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The Laplace equation in 3-D domains with
cracks: Dual singularities with log terms
and extraction of corresponding edge flux
intensity functions y

Samuel SHANNON � , Victor PERON& and Zohar YOSIBASH �

The singular solution of the Laplace equation with a straight-crack is represented by a series of eigenpairs, shadows
and their associated edge flux intensity functions (EFIFs). We address the computation of the EFIFs associated with
the integer eigenvalues by the quasi-dual function method (QDFM).The QDFM is based on the dual eigenpairs and
shadows, and we exhibit the presence of logarithmic terms in the dual singularities associated with the integer
eigenvalues. These are then used with the QDFM to extract EFIFs from p-version finite element solutions. Numerical
examples are provided. Copyright c⃝ 0000 John Wiley & Sons, Ltd.

Keywords:
Dual singularities; logarithmic singularities; dual eigenvalues; edge flux/stress intensity functions;
quasi-dual function method; 3-D singularities

Dedicated to the 65th birthday of prof. Martin Costabel.

1. Introduction and notation

Solutions of the Laplace equation in the vicinity of singular points over two dimensional domains have been investigated
for over half a century. These are described by an infinite series of eigenpairs and their coefficients named flux intensity
factors (FIFs). The eigenpairs depend on the boundary conditions on the crack faces (see [15]). For example for crack with
homogeneous Dirichlet boundary conditions (BCs) the eigenvalues �k are: �k = � � � � 2;�3=2;�1;�1=2; 1=2; 1; 3=2; 2 � � � .
For homogeneous Neumann boundary conditions same eigenvalues are obtained in addition of 0 [2]. The eigenpairs associated
with the negative eigenvalues are called dual eigenpairs. They are not a part of the solution because they are not in the
Sobolev space H1 (do not belong to the energy space). The integer eigenpairs and their corresponding coefficients, especially
associated with � = 1 , are important from the engineering point of view, as they may affect the path stability of slightly curved
or kinked cracks [5, 9], and play an important role in determining the size and shape of a crack tip plastic zone [17, 18].

In three dimensional domains such as polyhedra the Laplace equation, in cylindrical coordinates (�; '; z) located on the
straight singular edge, is (see Figure 1):

�(�;';z)� =

{
@�� +

1

�
@� +

1

�2
@'' + @zz

}
� = 0 (1)

For a straight edge at a reentrant corner (see Fig. 1), the solution of the Laplace equation is represented by two infinite series,
the 2-D eigenpairs series and another series composed of shadow functions and the derivatives of the edge flux intensity
functions (EFIFs) which are functions along the edge (see [6, 14]). Explicit representation of the solution in terms of eigenpairs,
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Figure 1. A 3-D domain containing a straight singular edge at (x; y) = (0; 0):

shadows and EFIFs is (see [8, 4, 13]):

�(�; '; z) =
∑
k

1∑
`=0;2;4;6���

@`zAk(z)�
�k+`�k;`(') (2)

where �k , are the 2-D eigenvalues (for a crack with homogeneous Dirichlet BCs the eigenvalue are �k = k=2 , k = 1; 2; 3; � � �

and for a crack with homogeneous Neumann BCs �k = k=2 , k = 0; 1; 2; � � � ), �k;`(') are the 2-D eigenfunctions ( ` = 0 )
and their shadows ( ` � 2 ) and Ak(z) are the edge flux intensity functions (EFIFs). It is important to note in the context of this
manuscript that the eigenfunctions and their shadows associated with integer eigenvalues are polynomials when represented
in Cartesian coordinates (see also [3]).

The EFIFs may be computed using the dual eigenpairs by an extraction method named the quasi-dual function method
(QDFM) (See [4, 13]). The QDFM has been successfully applied for the extraction of EFIFs associated with the non-integer
eigenvalues from finite element (FE) solutions, but it does not apply to EFIFs associated with the integer eigenvalues (see [4]).
Other methods for extracting EFIFs are available (see e.g. [1, 12]), however these methods do not apply to integer eigenvalues
either.

We first demonstrate that the dual singularities associated with integer eigenvalues for the Laplace operator over a 3-D
domain with a straight crack involve logarithmic terms. This is an interesting observation because it was proven in [3] that the
asymptotic solution in the vicinity of cracks under homogeneous Dirichlet or Neumann BCs do not contain logarithmic terms.
Although [3] addresses the asymptotic solution and not the dual, one may had thought that this message carries over to the dual
solution. Using the dual singularities with the logarithmic terms we extend the QDFM for the extraction of the EFIFs associated
with the integer eigenvalues. We implement the presented methods and provide numerical examples using the p-version of the
FE method.

