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Abstract

A mandatory requirement for any reliable prediction of the mechanical re-

sponse of bones,based on quantitative computer tomography, is an accurate

relationship between material properties (usually Young’s modulus E) and

bone density ρ. Many such E-ρ relationships are available based on different

experiments on femur specimens with a large spread due to uncertainties.

The first goal of this study is to pool and analyze the relevant available

experimental data and develop a stochastic E-ρ relationship. This analysis

highlights that there is no experimental data available to cover the entire

density range of the human femur and that some “popular” E-ρ relation-

ships are based on data that contains extreme scatter, while others are based

on a very limited amount of information.

The second goal is to use the newly developed stochastic E-ρ relationship

in high-order finite element analyses (FEAs) for the computation of strains

and displacements in two human proximal femurs, mimicking in vitro ex-
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periments. When compared with the experimental observations, the FEA

predictions using the median of the stochastic E-ρ relationship follow the

underlying distribution of the stochastic E-ρ relationship. Thus, most devi-

ations of the FEA predictions from experimental observations can possibly

be explained by uncertain elastic properties of the femur.

Keywords: femur, finite-elements, uncertainty, constitutive-relation,

validation

1. Introduction

Patient-specific finite element (FE) analyses for predicting the mechani-

cal response of human femurs are performed by many researchers nowadays

(Bessho et al., 2007; Helgason et al., 2008b; Keyak et al., 1993; Schileo et al.,

2008; Trabelsi et al., 2009; Yosibash et al., 2007b). The topology of the FE

models is determined by manipulating quantitative computer tomography

(qCT) scans, and isotropic heterogeneous material properties are usually as-

signed on the basis of a mathematical relationship between a density measure

(either apparent density ρapp, equivalent mineral density ρeqm, or ash density

ρash) and Young’s modulus E. Most researchers contemplate a deterministic

isotropic material with a heterogeneous Young’s modulus related to the den-

sity from the point of view of a relationship based on experiments conducted

on small pieces of bone tissue:

E = a ρ b

x , ρx in [g/cm3], E in [MPa] (1)

where ρx is the densitometric measure, and a and b are generic constants.

Many such E-ρ relationships are documented in the literature, each de-

termined by a single set of experiments, and adopted in the generation of

2



subject-specific FE models of the whole organ. None of the previous work

pooled the various relevant experiments to derive a relationship based on all

data.

All experimental data for E-ρ relationships show a large variation with

scattering around the mean; see the review of Helgason et al. (2008a). These

relationships have a strong influence on the mechanical response of the whole

femur and several works investigated which of the deterministic relations

“best represent the physical reality” - see (Pise et al., 2009; Taddei et al.,

2007; Yosibash et al., 2007a), for example, and references therein.

Due to the uncertainty in the E-ρ relationships we employ probabilistic

methods to investigate the uncertainty’s influence on the simulated mechan-

ical response. A review of probabilistic methods and their application to

bonemechanics can be found in (Laz and Browne, 2010), and several relat-

ing particularly to the human-femur in (Dopico-Gonzalez et al., 2009; Laz

et al., 2007; Nicolella et al., 2006; Taddei et al., 2006; Viceconti et al., 2006).

Depending on the application, these studies also incorporate uncertainties

related to geometry and loading conditions. However, some of these studies

(Dopico-Gonzalez et al., 2009; Nicolella et al., 2006; Viceconti et al., 2006)

apply a simplified homogeneous material which uses the same random vari-

able everywhere to describe the Young’s modulus and which is independent

of ρ. In (Laz et al., 2007; Taddei et al., 2006) an E-ρ relationship in the form

(1) is used, with a and b modeled as Gaussian random variables based on

the experimental results reported by Keller (1994). In this way, the standard

errors for the estimation of the regression parameters are used as standard

deviations, while the estimates for a and b are used as mean values. Thus,
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only the uncertainty related to the parameter estimation is investigated (re-

sulting from a finite number of experimental observations), but not the un-

certainty within the experimental data. From a purely statistical viewpoint,

the appropriate mathematical procedure is to use a regression model with

one random variable which describes the deviation of the data from the re-

gression function, see (Abraham and Ledolter, 2006, Section 2.5 and Chapter

3). Apart from that, the cortical specimens tested by Keller (1994) are from

both transversal and longitudinal directions so that the scatter in that data is

very large compared to other experiments, which results in an overestimation

of the uncertainty.

None of the reviewed studies investigated an E-ρ relationship based on

multiple experimental studies or identified the influence of the variance within

such a relationship on the mechanical response of a patient-specific FE-model.

