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Abstract
The voxel finite cell method uses unfitted finite element meshes and voxel quadra-

ture rules to seamlessly transfer computed tomography data into patient-specific

bone discretizations. The method, however, still requires the explicit parametriza-

tion of boundary surfaces to impose traction and displacement boundary con-

ditions, which constitutes a potential roadblock to automation. We explore a

phase-field–based formulation for imposing traction and displacement constraints

in a diffuse sense. Its essential component is a diffuse geometry model generated

from metastable phase-field solutions of the Allen-Cahn problem that assumes the

imaging data as initial condition. Phase-field approximations of the boundary and its

gradient are then used to transfer all boundary terms in the variational formulation

into volumetric terms. We show that in the context of the voxel finite cell method, dif-

fuse boundary conditions achieve the same accuracy as boundary conditions defined

over explicit sharp surfaces, if the inherent length scales, ie, the interface width of the

phase field, the voxel spacing, and the mesh size, are properly related. We demon-

strate the flexibility of the new method by analyzing stresses in a human femur and

a vertebral body.

KEYWORDS
diffuse boundary methods, femur, phase-fields, patient-specific simulation, voxel finite cell method,
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1 INTRODUCTION
Because of the intricate process of transferring diagnostic

imaging data into patient-specific models, simulation work-

flows involving complex physiological geometries largely

rely on the manual intervention of specially trained analysts.

This constitutes a significant roadblock for a wider adoption

of predictive simulation in clinical practice, as the associated

cost and response times are incompatible with tight bud-

gets and urgent decision making. A prominent example is

the elastic analysis of bone via image-based finite element

simulations.1 Many clinical studies have shown that results of

finite element simulations are able to increase the fidelity of

fracture risk prediction2-4 or can help surgeons optimize post-

fracture follow-up care.5,6 However, using high-resolution

computed tomography (CT) scan to run diagnostic simula-

tions in clinical practice is currently obstructed by the effort

of building patient-specific computational models.

Voxel finite element methods7-10 provide a potential path-

way to overcome this difficulty. They associate each voxel

(or a group of voxels) of a CT scan with 1 linear hexahedral

element. In combination with appropriate constitutive laws,

eg, on the basis of plasticity or damage mechanics,11 voxel

finite elements have been shown to accurately predict the evo-

lution of bone failure.12 However, they involve a prohibitive
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computational expense when applied to CT scans of a com-

plete bone. The voxel finite cell method13-16 applies a similar

concept, but at a significantly reduced computational cost.

The voxel finite cell method approximates the solution fields

on a simple mesh that does not have to conform to the geomet-

ric boundaries of the object to be analyzed. Instead, the geom-

etry is captured implicitly by means of special voxel-based

quadrature rules. This eliminates the need for boundary con-

forming meshes and opens the door for a seamless integration

of patient-specific imaging data into finite element analysis.

The voxel finite cell method has been applied for

patient-specific bone simulations in the linear elastic

range,13-15 including stochastic analyses and uncertainty

quantification,16 phase-field fracture,17 and coupled bone/

implant simulations for postfracture care.18 It directly oper-

ates on imaging data in the form of volumetric pixels (voxels)

derived from CT scans. The voxel finite cell method finds

the location of each quadrature point in the voxel model and

derives the material stiffness at this particular point on the

basis of the Hounsfield Unit (HU) value,19,20 including the

case of zero stiffness if the quadrature point is located outside

the bone. Thus, bone geometry and heterogeneous material

properties are implicitly accounted for during integration of

the stiffness matrix. This procedure can also be interpreted

as a direct homogenization strategy.21 In the context of bone

mechanics, validation studies have confirmed the accuracy of

the finite cell method,15 showing excellent correlation with

strains and displacements obtained from in vitro experiments

and boundary-fitted high-order finite element analysis.22-24

The voxel finite cell method still requires the reconstruction

of an explicit parametrization of boundary surfaces within the

embedding finite element mesh to impose boundary condi-

tions. Such a segmentation is difficult to automate, relying

the intervention of a specially trained analyst. In this paper,

we describe a new strategy that enables the voxel finite cell

method to circumvent explicit surface parametrization. It is

based on a diffuse boundary approach that leverages the

Dirac δ property of a phase-field gradient to impose boundary

conditions in a diffuse sense. Its combination with the voxel

finite cell method results in a method that is able to directly

operate on imaging data, completely avoiding a transfer of

implicit voxel-based bone geometry into explicit volume and

surface parametrizations.