2. The asymptotic solution in the vicinity of a straight 3-D crack front

The solution to (1) in the vicinity of a straight singular edge (crack as a particular example) is given by (2) (see [4]), with
homogeneous Dirichlet or Neumann BCs on the crack faces, that imply:

�k;`(' = ��) = 0; Homogeneous Dirichlet BCs (3)

�0k;`(' = ��) = 0; Homogeneous Neumann BCs (4)

Substituting (2) in (1) one obtains:

�� =
∑
k

��k�2
[
Ak(z)

{
�2

k�k;0(') + �
00
k;0(')

}
(5)

+A00
k(z)�

2
{
(�k + 2)2�k;2(') + �

00
k;2(') + �k;0(')

}
+A

(4)
k (z)�4

{
(�k + 4)2�k;4(') + �

00
k;4(') + �k;2(')

}
+A

(6)
k (z)�6

{
(�k + 6)2�k;6(') + �

00
k;6(') + �k;4(')

}
+ � � � ] = 0
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Since (5) is equal to zero for any � small enough, the following recursive set of ODEs is obtained that together with the
boundary conditions determine the eigenvalues, eigenfunctions and their shadows:

�2
k�k;0(') + �

00
k;0(') = 0; ' 2 (��; �); (6)

(�k + `)
2�k;`(') + �

00
k;`(') + �k;`�2(') = 0; ' 2 (��; �); ` 2 2N� (7)

Equation (6) with the BC (3) or (4) is identical to the one obtained for the 2-D Laplace problem with the 2-D eigenvalues �k

and the corresponding eigenfunctions �k;0 . For a crack with homogeneous Neumann BCs the eigenvalues are:

�k = � � � � 3;�
5

2
;�2;�

3

2
;�1;�

1

2
; 0;

1

2
; 1;

3

2
; 2;

5

2
; 3 � � �

whereas for the homogeneous Dirichlet BCs same eigenvalues are obtained excluding �0 = 0 [2]. We denote by � the
solution of the Laplace equation constructed by the positive eigenpairs and their shadows (2). Ak(z) are the edge flux
intensity functions (EFIFs), and �k;` with ` 6= 0 are the shadow functions. The negative eigenvalues and the corresponding
eigenfunctions are not a part of the solution because they are not in the Sobolev space H1 , and these form the “dual solution”.
We define by K(�; '; z) the ”dual solution”:

K(�; '; z) =
∑
k

1∑
`=0;2;4;6���

@`zBk(z)�
�k+` k;`(�; ') (8)

Here the dual eigenvalues are negative for both Dirichlet BCs or Neumann BCs : �k = �k=2 , k = 1; 2; 3; � � � and �0 = 0

in the case of Neumann BCs. When the functions  k;`(�; ') are independent of � , the dual eigenfunctions  k;0 and their
shadow functions  k;` are obtained by solving the recursive relationship:

�2
k k;0(') +  

00
k;0(') = 0; ' 2 (��; �); (9)

(�k + `)
2 k;`(') +  

00
k;`(') +  k;`�2(') = 0; ' 2 (��; �); ` 2 2N� (10)

with Dirichlet or Neumann BCs.

Remark 1 We show in the sequel that for the integer dual eigenvalues (i.e. �k = 0;�1;�2; ::: ) the solution of equations (9)-
(10) without logarithmic terms cannot satisfy the BCs and therefore logarithmic terms will be present in functions  k;`(�; ')

(8).

2.1. Computation of eigenfunctions and shadows for a crack with homogeneous Dirichlet BCs

Substituting �1 =
1
2

in (6) with homogeneous Dirichlet BCs (3) one obtains:

�1;0(') = cos
'

2
(11)

which is unique up to a multiplicative constant. To obtain the first shadow of �1;0(') which is �1;2(') , we substitute (11),
�1 =

1
2

and ` = 2 in (7):

(
1

2
+ 2)2�1;2(') + �

00
1;2(') = � cos

'

2
; ' 2 (��; �) (12)

Then, a particular solution of (12)-(3) is

�1;2(') = �
1

6
cos

'

2
(13)

Remark 2 Equation (13) is the particular solution of (12). As it satisfies (12) and the homogeneous Dirichlet BCs (3), the
coefficients of the homogeneous solution of (12) are zero (see chapter 10.2.2 in [16]).