The aim of this manuscript is to provide the answer to the following

questions: a) Can a stochastic E(ρ) relationship be derived for the human

femur by pooling the data from past specimen tests, and how large is the

scatter? b) How does the uncertainty manifested in the E(ρ) relationship

propagate through patient-specific finite element analyses aimed at predicting

the mechanical response?

2. Methods

To answer the first question we scrutinized the experiments on which E-ρ

relationships were determined for the human femur. We pooled E-ρ data

from the different sources, analyzed it, and generated a new stochastic E-ρ

relationship which incorporates the uncertainty related to the various exper-
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iments. We then used the new relationship for patient-specific FE analyses

of two femurs and investigated the propagation of the E-ρ relationship un-

certainty. Finally, we compared the predicted mechanical response with in

vitro experimental observations. The following section describes the various

steps and methods in more detail.

2.1. Data acquisition

A literature survey on publications reporting on E-ρ relationships for

human bone tissues (applicable to femurs) was performed and only data

obtained from femurs was taken into account (Rice et al., 1988; Lotz et al.,

1991; Keyak et al., 1994; Keller, 1994; Wirtz et al., 2000; Morgan et al., 2003;

Kaneko et al., 2003, 2004; Helgason et al., 2008a).

These studies used no standard protocol and considered femurs from

donors of both genders spanning a wide age group. In addition, data stemed

from different specimen shapes and dimensions, different loading configura-

tions, and E was employed as a function of different densitometric measures.

We choose ash density (ρash) for pooling all relevant data, so other mea-

sures were converted to ρash using the linear relations described by Keyak

et al. (1994):

ρash(ρdry) = 0.597ρdry − 0.00191 (2)

ρash(ρwet) = 0.551ρwet − 0.00478 (3)

with ρdry denoting the dry density, defined as the ratio of defatted tissue mass

to the overall volume of the specimen. On the other hand, ρwet, also known

as ρapp, stands for the apparent wet density, which is determined from the

weight of the specimen after an additional rehydration procedure has been
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applied. Table 4 summarizes the different experiments on specimens from

femurs in a rigorous manner for a pooled analysis.

2.2. Determining a stochastic E-ρ relationship based on the pooled data

Experiments on small bone specimens with similar densities show a wide

spread in the measured Young’s modulus (cf. data in Figure 3). A regression

analysis was conducted on the pooled experimental data in order to estimate

the regression coefficients α such that the regression function f(ρ, α) best

represents the E-ρ relationship “on average”. The corresponding regression

model contains an additional error term X, which is a random variable rep-

resenting the scatter for all experimental observations from the regression

function. We assume X to be normally (Gaussian) distributed and to rep-

resent all relevant sources of deviations. After transferring the data into a

double logarithmic scale1, we used a linear regression function

f(ln ρ, α) = α0 + α1 ln ρ

suggesting a regression model of the type:

ln E = α0 + α1 ln ρ + X (4)

with X ∼ N (0, σ2
X

). This model assumes the error term to be independent of

the regression function; both the mean and the variance of X are constants.

Hence, we also require all experimental observations to be independent of

each other.

The transformation into double logarithmic scale is required as the as-

sumption of an error term with constant variance implies that (4) can only

1The terminology logarithmic refers to the natural logarithm.
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be used on data which shows a homoscedastic2 behavior. In the original scale

the pooled data appears heteroscedastic (see Figure 3).

Following (Abraham and Ledolter, 2006), the method of maximum likeli-

hood is used to obtain estimates for the unknown model parameters (regres-

sion coefficients and variance of X). For the model in question the maximum

likelihood estimates for α are equivalent to the least squares estimates α̂,

obtained by an ordinary least squares fit. Similarly, the estimate s2 for the

variance of the error term can be interpreted as the standard error of the

residuals of the least squares fit. Further details are provided in Appendix

A.

Given experimental data as a set of N independent measurements (Ei, ρi)

with i = 1, 2, . . . , N , the aforementioned estimates are used to derive the

material relationship

ln E = α̂0 + α̂1 ln ρ + Y (5)

with Y ∼ N (0, s2
Y
). Equation (5) is reformulated, so the error term becomes

a scaling factor of a power material relationship:

Esto = a ρ b · Z (6)

with Z = exp(Y ) ∼ lnN (0, s2
Y
), a = exp(α̂0) and b = α̂1. In (6) the

distribution of the random variable Z is log-normal, which is more realistic

2An assumption of the fitted model is that the standard deviations of the error terms

are constant and do not depend on ln ρ. Consequently, each probability distribution for

lnE has the same standard deviation regardless of the ln ρ value. This assumption is

called homoscedasticity.
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than the normal distribution because Young’s modulus cannot be negative.