Finite element methods on the basis of diffuse boun-

daries,25-28 also known as diffuse domain or phase-field meth-

ods, offer an approach for solving boundary value problems

on very complex domains. Their essential idea is to abandon

the concept of sharply defined boundaries and instead approx-

imate the domain implicitly by a phase-field function, which

smoothly transitions from 1 inside the domain to 0 in the exte-

rior. The diffusiveness of the geometry approximation, ie, the

local slope of the phase field at the boundary, is controlled

by a characteristic length-scale parameter 𝜀. The phase-field

approximation of the boundary and its gradient are then used

to reformulate the boundary value problem on an extended

regular domain, very much in the same way as the finite

cell method.29,30 The difference is that boundary conditions

originally formulated via surface terms are now transferred

into additional volumetric source terms, which completely

eliminates the need for explicit boundary parametrizations.

The concept has a long history31,32 and various instantia-

tions of phase-field methods have been published, eg, for

advection-diffusion problems,33,34 multiphase flow,35,36 the

evolution of complex cracks,37-40 fluid vessel networks,41,42

and phase transition and segregation processes.43-45

Our article is organized as follows: Section 2 provides

a brief review of the voxel finite cell method. Section 3

describes a methodology for obtaining a suitable phase-field

description of an imaging-based geometry via solving an

Allen-Cahn problem. Section 4 describes diffuse phase-field

formulations for the imposition of Neumann and Dirichlet

boundary conditions (ie, loads and displacements). In par-

ticular, we examine a benchmark problem to illustrate how

different geometry representations on the basis of imag-

ing data, phase fields, and sharp geometry parametrizations

affect the accuracy and convergence behavior of the finite

cell method. Section 5 illustrates the new method for the

image-based stress analysis of bone structures without surface

reconstruction. We demonstrate the simplified workflow and

the accuracy of the method for the patient-specific analysis

of a femur and a vertebra, comparing its results with experi-

mental data and results obtained from finite cell computations

with sharp boundaries. Section 6 summarizes key aspects and

draws conclusions.

2 THE VOXEL FINITE CELL
METHOD

We start with a concise summary of the tetrahedral finite cell

method in the context of linear elasticity and voxel geome-

tries. For details on the tetrahedral finite cell method, we

refer the interested reader to the recent contributions in pre-

vious studies.17,18,46 We note that the original variant of the

finite cell method introduced by PARVIZIAN, DüSTER, and

RANK 29,30 has been based on non–boundary-fitted Cartesian

meshes with higher order approximation of the solution fields

and adaptive quadrature of intersected elements on the basis

of recursive subdivision. A concise summary of the Cartesian

finite cell method can be found for example in the review in

Schillinger et al.47

2.1 Discretization with non–boundary-fitted
elements
The starting point is the variational form, defined on a domain

Ωwith Dirichlet and Neumann boundaries ΓD and ΓN, respec-

tively. For linear elasticity, we use the principle of virtual
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work

δW (u, δu) = ∫Ω
𝝈 ∶ δ𝜺 dΩ−∫Ω

δu·b dΩ−∫ΓN

δu·t dΓN = 0,

(1)

where u and δu are the true and virtual displacements, 𝝈 and

δ𝜺 = 1∕2(∇δu + ∇δuT) denote the Cauchy stress and vir-

tual strain tensors, and b and t are body forces and boundary

traction, respectively.

In contrast to the standard finite element method, the finite

cell method allows the discretization of Figure 1 with basis

functions that can arbitrarily overlap the domain boundary Γ.

This concept leads to a non–boundary-fitted finite element

mesh, whose elements can be arbitrarily intersected by the

domain boundary (see Figure 1) and constitutes a significant

simplification for meshing geometrically complex domains.

It is independent of a specific type of finite element basis

and has been successfully applied with integrated Legendre

functions,29,30 splines,48,49 and polyhedral functions.50 We first

define an embedding domain of simple geometry that can be

meshed easily and subsequently remove all elements without

support in the physical domain.