We solve equations (6)-(7) for �k = 1=2; 1; 3=2; 2 , obtaining �k;` up to order of �13=2 . These yield the following series
solution for a straight crack with homogeneous Dirichlet BCs:

� = �1=2
{
A1(z) cos

'

2
� A00

1(z)�
2 1

6
cos

'

2
+ A

(4)
1 (z)�4

1

120
cos

'

2
� A

(6)
1 (z)�6

1

5040
cos

'

2
+ � � �

}
(14)

+ �

{
A2(z) sin'� A

00
2(z)�

2 1

8
sin'+ A

(4)
2 (z)�4

1

192
sin'� A

(6)
2 (z)�6

1

9216
sin'+ � � �

}
+ �3=2

{
A3(z) cos

3'

2
� A00

3(z)�
2 1

10
cos

3'

2
+ A

(4)
3 (z)�4

1

280
cos

3'

2
+ � � �

}
+ �2

{
A4(z) sin 2'� A

00
4(z)�

2 1

12
sin 2'+ A

(4)
4 (z)�4

1

384
sin 2'+ � � �

}
+ � � �
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2.2. Computation of eigenfunctions and shadows for a crack with homogeneous Neumann BCs

As in section 2.1, we solve equations (6)-(7) with homogeneous Neumann BCs (4) and for �k = 0; 1=2; 1; 3=2 , obtaining
successively �k;` up to order of �13=2 . These yield the following series solution for a straight crack with homogeneous
Neumann BCs:

� =

{
A0(z)� A

00
0(z)�

2 1

4
+ A

(4)
0 (z)�4

1

64
� A

(6)
0 (z)�6

1

2304
+ � � �

}
(15)

+ �1=2
{
A1(z) sin

'

2
� A1

00(z)�2
1

6
sin

'

2
+ A1

(4)(z)�4
1

120
sin

'

2
� A1

(6)(z)�6
1

5040
sin

'

2
+ � � �

}
+ �1

{
A2(z) cos'� A2

00(z)�2
1

8
cos'+ A2

(4)(z)�4
1

192
cos'+ � � �

}
+ �3=2

{
A3(z) sin

3'

2
� A3

00(z)�2
1

10
sin

3'

2
+ A3

(4)(z)�4
1

280
sin

3'

2
+ � � �

}
+ � � �

Remark 3 Notice that (15) is similar to (14) with the sin functions replaced by the cos functions. Here, as in the case of
homogeneous Dirichlet boundary conditions, the shadow functions are constructed by the particular solutions (see chapter
10.3.0.1 in [16]).

2.3. The problem with dual shadows associated with integer eigenvalues

The dual eigenfunctions associated with the negative non-integer eigenvalues (i.e. �k = �k=2 , k = 1; 3; � � � ) and their
shadows can be computed by (9)-(10) as shown in (11)-(13). Here, we emphasize the problem of computing dual shadows
associated with integer eigenvalues i.e. �k = �k=2 , k = 0; 2; 4; � � � ). Consider for example a crack with homogeneous
Neumann BCs, for which the first non-zero integer dual eigenvalue is �2 = �1 . To compute the first eigenfunction  2;0(') ,
we substitute �2 = �1 in (9):

(�1)2 2;0(') +  
00
2;0(') = 0 ; ' 2 (��; �) (16)

The unique solution of (16) up to a multiplicative constant and with homogeneous Neumann BCs (4) on the crack faces is:

 2;0(') = cos' ; ' 2 (��; �) (17)

We substitute (17) in (10), with �k = �1 and ` = 2 to obtain  2;2(') which is the first shadow of  2;0(') . Hence  2;2(')

satisfies the ODE
 2;2(') +  

00
2;2(') = � cos' ; ' 2 (��; �) (18)

The homogeneous solution of (18) is a linear combination of two linearly independent solutions that are identical to the solution
(17), and there is no particular solution of (18) that satisfies the homogeneous Neumann BCs (4).

Remark 4 This problem appears for all dual shadows associated with integer eigenvalues in the case of a crack with
homogeneous Dirichlet or Neumann BCs. It is expected that it appears for V-notches and for the elasticity system also.

3. Dual solution with logarithmic terms associated with integer eigenvalues

Let K(�j ) be the part of the dual solution (8) associated with the negative eigenvalue �j , so that

K(�; '; z) =
∑
j

K(�j )(�; '; z) and K(�j )(�; '; z) =

1∑
`=0;2;4;6���

@`zBk(z)�
�k+` k;`(�; ') (19)

Following the construction of dual singularities introduced in [7], it appears here that the dual singularities K(�j ) which are
associated with an integer eigenvalue �j 2 Z� contain logarithmic terms in � . In this paper we make the following ansatz for
these dual singularities

K(�j )(�; '; z) =

1∑
`=0;2;4;6���

@`zBj(z)�
�j+`

(
 j;`(') + log � ~ j;`(')

)
; (20)

and hereafter we provide explicit recursive ODEs for the determination of the corresponding polar parts  j;`(') and ~ j;`(') .
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Substituting (20) in (1) and writing � = �j for shortness, one obtains:

�K(�j ) = ���2B(z)
{
log �

(
�2 ~ j;0(') + ~ 00

j;0(')
)

(21)

+
(
�2 0(') +  

00
j;0(') + 2� ~ j;0(')

)}
+��B00(z)

{
log �

(
(2 + �)2 ~ j;2(') + ~ 00

j;2(') + ~ j;0(')
)

+
(
(2 + �)2 j;2(') +  

00
j;2(') + 2(2 + �) ~ j;2(') +  j;0(')

)}
+��+2B(4)(z)

{
log �

(
(4 + �)2 ~ j;4(') + ~ 00

j;4(') + ~ j;2(')
)

+
(
(4 + �)2 j;4(') +  

00
j;4(') + 2(4 + �) ~ j;4(') +  j;2(')

)}
+��+4B(6)(z)

{
log �

(
(6 + �)2 ~ j;6(') + ~ 00

j;6(') + ~ j;4(')
)

+
(
(6 + �)2 j;6(') +  

00
j;6(') + 2(6 + �) ~ j;6(') +  j;4(')

)}
+ � � � = 0

with homogeneous Dirichlet or Neumann BCs at the crack faces:

 j;`(' = ��) = ~ j;`(' = ��) = 0; Homogeneous Dirichlet BCs (22)

 0
j;`(' = ��) = ~ 0

j;`(' = ��) = 0; Homogeneous Neumann BCs (23)

Equation (21) results in the following set of 1-D recursive ODEs for  j;`(') and ~ j;`(') :

For ` = 0 :

�2
j
~ j;0 + ~ 00

j;0 = 0 (24)

�2
j  j;0 +  

00
j;0 + 2�j

~ j;0 = 0 (25)

For ` � 2 :

(�j + `)
2 ~ j;` + ~ 00

j;` + ~ j;`�2 = 0 (26)

(�j + `)
2  j;` +  

00
j;` + 2 (�j + `) ~ j;` +  j;`�2 = 0 (27)

Hereafter we focus on the derivation of the dual singularities K(�1) and K(0) (Section 3.2).

3.1. Homogeneous Dirichlet BCs

The first integer dual-eigenvalue is: �2 = �1 , and K(�2=�1) is:

K(�2=�1) = ��1
{
B2(z) sin'� B

00
2(z)�

2 log �
sin'

2
(28)

+B
(4)
2 (z)�4

(
�

3

64
+ log �

1

16

)
sin'

+B
(6)
2 (z)�6

(
7

2304
� log �

1

384

)
sin'+ � � �

}
3.2. Homogeneous Neumann BCs

For homogeneous Neumann BCs, we have first to consider �0 = 0 . For �0 = 0 there is no dual eigenvalue, so we use the
logarithmic solution presented in (20) (see [11, 7]) to obtain K(�0=0) :

K(�0=0) = �

{
B0(z) log �+ B

00
0(z)�

2 1

4
(1� log �) (29)

+B
(4)
0 (z)�4

(
�

3

128
+ log �

1

64

)
+ B

(6)
0 (z)�6

(
11

13824
� log �

1

2304

)
+ � � �

}
The next integer dual-eigenvalue is �2 = �1 and for it K(�2=�1) is:

K(�2=�1) = ��1
{
B2(z) cos'� B

00
2(z)�

2 log �
cos'

2
(30)

+B
(4)
2 (z)�4

(
�

3

64
+ log �

1

16

)
cos'

+B
(6)
2 (z)�6

(
7

2304
� log �

1

384

)
cos'+ � � �

}
Remark 5 For non-integer eigenvalues and for positive integer eigenvalues the logarithmic terms in (20) vanish. This is of
course in accordance with [3].
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4. Computing EFIFs associated with integer eigenvalues by the quasi-dual function
method

To compute the EFIFs we apply the QDFM [4]. A path integral Q�

[
�;K

(�j )
n

]
over a cylindrical surface with a radius �

surrounding the straight singular edge is considered:

Q�

[
�;K

(�j )
n

]
=

∫
z

∫ �

��

(
@��K

(�j )
n � �@�K

(�j )
n

)
�d'dz (31)

K
(�j )
n is composed of the dual eigenfunction and its first n shadow functions.
Since the EFIFs Ak(z) are unknown, we approximate it (and also Bj(z) ) by a family of orthogonal polynomials in the range

[�1; 1] . For this purpose we use the Jacobi polynomials as follows (see [13, 16]):

A
fp;mg
k (z) =

p∑
i=0

aki J
fi ;mg(z) (32)

B
f`;mg
j (z) =

1

2�

2`+ 2m + 1

22m+1

(2m + `)!`!