Note that Z = exp(0) = 1 defines the median of the log-normal distributed

error term in (6). Hence,

Edet = a ρ b (7)

separates the higher (stiffer) half of all realizations from the lower (softer)

half and we call Edet the new deterministic material relationship3.

2.3. Statistical tests

The stochastic material relationship (6) was derived under the assump-

tion that the error term Y is independent of ρ and normally distributed.

Therefore, all residuals4 have to show a homoscedastic behavior and must be

normally distributed. Formulating these requirements as hypotheses makes

it possible to use statistical tests to check whether the regression model (4)

can be used on the data.

The Lilliefors test (Thode, 2002, Sec. 5.1.1) was used to test the hypothe-

sis that the residual values come from a normally distributed population, and

a studentized Breusch–Pagan test (Koenker, 1981) to check the hypothesis

of homoscedastic residuals. Both tests were conducted using the statistical

software environment R, version 2.13.1 (R Development Core Team, 2011).

Even though these tests are necessary, they are not sufficient. In other

words, even if the hypothesis can not be rejected, this does not automatically

prove the opposite. It is, however, possible to use characteristic plots of the

3Such deterministic relationships are used in almost all FE simulations.
4The residual ri of a sample is defined as the deviation between the sample value and

its fitted value, i.e. ri = lnEi − lnEdet(ρi).
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data like a residual plot and a normal probability plot in order to support

the hypotheses.

2.4. In vitro experiments and p-FE simulations of femurs

FE simulations of the mechanical response of human femurs are sensitive

to the E-ρ relationship, see (Yosibash et al., 2007a; Helgason et al., 2008a).

According to our past experience, the best deterministic relationship known

so far is based on the combination of Keller’s and Keyak’s law and provides

the closest FE results compared to in vitro experiments (Trabelsi et al., 2009,

2011). The “Keller–Keyak” relationship is:

ETrab = 33900 ρ2.20
ash [MPa] ρash ≤ 0.27 (8)

ETrab = 469 + 5307 ρash [MPa] 0.27 < ρash ≤ 0.6 (9)

ECort = 10200 ρ 2.01
ash [MPa] 0.6 < ρash (10)

with ν = 0.3. It is a heuristic model combining data for ρash ≤ 0.27 with

data for ρash > 0.6 by a linear relationship.

Both “Keller–Keyak” and the new deterministic relationship (7) were

used in p-FE analyses of two human femurs to predict the mechanical re-

sponse.

The p-FE analyses were validated by a series of in vitro experiments on

fresh frozen femurs, as detailed in (Yosibash et al., 2007b; Trabelsi et al., 2009;

Trabelsi and Yosibash, 2011). Here, we used the two most recent in vitro

experimental results on the femurs called FF4 and FF5. Details of the CT

scan resolution and load-rate in the experiments are summarized in Table 1.

The femurs were qCT scanned and within one day of defrosting, experiments

were conducted to mimic a simple stance position in which the femurs were
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loaded by a 1000 N force through their head while inclined at 0 and 7 degrees

(see Figure 1). We measured the vertical and horizontal displacements of the

femur’s head, and the strains at the inferior and superior parts of the neck,

as well as on the medial and lateral femoral shaft. Data was successfully

collected from about 12 strain gauges on each femur.

Figure 2 depicts the entire procedure from qCT scan to FEA. For more

details on the used algorithms and the experimental protocol we refer the

reader to (Yosibash et al., 2007b; Trabelsi et al., 2009; Trabelsi and Yosibash,

2011).

2.5. Propagation of material-relation uncertainty to the mechanical response

For a linear elastic analysis where only the Young’s modulus is stochastic,

Esto = Z · Edet, Hooke’s law may be expressed by a material tensor C(ρash)

that scales directly with the Young’s modulus. This allows the factorization

C
sto = Z · C

det (11)

Therefore, the FE stiffness matrix is:

Ksto =

∫

Ω

BT
C

sto B dΩ = Z ·
∫

Ω

BT
C

det B dΩ = Z · Kdet (12)

Table 1: Data of femurs and CT scan resolution.

