five eigenvalues as
the number of DOFs is increased. A clear high rate of convergence for the first eigenvalues is
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FIG. 6. Convergence of the first four nonzero eigenvalues ν for the conical vertex with ω/2 = 3π/4
and homogeneous Neumann BCs. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

observed, obtaining an accuracy of an order of 10−4% relative error with less than 300 DOFs but
only 200 DOFs in the condensed eigenproblem.

B. Conical Vertex, ω/2 = 3π/4, Homogeneous Dirichlet BCs

In this section, we consider the previous conical vertex with ω/2 = 3π/4, R1 = 0.95 and
R2 = 1 but homogeneous Dirichlet BCs are applied on 	c. The first five computed eigenvalues
are summarized in Table IV, together with the relative error. The convergence rate of the first four
eigenvalues is shown in the plot in Fig. 7. One may observe the fast rate of convergence in this
example problem also.

TABLE IV. Conical point with ω/2 = 3π/4 and homogeneous Dirichlet BCs.

p, q, s 1,2,2 1,3,3 1,4,4 1,6,6 1,8,8
DOFs 18 DOFs 32 DOFs 50 DOFs 98 DOFs 162 DOFs

ν
(0)

1 = 0.463098562 0.483284 0.452786 0.46808 0.463774 0.463204
(4.4E0%) (−2.2E0%) (1.1E0%) (1.5E−1%) (2.3E−2%)

ν
(1)

1 = 1.24507709 1.24489 1.24374 1.2453 1.24509 1.24508
(−1.5E−2%) (−1.1E−1%) (1.8E−2%) (1.0E−3%) (2.3E−4%)

ν
(0)

2 = 1.813227873 1.69437 1.87592 1.8105 1.81333
(−6.6E0%) (3.5E0%) (−1.5E−1%) (5.6E−3%)

ν
(2)

1 = 2.136566659 2.13683 2.13683 2.13681
(1.2E−2%) (1.2E−2%) (1.1E−2%)

ν
(1)

2 = 2.54551186 2.97811 2.55054 2.55029 2.54961 2.54954
(1.7E1%) (2.0E−1%) (1.9E−1%) (1.6E−1%) (1.6E−1%)

Convergence of first five e-values for R1 = 0.95 as the approximation functional space is enriched.
In parenthesis the relative error in % is reported.
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FIG. 7. Convergence of the first four nonzero eigenvalues ν for the conical vertex with ω/2 = 3π/4
and homogeneous Dirichlet BCs. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

C. Vertex at the Intersection of a Crack Front with a Flat Face, Homogeneous
Neumann BCs

In many practical applications, cracks are present in 3D domains, and a vertex singularity exists at
the intersection of the crack face with the boundary of the domain. Such a situation is described in
Fig. 8, where a crack front intersects a flat free face. Homogeneous Neumann BCs are prescribed
on the crack surfaces and the flat face.

FIG. 8. A crack front intersecting a free face. Right: The 3D domain with the crack. Left: The artificial
subdomain used for the computation of the eigenpairs. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]
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TABLE V. Vertex at the intersection of a crack front with a free face.

p, q, s 1,1,1 2,3,3 2,4,4 2,6,6 2,9,9
DOFs 8 DOFs 48 DOFs 75 DOFs 147 DOFs 300 DOFs

νEst = 0.5 0.47575 0.4855969 0.4906311 0.4950594 0.4975721
(−4.8E0%) (−2.9E0%) (−1.9E0%) (−9.9E−1%) (−4.9E−1%)

νEst = 1.0 1.2325059 1.0036215 1.0000167 1.0000000
(2.3E1%) (3.6E−1%) (1.7E−1%) (2.5E−6%)

νEst = 1.5 1.4950602 1.5000010
(−3.3E−1%) (6.9E−5%)

νEst = 2.0 2.31019 2.0759202 2.0308122 1.9992894 1.9999832
(1.6E1%) (3.8E0%) (1.5E0%) (−3.6E−2%) (−8.4E−4%)

Convergence of first five e-values (except first e-value, which is 0) for R1 = 0.95 as the approximation functional space
is enriched.

Taking R1 = 0.95 and R2 = 1, we summarize the first five, computed eigenvalues in Table V.
For this example problem, the analytical eigenvalues are unknown, but estimated to be 0, 0.5, 1,
1.5 and 2.0, and the relative error is computed relative to the estimated values.

The convergence rate of the first four eigenvalues is shown in the plot in Fig. 9. Because the
computational domain contains a singular edge, along the crack front, the convergence of the first
(most singular) eigenvalue is much slower compared to the previous two example problems. A
remedy to this situation is the use of a p-FE method, and refine the computational mesh in the
vicinity of the singular edge. However, this necessitates an assembly procedure, which is beyond
the scope of this work. Nevertheless, high accuracy is achieved with the presented method with
a moderate number of degrees of freedom.

D. Vertex at the Intersection of a V-Notch Front with a Conical Reentrant Corner,
Homogeneous Neumann BCs

The last example problem is the vertex at the intersection of a conical insert with a reentrant corner
as described in Fig. 10. Homogeneous Neumann BCs are prescribed on all surfaces and the flat
face.

FIG. 9. Convergence of the first five nonzero eigenvalues ν for the crack front with a free face. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIG. 10. A V-notch intersecting a conical reentrant corner. Right: The 3D domain. Left: The artificial sub-
domain used for the computation of the eigenpairs. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

Taking R1 = 0.95 and R2 = 1, we summarize the first four (nonzero) computed eigenvalues in
Table VI (first eigenvalue is zero so is not considered). For this example problem, the analytical
eigenvalues are unknown, thus the relative error cannot be computed. One may easily noticed the
clear convergence of the eigenvalues as the number of DOFs is increased.

Remark 4.1. In all four considered example problems, for each positive eigenvalue computed νi ,
the modified Steklov problem provided the negative eigenvalue −1 − νi with high accuracy. This
eigenvalue with the corresponding eigenfunction will be used in future studies for the extraction
of the vertex stress-intensity-factor.

V. SUMMARY AND CONCLUSIONS

The modified Steklov method was extended herein for the computation of the eigenpairs asso-
ciated with vertex singularities of the Laplace equation. It was brought to a nonsymmetric form
to overcome integrand singularity and implemented in the context of a spectral method. Four

TABLE VI. Vertex at the intersection of a V-notch front with a conical reentrant corner, homogeneous
Neumann BCs, ω/2 = 3π/4, ϕ2 = 6π/4.

p, q, s = 1, 2, 2 p, q, s = 1, 4, 4 p, q, s = 1, 6, 6 p, q, s = 1, 8, 8
18 DOFs 50 DOFs 98 DOFs 162 DOFs

0.600442 0.535591 0.536327 0.536642
1.068311 1.195313 1.19021 1.190185
1.503901 1.255467 1.24441 1.245032
1.741498 1.730020 1.72647 1.727616
Convergence of first four e-values (except first e-value, which is 0) for R1 = 0.95 as the approximation functional space
is enriched.
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example problems were solved using the numerical method, and the results were compared to
analytically derived eigenvalues so as to demonstrate its efficiency and accuracy. The generality
of the method and the accurate results encourage the extension of this method to elasticity prob-
lems and multimaterial interfaces. For these cases, a p-FE method is necessary where the domain
is partitioned into several elements, and an assembly procedure is required. Future research on
the application of p-FEMs based on the modified Steklov formulation for the elasticity system is
underway and will be reported in a future publication.
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