((`+m)!)2
(
1� z2

)m
Jf`;mg(z) (33)

where Jf`;mg(z) is a Jacobi polynomial of order m and a polynomial degree ` as follows:

Jf`;mg(z) = (`+m)!(`+m)!
∑̀
s=0

1

s!(`+m � s)!(m + s)!(`� s)!

(
z � 1

2

)`�s (
z + 1

2

)s

(34)

Remark 6 To avoid the integration over the bases of the cylindrical domain on which we perform the integration, we use m � n

(see [4]).

Since n is finite, the integral Q�

[
�;K

(�j )
n

]
is surface-dependent. For the computation of the coefficients aj` in (32) we used

the Q�0

[
�;K

(�j )
n

]
integral with a remainder of:

Q�

[
�;K

(�j )
n

[
B
f`;mg
j (z)

]]
= aj` +O

(
��s��j+n+2(1 + j log �j)

)
(35)

where �s is the smallest positive eigenvalue. For a crack with homogeneous Dirichlet BCs the smallest positive eigenvalues
is �1 = 1=2 , and for a crack with homogeneous Neumann BCs the smallest positive eigenvalues is �0 = 0 .

Remark 7 A preliminary analysis performed for the elasticity problem suggests that the coefficients aki may be computed by
the QDFM with a remainder of O

(
��0��j+n+1(1 + j log �j)

)
.

4.1. Analytical example of computation of the integer EFIFs by the QDFM

In this section we address the extraction of the integer EFIFs for homogeneous Dirichlet and Neumann BCs. We approximate
A
fp;mg
k (z) and B

f`;mg
j (z) by Jacobi polynomials of order m = 4 and polynomial degree p = 8 .

4.1.1. A crack with homogeneous Dirichlet BCs: To extract A2(z) (associated with �2 = 1 ) for a straight crack with
homogeneous Dirichlet BCs, we compute Q�

[
�;K

(�1)
n

[
B
f`;4g
2 (z)

]]
by (31) with � in (14) chosen up to order �6 , for

z 2 [�1; 1] , ` = 0; 1 and different values of n :

Q�

[
�;K

(�1)
0

[
B
f0;4g
2 (z)

]]
= a20 �

33

4
�2a22 �

91

11
�2a24 + � � � = a20 +O

(
�2
)

(36)

Q�

[
�;K

(�1)
0

[
B
f1;4g
2 (z)

]]
= a21 �

273

20
�2a23 �

189

13
�2a25 + � � � = a21 +O

(
�2
)

(37)

Q�

[
�;K

(�1)
2

[
B
f0;4g
2 (z)

]]
= a20 �

1365

32
�4a24 +

1365

8
�4 log � a24 + � � � = a20 +O

(
�4 + �4j log �j

)
(38)

Q�

[
�;K

(�1)
2

[
B
f1;4g
2 (z)

]]
= a21 �

3213

32
�4a25 +

3213

8
�4 log � a25 + � � � = a21 +O

(
�4 + �4j log �j

)
(39)

Q�

[
�;K

(�1)
4

[
B
f0;4g
2 (z)

]]
= a20 +

266475

128
�6a26 �

72675

32
�6 log � a26 + � � � = a20 +O

(
�6 + �6j log �j

)
(40)

Q�

[
�;K

(�1)
4

[
B
f1;4g
2 (z)

]]
= a21 +

820743

128
�6a27 �

223839

32
�6 log � a27 + � � � = a21 +O

(
�6 + �6j log �j

)
(41)

Following (36)-(41), one notices that the term ��1��2 vanishes in the convergence analysis and the convergence rate in the
error of the extracted a2`

is higher compared to (35).
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Figure 2. The FE model and the mesh.

4.1.2. A crack with homogeneous Neumann BCs: To extract A2(z) (associated with �2 = 1 ) for a straight crack with
homogeneous Neumann BCs, we compute Q�

[
�;K

(�1)
n

[
B
f`;4g
2 (z)

]]
by (31) with � in (15) chosen up to order �6 , for

z 2 [�1; 1] , ` = 0; 1 and different values of n . Same expressions exactly as (36)-(41) are obtained, i.e. the term ��1��2

vanishes in the convergence analysis and the convergence rate in the error of the extracted a2`
is higher compared to (35).