Donor Side Age Gender Slice thickness Pixel size Load rate

label (years) (mm) (mm) (mm/sec)

FF4 R 63 male 1.25 0.195 1/60, 1/6, 1

FF5 R 56 male 1.25 0.26 1/2
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FF4 0˚ FF5 7˚

Figure 1: Typical experiments on FF4 and FF5 at 0o and 7o inclination

angles.

where B is the matrix containing the shape function derivatives (Zienkiewicz

et al., 2005, p. 204). The stochastic p-FE solution (the displacements) usto

is accordingly computed by

usto =
(

Ksto
)

−1
f = 1/Z ·

(

Kdet
)

−1
f = 1/Z · udet (13)

where f denotes the load vector (which is deterministic in our case) and udet

the p-FE displacement vector for a deterministic simulation. Since Z is a

random variable with log-normal distribution and mean zero, its reciprocal

has the same identical distribution. In other words, if Z ∼ lnN (0, s2), then

1/Z ∼ lnN (0, s2). Therefore, the stochastic response is the product of the
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Figure 2: Schematic flowchart describing the generation of the p-FE model

from qCT scans. a - Typical CT-slice, b. - Contour identification, c. -

Smoothing boundary points, d1. - Points cloud representing the bone surface.

d2. - Closed splines for all slices, e. - Bone surface, f. - p-FE mesh and g. -

Material evaluation from CT data.

deterministic result and the random variable Z:

usto = Z · udet. (14)

One may observe that stochastic strains are computed by applying the

gradient operator to the stochastic displacement field, resulting in the same

probability distribution. Accordingly, just a single simulation based on the

new deterministic material relationship is needed to quantify the uncertainty

in the femur’s mechanical response.
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Figure 3: All pooled experimental data, partially recovered from the litera-

ture and converted into the same density measure (ρash) using Eq. (2)-(3).

3. Results

3.1. A stochastic E-ρ relationship

Figure 3 shows the pooled data from publications listed in Table 4. Since

the transversal Young’s modulus in the cortical bone is significantly lower

than the longitudinal, the recorded data by Keller (1994) has to be discarded

as his study makes no distinction between the different directions. This also

explains the large scatter in that study. The analysis of the data from Lotz

et al. (1991), where a clear distinction is made between longitudinal and

transverse directions, indeed shows that it covers the entire span of Keller’s

results. The final data chosen for inclusion in the analysis contains N = 161

measurements and appears homoscedastic in a double-logarithmic scale (see

Figure 4).
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Figure 4: Final included data presented in double logarithmic scale, number

of experimental results N = 161.

A regression analysis is performed on this data using the model described

in (4), which yields the stochastic relationship

Esto = 12 000 ρ1.45
ash · Z, Z ∼ lnN (0, s2 = 0.1). (15)

All regression coefficients were found to be statistically significantly dif-

ferent from zero (P < 0.001), and the coefficient of determination R2 = 0.941

indicated a strong relation.

Figure 5 presents the new deterministic material relationship correspond-

ing to (15) together with the data in Table 4 (excluding Keller’s data and

Lotz’ data pertaining to the transverse direction). Figure 6 shows the distri-

bution of Esto for three different values of ρash.

The highest value of ρash obtained from HU with the K2HPO4 phantoms

in qCT scans is about ρash ∼ 1.6 g/cm3 corresponding to Edet ∼ 23 700
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Figure 5: The new deterministic material relationship (green line) derived

from the relevant experimental data (grey marks in the background) is com-

pared to the relationships ascertained from the literature research (Morgan

et al., 2003; Kaneko et al., 2003, 2004; Lotz et al., 1991) and the “Keller–

Keyak” relationship (red line). (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

MPa according to (15). It is, however, apparent that, for ρash = 1.6, the

95% confidence interval of the stochastic material relationship is bounded by

Elow = 12 840 MPa and Eup = 44 290 MPa, respectively5.

5For this density value, 2.5% of all possible Young’s moduli are smaller than Elow and

2.5% are higher than Eup, so P(Elow ≤ Esto ≤ Eup) = 95%. One may observe that,

for ρash = 1.6, the upper bound of the 95% confidence interval becomes unrealistically

“stiff”. Due to the considerable uncertainty in the cortical range, a value of Eup = 44 290

MPa by far exceeds the maximum Young’s modulus of about 30 000 MPa obtained by

nanoindentation experiments at the osteon level (Franzoso and Zysset, 2009).
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Figure 6: Schematic representation of the probability density function of

Esto for three different values of ρash. In every distribution, the vertical line

marks the median, which is equivalent to the value Edet obtained with the

new deterministic material relationship.

We should bear in mind that the stochastic material relationship was de-

rived under the assumption of homoscedastic and normally distributed resid-

ual values. To ensure that the relevant pooled data does not violate these

assumptions, we carried out a studentized Breusch–Pagan test (Koenker,

1981) and a Lilliefors test (Thode, 2002, Sec. 5.1.1). None of the test statis-

tics makes it possible to reject the respective hypothesis (Breusch-Pagan:

P = 0.1585 > 0.05; Lilliefors: P = 0.4578 > 0.05).

In addition, the assumption of homoscedasticity was checked within a

residual plot. When plotting the residual values against the fitted values of

the used data, no increase in variance was observed. Moreover, the stan-
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dardized residual values were plotted against the theoretical quantiles of a

standard normal distribution. None of the data points showed any significant

deviations from the diagonal line y = x, which supports the assumption of

normality.

3.2. Experimental observations versus deterministic simulation results

In all experiments, a linear response was observed between force and dis-

placements and strains beyond the 200N preload. The experimental error

was within the ±5% range. p-FE simulations that mimic the in vitro ex-

periments for FF4 and FF5, presented in (Yosibash et al., 2010; Katz, 2011)

using the “Keller–Keyak” material relationship, were performed again with

the new deterministic material relationship. By increasing the polynomial

order from p = 1 to p = 5, we verified that the numerical errors were lower

than 5% in the energy norm and that the strains and displacements at the

points of interest had converged. Details on the process are given in the study

of Trabelsi et al. (2009). Altogether, there are 39 data points for comparison,

11 strains and 2 displacements for FF4 at 0◦ inclination experiment, and 22

strains and 4 displacements for FF5 at 0◦ and 7◦ inclination experiments.

The p-FE results versus the experimental observations are shown as a re-

gression line in Figure 7a and in a modified Bland–Altman plot in Figure 7b.

The slope of the regression line in Figure 7a increased from 0.961 (for the

hitherto best “Keller–Keyak” relationship) to 1.003 (for the new determin-

istic relationship) but the coefficient of determination remained nearly the

same. For both material relationships we obtained a very strong linear rela-

tion between the experimental observation and the deterministic prediction
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(b) Bland-Altman plots

Figure 7: Both strains and displacements measured in the FF4 at 0◦ and

FF5 at a 0◦ and 7◦ inclination angle vs. p-FE predictions. Left: FEA with

Keyak–Keller relationship. Right: FEA with new deterministic relationship.

(R2 = 0.973 and 0.978, respectively).

In the Bland–Altman plot we chose the “y-axis” to represent ln |EXP| −
ln |FEA| = ln(EXP/FEA), i.e., we compared the absolute errors of the log-

arithms. This was motivated by the log-normal distribution of the material

uncertainty. If every p-FE result matched its corresponding experimental

value, then the Bland–Altman plot would present all data points on the

horizontal line y = 0. Deviations from this line represent an error show-

ing that the physical reality is under- or over- estimated. For an unbiased
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Table 2: Summary of characteristic values from Figure 7a and 7b.

regression lines Bland-Altman plots

material relationship slope R2 mean standard deviation (SD)

Keller–Keyak 0.961 0.973 -0.057 0.197

new deterministic 1.003 0.978 -0.024 0.195

prediction, the mean of all ordinates in the Bland–Altman plot should be

close to zero, while the spread of the mismatch can be quantified with the

standard deviation of the ordinates. The Bland–Altman plots show that the

mean of the logarithmic ratios is closer to zero for the new deterministic

relations (−0.024) than for the Keller–Keyak relationship (-0.057), whereas

the spread measured by the standard deviation remained nearly the same

(0.195 and 0.197). Note that the mean and standard deviation shown in the

Bland–Altman plots are based on a comparison between in vitro experiments

and the deterministic prediction of the strains and displacements and should

not be confused with the uncertainty in the stochastic material relationship.

All the characteristic values are summarized in Table 2 again for the sake

of comparison.

3.3. Experimental observation versus stochastic response

The previous section compared all experimental observations to a char-

acteristic value (median) of the stochastic response. Although the match

is impressive on average, individual predictions do deviate from experimen-

tal observations. For the simulation results based on the new deterministic

relationship we found relative errors up to ∼ 70%. This motivates further

examinations of the predicted strains and displacements in comparison to
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the experimental observations.

We should bear in mind that usto is the product of the deterministic sim-

ulation result and a random variable Z describing the “input” uncertainty.

Therefore, at each and every point within the bone the stochastic response

is the result of the underlying distribution of Z scaled by the determinis-

tic prediction. Treating all experimental observations as realizations of this

(theoretical) stochastic response allows us to quantify the actual “output”

uncertainty. Accordingly, every experimental observation is divided by its

corresponding deterministic prediction and compared to the expected distri-

bution of the stochastic response. Figure 8 depicts the normalized histogram

of all N = 39 ratios together with the probability density function of Z.