Extracting A0(z) :
To extract A0(z) , corresponding to the eigenvalue �0 = 0 we use (29) and compute Q�

[
�;K

(0)
n

[
B
f`;4g
2 (z)

]]
by (31) with

(15) for z 2 [�1; 1] , ` = 0; 1 and for different values of n :

Q�

[
�;K

(0)
0

[
B
f0;4g
0 (z)

]]
= a00 �

33

4
�2a02 +

33

2
�2 log � a02 + � � � = a00 +O

(
�2 + �2j log �j

)
(42)

Q�

[
�;K

(0)
0

[
B
f1;4g
0 (z)

]]
= a01 �

273

20
�2a03 +

273

10
�2 log � a03 + � � � = a01 +O

(
�2 + �2j log �j

)
(43)

Q�

[
�;K

(0)
2

[
B
f0;4g
0 (z)

]]
= a00 +

6825

32
�4a04 �

1365

8
�4 log � a04 + � � � = a00 +O

(
�4 + �4j log �j

)
(44)

Q�

[
�;K

(0)
2

[
B
f1;4g
0 (z)

]]
= a01 +

16065

32
�4a05 �

3213

8
�4 log � a05 + � � � = a01 +O

(
�4 + �4j log �j

)
(45)

Q�

[
�;K

(0)
4

[
B
f0;4g
0 (z)

]]
= a00 �

121125

64
�6a06 +

72675

64
�6 log � a06 + � � � = a00 +O

(
�6 + �6j log �j

)
(46)

Q�

[
�;K

(0)
4

[
B
f1;4g
0 (z)

]]
= a01 �

373065

64
�6a07 +

223839

64
�6 log � a07 + � � � = a01 +O

(
�6 + �6j log �j

)
(47)

Following (42)-(47), one notices that the convergence rate in the error of the extracted a0`
is as shown in (35).

4.2. Extracting A0 and A2 from p-FE solutions by the QDFM

Consider a finite elements model of a cracked cylinder of a radius 0:5 and a height 2 (z 2 [�1; 1]) , as shown in Fig 2.

4.2.1. Homogeneous Dirichlet BCs: On the crack faces of the FE model we prescribe homogeneous Dirichlet BCs. On the
cylindrical outer surface the following Dirichlet BC is prescribed:

� =
1

2

[(
1 + z + z2 + z3 + z4

)
sin'�

1

8

(
2 + 6z + 12z2

)(1

2

)2

sin'+
1

8

(
1

2

)4

sin'

]
(48)

On the cylinder’s basis z = �1 the Dirichlet BC is:

� = �

(
sin'� �2 sin'+

1

8
�4 sin'

)
(49)

and on the cylinder’s basis z = 1 the Dirichlet BC is:

� = �

(
5 sin'�

5

2
�2 sin'+

1

8
�4 sin'

)
(50)
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Figure 3. A2(z) for different values of n and the exact function - homogeneous Dirichlet BCs.
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Figure 4. Relative error in the extracted A2(z) in percentage - homogeneous Dirichlet BCs.

These boundary conditions result in A2(z) = 1 + z + z2 + z3 + z4 and Ak = 0 for k 6= 2 so that the solution is:

� = �

[(
1 + z + z2 + z3 + z4

)
sin'�

1

8

(
2 + 6z + 12z2

)
�2 sin'+

1

8
�4 sin'

]
(51)

The integral Q�

[
�FE ; K

�j
n

[
B
fm;`g
j (z)

]]
was computed at � = 0:1 with Jacobi polynomials of order m = 6 and ` = 0 � � � 20

for different values of n . The solution �FE was extracted from the p-FE solution with 4387 DOF at p = 8 having an relative
error in energy norm of 0:1% . Figures 3-4 show the extracted AFE

2 (z) for different values of n and the relative error in
the extracted AFE

2 (z) in percentage. As expected, the error in the extracted EFIFs decreases as the number of the shadow
functions n that construct the quasi dual function K increases.

4.2.2. Homogeneous Neumann BCs: Consider again the FE model shown in in Fig 2. This time we prescribe on the domain’s
surfaces Dirichlet boundary conditions associated with an exact solution having A0(z) = 1 + z + z2 + z3 + z4; A2(z) =

�2
(
1 + z + z2 + z3 + z4

)
and Ak = 0 for k 6= 0; 2 in (15). Homogeneous Neumann BCs are prescribed on the crack faces.

These boundary conditions result in an exact solution given by:

� =

{(
1 + z + z2 + z3 + z4

)
�

1

4
�2

(
2 + 6z + 12z2

)
+

3

8
�4
}

(52)

+�1
{
�2

(
1 + z + z2 + z3 + z4

)
cos'+

1

2
�2

(
1 + 3z + 6z2

)
cos' �

1

4
�4 cos'

}

The integral Q�

[
�FE ; K

�j
n

[
B
fm;`g
j (z)

]]
was computed at � = 0:1 with Jacobi polynomials of order m = 6 and ` = 0 � � � 20

for different values of n . �FE was extracted from the p-FE solution with 5372 DOF at p = 8 having a relative error in energy
norm of 0:07% . Figures 5-8 show the extracted AFE

0 (z) and AFE
2 (z) for different values of n and the relative error in the

extracted AFE
0 (z) and AFE

2 (z) in percentage. As expected, the error in the extracted EFIFs decreases as the number of the
shadow functions n that construct the quasi dual function K increases.
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Figure 5. A0(z) obtained for different values of n and the exact function - homogeneous Neumann BCs.
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Figure 6. Relative error in the extracted A0(z) in percentage - homogeneous Neumann BCs.
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Figure 7. A2(z) for different values of n and the exact function - homogeneous Neumann BCs.

5. Summary and conclusions

We presented the dual solution of the Laplace equation in the vicinity of straight crack. It was demonstrated that for the dual
integer eigenfunctions and their shadow functions it contains logarithmic terms. We extended the QDFM for extracting the EFIFs
in the vicinity of a straight singular edge for the EFIFs that depend on the integer eigenvalues. The formulation and performance
of the method is demonstrated on the simplified Laplace equation. Although the QDFM is a mildly-surface-dependent integral,
we demonstrated that by using a proper quasi-dual function K

(�j )
n and proper extraction functions Bj(z) , one may extract the

functional representation of the EFIFs Ak(z) accurately and efficiently.
Because, in general, only a FE approximation of the solution is available,the QDFM in conjunction with p -FE methods

provide highly accurate EFIFs. These were obtained as a function along the straight edge, and are much more accurate
compared to the FE solution (superconvergence property). Another major advantage is the possibility to use the FE solution
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Figure 8. Relative error in the extracted A2(z) in percentage - homogeneous Neumann BCs.

on a cylindrical surface at a distance from the singular edge, thus it is not necessary to have a refined FE mesh in the vicinity
of the singularity (which is a complicated and tedious task in 3-D domains).

The presented methods may be extended to the elasticity system and to circular singular edges following the same
methodology presented herein.
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A. Computation of the dual functions for the crack problem - Multiplicity of the Integer
Dual eigenvalues

The set of ”dual eigenvalues” for the crack problem is given by the sequence (�k)k2N� with �k = � k
2

. We introduce the
coefficients

�k;` = �k + ` ;

where �k;` 2
1
2
Z = f p

2
j p 2 Zg . In the following subsections, we solve the Sturm-Liouville equation

�00
k;` + �

2
k;`�k;` = f in (��; �)

with either homogeneous Dirichlet or Neumann boundary conditions. In both cases, it is possible to adopt a shooting method
to reduce the Sturm-Liouville problem to an initial value problem. We refer also to [10, §3.2.2] for such an approach where the
author computes singularities associated with a Neumann problem for the Laplacian set in a sector.

A.1. The Sturm-Liouville problem with Dirichlet boundary conditions

We write the problem (7)-(3) when ` 2 2N� as{
�00

k;`(') + �
2
k;`�k;`(') = ��k;`�2('); for all ' 2 (��; �)

�k;`(') = 0 for all ' = ��; � :
(53)

When �k;` = 0 , the Sturm-Liouville problem (53) is well-posed. However, when �k;` 2
1
2
Z
� , the ODE (53) has a solution

provided the right-hand side �k;`�2 satisfies a compatibility condition (55).

Proposition 1 Let k 2 N� and ` 2 2N� . We set �k;0(') = ck sin(�k') , where ck is an arbitrary constant.
(i) Assume that �k;` = 0 . Then, the ODE (53) admits the unique solution

�k;`(') = �

∫ '

��

('� s)�k;`�2(s) ds +
('+ �)

2�

∫ �

��

(� � s)�k;`�2(s) ds : (54)
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(ii) Assume that �k;` 2
1
2
Z
� , then the ODE (53) admits solutions iff the data �k;`�2 satisfies the compatibility condition∫ �

��

sin(�k;`s)�k;`�2(s) ds = 0 : (55)

Under the condition (55), the ODE (53) admits the following solutions

�k;`(') = c sin(�k;`')�
1

�k;`

∫ '

��

sin (�k;`('� s))�k;`�2(s) ds (56)

where c is an arbitrary constant.

Since the proof is rather classical we omit it, and we refer the reader to [10, §3.2.2].