The distribution of all ratios seems to follow the distribution of the ran-

dom variable Z. Since Z is log-normally distributed, estimates for the mean

and standard deviation of the actual “output” uncertainty are computed

from the logarithmic ratios. Performing a Lilliefors test on the logarithmic

ratios did not lead to a rejection of the hypothesis of log-normal distributed

ratios on a high level of significance (P = 0.0421 > 0.01). All estimates have

already been depicted in Table 2 as they are also used for characterizing the

Bland-Altman plots. Please note that for the new material relationship the

mean is very close to zero (−0.024), while the variance of all logarithmic

ratios (SD2 = 0.038) is smaller than the variance of the material uncertainty

(s2 = 0.1).

This corroborates the hypothesis that most of the uncertainty is related

to the material relationship, so Z may be used to quantify the uncertainty

related to a deterministic prediction of the mechanical response. For instance,
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Figure 8: Histogram of all ratios between an experimental observation and its

corresponding prediction (with the new deterministic material relationship)

compared to the uncertainty related to the stochastic material law, which is

the probability density function (PDF) of Z. The red-shaded area under the

PDF marks its 95% confidence interval. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this

article.)

as Z ∼ lnN (0, 0.1) in the present study, the 95% confidence interval of Z is

bounded by [0.5385; 1.8570], i.e., 95% of the experimental observations will

be within 0.538 and 1.857 of the deterministic predictions. The anticipated

spread in the results is quite high because the experimental value has a

5% probability of being less than 53.85% and greater than 185.70% of the

predicted result.
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4. Discussion

By investigating the various deterministic relations that predict the lon-

gitudinal Young’s modulus as a function of a density measure in a femur, we

conclude that the two popular relationships frequently used in FE-models,

those proposed by Morgan et al. (2003) and by Keller (1994) are inappro-

priate when used with ρash. In the former case, it is due to the fact that it

is based on bone specimens with low bone densities alone and predict unre-

alistically high Young’s modulus for high bone densities. And in the latter

case it is because it includes specimens from both the longitudinal and the

transversal directions (with no distinction between them), which may explain

the very large scatter.

We were not able to trace any experimental data on the E-ρ relation-

ship beyond ρash = 1.22 g/cm3 (see Table 4 and Figure 3), although this

range of densities accounts for a significant part of femur’s volume. This is

demonstrated in Table 3 where the percentage of bone volume with densi-

ties beyond ρash = 1.22 g/cm3 is summarized for seventeen femurs—see also

Trabelsi et al. (2011).

The discretization error is guaranteed to be small (under 5% error in

the energy norm and in averaged strains and displacements at locations of

interest) compared to the uncertainties involved in our analysis. Thus, for

reliable simulations using FE methods, new well thought out experiments on

femur specimens where ρash > 1.2 g/cm3 are required because such densities

determine a large portion of the femur’s volume. As the various specimen

tests were performed in the past by different researchers , moreover, each

using a different experimental protocol, different specimen sizes, different
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methods for determining Young’s modulus, and different density measures,

the spread in the pooled data is fairly large. This calls for new research efforts

based on a well-defined protocol that will establish the E to Hounsfield-Unit

relationship in the longitudinal and transverse directions of the femur tissue

and cover the entire density range.

Based on the pooled data consisting of N = 161 samples, we determined

a stochastic E-ρash relation (in the longitudinal direction). Compared with

individual studies, pooling the data increased the coefficient of determina-

tion for the regression function significantly (R2 = 0.94 compared to 0.67 in

(Keller, 1994), 0.67 in (Lotz et al., 1991), and 0.85 in (Morgan et al., 2003)

- see Table 4).

The median of the stochastic relationship, the new deterministic relation-

ship, was shown to be better than the best material relationship known so far

in respect of the prediction of p-FE strains and displacements when a simple

stance loading condition is applied to the femur and results are compared to

in vitro experiments. Nevertheless, the improvement provided by the new

deterministic relationship is only marginal compared to the “Keller–Keyak”

relationship. The slope of the experimental results versus p-FE predictions

is 1.003 with R2 = 0.978, and the mean error in the Bland–Altman plot is

very close to zero, demonstrating an unbiased error. This excellent match is

not surprising because, in a simple stance position, it is reasonable to con-

sider the isotropic relationship with E as being the one in the “longitudinal

direction”, see (Trabelsi and Yosibash, 2011).