A.2. Application to the computation of the dual functions

A.2.1. Computations of the functions �2;l , l = 0; 2; 4 We set k = 2 . There holds �2 = �1 and we set �2;0(') = �c2 sin' .
We set ` = 2 . There holds �2;2 = 1 . Then, the compatibility condition (55) writes �c2 = 0 and is satisfied iff c2 = 0 . We

set c2 = 0 , hence
�2;0 = 0 (57)

and the compatibility condition (55) is satisfied when (k; `) = (2; 2) . Then the ODE (53) admits the following solutions

�2;2(') = c sin' ;

where c is an arbitrary constant.
We set ` = 4 . Then, the compatibility condition (55) is satisfied since∫ �

��

sin 3s sin s ds = 0 :

Hence, the ODE (53) admits the following solutions

�2;4(') = d sin(3')�
c

3

∫ '

��

sin (3('� s)) sin s ds ;

where d is an arbitrary constant, i.e.
�2;4(') = (d +

c

24
) sin(3')�

c

8
sin' :

A.3. The Sturm-Liouville problem with Neumann boundary conditions

Here, we consider the Sturm-Liouville problem with homogeneous Neumann boundary conditions{
�00

k;`(') + �
2
k;`�k;`(') = f ('); for all ' 2 (��; �)

�0
k;`(') = 0 for all ' = ��; � :

(58)

When �k;` 2
1
2
Z
� (resp. �k;` = 0 ), the Sturm-Liouville problem (58) has a solution provided the right-hand side f satisfies a

compatibility condition (61) (resp. (59)).

Proposition 2 Let f 2 C([��; �]) . Let k 2 N� and ` 2 2N� .
(i) Assume that �k;` = 0 . Then, the ODE (58) admits a solution iff the data f satisfies the compatibility condition∫ �

��

f (s) ds = 0 : (59)

Under the condition (59), the ODE (58) admits the following solutions

�k;`(') = c +

∫ '

��

('� s)f (s) ds ; (60)

where c is an arbitrary constant.
(ii) Assume that �k;` 2

1
2
Z
� , then the ODE (58) admits solutions iff the data f satisfies the compatibility condition∫ �

��

cos (�(� � s)) f (s) ds = 0 : (61)

Under the condition (61), the ODE (58) admits the following solutions

�k;`(') = c cos(�k;`') +
1

�k;`

∫ '

��

sin (�k;`('� s)) f (s) ds ; (62)

where c is an arbitrary constant.
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A.4. The multiplicity of the integer dual eigenvalues

Denote by � (�k ) the solution of the Laplace equation associated with the positive eigenvalue �k .

� (�k )(�; '; z) =

1∑
`=0;2;4;���

@`zAk(z)�
�k+`�k;`(') (63)

Thus � (�2=1) associated with the second positive eigenvalue �k = 1 is

� (�2=1)(�; '; z) = �1
{
A2(z)�2;0(') + A

00
2(z)�

2�2;2(') + A
(4)
2 (z)�4�2;4(') + � � �

}
(64)

According to (6)-(7), the ODEs to determine �2;` are

(1)2�2;0 + �
00
2;0 = 0 ; in (��; �) (65)

(1 + 2)2�2;2 + �
00
2;2 = ��2;0 ; in (��; �)

(1 + 4)2�2;4 + �
00
2;4 = ��2;2 ; in (��; �)

...
...

...

Let K(�j ) be the part of the dual solution associated with a negative eigenvalue �j (19)

K(�j )(�; '; z) =

1∑
`=0;2;4;���

@`zBj(z)�
�j+` j;`(�; '); (66)

and assume that functions  j;`(�; ') are independent of � when �j is an integer. Specifically, K(�2=�1) is

K(�2=�1)(�; '; z) = ��1
{
B2(z) 2;0(') + B

00
2(z)�

2 2;2(') + B
(4)
2 (z)�4 2;4(') + � � �

}
(67)

and according to (9)-(10) the ODEs to determine  2;`(') are

(�1)2 2;0 +  
00
2;0 = 0 ; in (��; �) (68)

(�1 + 2)2 2;2 +  
00
2;2 = � 2;0 ; in (��; �) (69)

(�1 + 4)2 2;4 +  
00
2;4 = � 2;2 ; in (��; �) (70)

...
...

...

As shown in equation (57),  2;0 = 0 . So (68)-(70) reduce to:

(�1 + 2)2 2;2 +  
00
2;2 = 0 ; in (��; �) (71)

(�1 + 4)2 2;4 +  
00
2;4 = � 2;2 ; in (��; �)

...
...

...

and K(�2=�1) is:

K(�2=�1)(�; '; z) = ��1
{
0 + B00

2(z)�
2 2;2(') + B

(4)
2 (z)�4 2;4(') + � � �

}
(72)

= �1
{
B00
2(z) 2;2(') + B

(4)
2 (z)�3 2;4(') + � � �

}
Hence, the primal eigenfunction �2;0(') and shadows �2;l(') that construct � (�2=1) in (64) coincide with the dual shadows
that construct K(�2=�1) in (67). Therefore it is necessary to consider logarithmic terms for the dual solution of the Laplace
equation.
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