Most recent FEA studies, see (Yosibash et al., 2007a; Bessho et al., 2007;

Helgason et al., 2008b; Schileo et al., 2008) for example, used one of the
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E-ρ relationships given in Table 4 and record an accurate estimation of ex-

perimental results. It is interesting to note that the overall quality of the

predictions, as demonstrated by correlation analysis, has always been good

and largely independent of the underlying FE models. At this point we

would like to stress that the usual quality measures - slope and coefficient

of determination - are insufficient criteria for judging the reliability and ro-

bustness of a method since they only characterize the average behavior and

since individual predictions can still deviate considerably from experimental

observations even though slope and coefficient of determination indicate an

excellent match. In the present study based on N = 39 experimental results,

the maximum absolute relative error in predicting strains and displacements

was found to be ∼ 70%. This remaining simulation uncertainty correlates

well with the uncertainty related to the material relationship, which was

shown to propagate directly to the mechanical response under the assump-

tion of linear, isotropic elasticity.

Even though only one source of uncertainty was taken into account, the

probabilistic approach presented in this paper indicates that most of the ob-

served uncertainty is explained by the material relationship. Other sources

of uncertainty should be included in future studies, but these are expected to

have a smaller influence in the case of well-controlled in vitro experiments.

For example, a femur’s FE domain is determined with relative errors of less

than 3–4% when compared with measurements of the actual geometry (Tra-

belsi et al., 2009). The same holds for modeling the load that is applied

during an in vitro experiment. Of course, if more information is available on

the gender or age of the donor associated with each of the tested specimens,
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for instance, then a multivariate regression can be performed. This would

make it possible to perform simulations with stochastic material relationships

which are dependent on a patient’s gender or age, for instance.

This study has a number of limitations. One important limitation is the

use of the connections (2) and (3) to obtain E associated with one density

measure for all experimental data. This limitation may also result in the

excessively stiff bone response in Morgan’s relationship for ρash > 0.4 g/cm3.

Another limitation is that the comparison between FE predictions and in

vitro experiments considers two fresh-frozen femurs only. This comparison

should be extended to cover a much larger experimental cohort. In addition,

the femurs were assumed to be inhomogeneous and isotropic, with E being

dependent on the ash density and a single random variable. Due to the lack

of experimental information on ν(ρ), it was kept constant at the value of

0.3 (in (Yosibash et al., 2007a) we demonstrated that the Poisson ratio has

a minor influence on the longitudinal strains measured in the experiment).

In future studies, based on an anisotropic material law, or based on ν as an

additional stochastic variable, more intensive numerical computation will be

required, employing Monte-Carlo techniques or a variant of the polynomial-

chaos approach as in Foo et al. (2007).

Finally, we strongly advocate that future FE studies on the mechanical

response of bones describe not only a regression line representing the average

behavior of all FE predictions, but also quantify the uncertainty associated

with the FE simulation by using either Bland–Altman plots or plots showing

the distribution of all ratios between an experimental observation and its

corresponding deterministic prediction.
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Table 3: Summary of percentage of volume in femurs with densities in excess

of 1.22 g/cm3 and maximum estimated ρash from qCT scans.

Donor Age Height Weight Gender % Vol with ρash > 1.22 g/cm
3

Max(ρash)

ID (years) (cm) (Kg) Left/Right Left/Right

FF1 30 n.r. n.r. male 13 / - 1.53/ -

FF2 20 n.r. n.r. female - / 17 - /1.54

FF3 54 n.r. n.r. female 20 / - 1.6/ -

FF4 63 n.r. n.r. male - / 32 - /1.59

FF5 56 n.r. n.r. male - / 13 - /1.6

Donor 1 54 178 161 male 32 / 31 1.58/1.57

Donor 2 58 185 86 male 28 / 26 1.6/1.6

Donor 3 64 168 136 female 25 / 22 1.6/1.6

Donor 4 48 170 55 male 30 / 21 1.6/1.6

Donor 5 53 193 98 male 19 / 16 1.6/1.58

Donor 6 59 180 96 female 1 / 0 1.45/1.39
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Appendix A. Determination of the E-ρ relation using experimen-

tal data and the principle of maximum likelihood

Given experimental data as a set of N measurements (Ei, ρi) with i =

1, 2, . . . , N and a simple linear regression model of type

E = f(ρ, α) + X = α0 + α1ρ + X (A.1)

with X ∼ N (0, σ2), the principle of maximum likelihood can be used to

obtain estimates for the regression coefficients α and the variance of the

error term σ2.

Using (A.1), the probability of observing a single experiment (Ei, ρi) can

be computed directly from the normal distribution for given α and σ2:

Pr(E = Ei |α, σ) =
1√

2πσ2
exp

[

−1

2

(

Ei − f(ρi, α)

σ

)2
]

(A.2)

Assuming all experimental observations to be statistically independent of

one another, the total likelihood L(α, σ) of observing all N measurements is

equal to the product of all individual probabilities:

L(α, σ) =

N
∏

i=1

1√
2πσ2

exp

[

−1

2

(

Ei − f(ρi, α)

σ

)2
]

(A.3)

=
1

N
√

2πσ2N
exp

[

− 1

2σ2

N
∑

i=1

(Ei − f(ρi, α))2

]

(A.4)

The maximum likelihood estimates are those values for the parameters α and

σ that maximize the likelihood function. The α which maximizes L is the

same as the least squares estimates α̂, since maximizing the above likelihood

for α is equivalent to minimizing the sum of squares in the exponent of (A.4).
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In the case of a linear regression function f(ρ, α) = α0 + α1ρ the estimates

for α0 and α1 accordingly are

α̂0 = Ē − α̂1ρ̄ (A.5)

α̂1 =

∑

N

i=1 (ρi − ρ̄)
(

Ei − Ē
)

∑

N

i=1 (ρi − ρ̄)2
(A.6)

with Ē and ρ̄ being the sample mean. Those estimates are unbiased, i.e.,

E[α̂0] = α0 and E[α̂1] = α1.

Substituting the maximum likelihood estimate α̂ into (A.4) and taking

the logarithm of the result makes it possible to find an estimate for the

variance σ2 by setting the partial derivative of the logarithmic likelihood

function equal to zero, i.e.:

∂ ln L

∂σ2
= 0 =

−N

2σ2
+

1

2σ4

N
∑

i=1

(

Ei − Êi

)2

(A.7)

with Êi = f(ρi, α̂) representing the fitted Young’s modulus for a certain

density value of the data. Solving for σ2 yields the maximum likelihood

estimate s2
mle

for the variance of the error

s2
mle

=
1

N

N
∑

i=1

(

Ei − Êi

)2

(A.8)

Since this estimate is known to be biased, we use the unbiased estimate

s2 instead

s2 =
1

N − 2

N
∑

i=1

(

Ei − Êi

)2

(A.9)
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In the end, all three maximum likelihood estimates can be used to infer

from the experimental data a linear model:

E ≈ α̂0 + α̂1ρ + Y (A.10)

with Y ∼ N (0, s2).
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Table 4: Summary of the test details for E-ρ relationship on human femurs.

Ref bone type anatomical site info. on donors # specimens orientation density reported E[MPa] R2 ρash-range Test Geom. LxWxH strain rate

# gender age (recovered) (recovered E[MPa]) (recov.) [ g/cm3 ] type or DxL [mm] [ 1/sec. ]

Lotz et al. left cortical metaphyseal cortical 5 n.r. 28 - 90 79 longitudinal ρdry 14261ρdry − 13430 0.67 0.72 - 1.11 3PB 7 x 5 x 0.18-0.4 0.05

(Lotz et al., 1991) femur shell (neck and (76) (14131ρdry − 12521) (0.50)

intertrochanteric)

and diaphysis 80 transverse 4979ρdry − 3122 - 0.81 - 1.11

(74) (5190ρdry − 3040) (0.12)

Keller femur cortical & lesser trochanter & part of 2 2 × M 46, 67 259 n.r. ρash 10200ρ2.01
ash 0.67 0.25 - 1.22 Platen 8 x 8 x 8 0.01

(Keller, 1994) trabecular lateral supra-condylar ridge (184) (9882ρ1.98
ash ) (0.62)

Morgan et al. femur trabecular neck 23 15 × M 57 - 101 27 on-axis ρwet 6850ρ1.49
wet 0.85 0.14 - 0.41 End-caps 8 x 25 0.005

(Morgan et al., 2003) 8 × F (27) (6843ρ1.49
wet ) (0.85)

greater trochanter 21 16 × M 49 - 101 23 on-axis 15010ρ2.18
wet 0.82 0.07 - 0.15

5 × F (23) (15199ρ2.19
wet ) (0.82)

Kaneko et al. femur cortical diaphysis 2 1M n.r. 16 longitudinal of ρash - - 1.14 - 1.17 Dumbbell 6 x 2 x 5 0.001

(Kaneko et al., 2003) 1 n.r. from author diaphyseal axis - -

Kaneko et al. femur trabecular distal 4 2 × M 78 19 superior- inferior ρash - - 0.11 - 0.31 Platen 15 x 15 x 15 0.01

(Kaneko et al., 2004) 2 × F 67, 88 from author - -

Present study trab & cort 161 ρash (12000ρ1.45
ash ) 0.94 0.07 - 1.22
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