To enforce Dirichlet boundary conditions at embedded sur-

faces, the finite cell method uses Nitsche-type methods,51-54

which do not introduce additional unknowns and preserve a

positive definite stiffness matrix. We note that the embedded

boundary is still required to be explicitly described by a sharp

surface (see the red line in Figure 1). The Nitsche method

extends the principle of virtual work (Figure 1) as follows:

Find the displacements u such that δWK = δWf, where

δWK(u, δu) = ∫Ω
𝝈 ∶ δ𝜺 dΩ − ∫ΓD

u · (δ𝝈 · n) dΓ

− ∫ΓD

(𝝈 · n) · δu dΓ + 𝛽∫ΓD

u · δu dΓ,
(2)

δWf (δu) = ∫Ω
b · δu dΩ − ∫ΓD

û · (δ𝝈 · n) dΓ

+ ∫ΓN

t · δu dΓ + 𝛽∫ΓD

û · δu dΓ.
(3)

Function û denotes the prescribed displacements along the

Dirichlet boundary ΓD, and n is the outward unit normal vec-

tor on ΓD. The method requires a stabilization parameter 𝛽

that can be determined empirically or by solving a generalized

eigenvalue problem.52,53

2.2 Quadrature on the basis of recursive
subdivision
Elements intersected by the embedded boundary require spe-

cial numerical integration methods, because the volume inte-

grals in Equation 2 and 3 are only defined over portions of the

element domain. If the domain is given explicitly by a geo-

metric model with a sharply defined boundary representation,

the finite cell method uses a quadrature technique on the basis

of recursive octree subdivision. In the tetrahedral finite cell

method, its basic building block is the split of a tetrahedron

FIGURE 1 Boundary value problem defined on Ω and its discretization with a non–boundary-fitted triangular mesh, leading to elements

intersected by the embedded boundary (in red)

FIGURE 2 Building block of the recursive subdivision approach: a tetrahedron is split into 8 subcells
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FIGURE 3 Recursive subdivision quadrature of a boundary representation: The intersecting geometry is captured by aggregating quadrature

points along the sharply defined boundary surface

FIGURE 4 Voxel quadrature: each element is subdivided into quadrature sub-cells, until the stiffness variation of the voxel model with grid

spacing δ is sufficiently resolved by quadrature points

into 8 tetrahedral subcells as shown in Figure 2. This split

can be applied recursively for each cut subcell until a prede-

fined maximum level of subcells is reached. In each subcell, a

standard 5-point monomial rule for quadratic basis functions

and an 11-point quadrature rule for cubic basis functions is

used,55 so that quadrature points aggregate at the embedded

boundary. The weights of the quadrature points in each sub-

cell are scaled with the volume of the subcell. The concept

of recursive subdivision is illustrated in Figure 3 for a cube

discretized by unfitted tetrahedra. The finite cell method in

this form shifts the effort from geometry reconstruction and

meshing to numerical quadrature of intersected elements.

2.3 Quadrature on the basis of rasterized
voxel data
The layers of images obtained from CT scans of a bone struc-

ture can be transferred into a 3-D rasterized voxel model,

where each voxel contains a Hounsfield Unit (HU) associ-

ated with bone mineral density (BMD). The BMD can be

further associated to the Young modulus. The resolution of a

voxel model can be characterized by a length scale δ associ-

ated with the maximum grid spacing. For the analysis of voxel

models, the concept of intersected elements does not apply,

as there exists no sharply defined boundary of the problem

domain. Instead, we follow the voxel quadrature principles

outlined in Varduhn et al.17 First, tetrahedral elements that

are completely located outside the physical domain, that is,

the HU of all voxels located within this element are below a

predefined threshold, are removed from sthe mesh. Second,

we subdivide all remaining tetrahedral elements into subcells.

The subcell resolution is chosen such that the density of the

resulting quadrature points sufficiently reflects the stiffness

variation of the voxel model. The concept of voxel quadrature

in the context of the tetrahedral finite cell method is illustrated

in Figure 4.

3 DIFFUSE GEOMETRY AND
PHASE-FIELD APPROXIMATIONS

In this section, we derive diffuse boundary formulations in

the context of linear elasticity. We first demonstrate how inte-

grals over a sharply defined domain can be replaced by diffuse

integrals formulated in a scalar phase-field function. We also

discuss a set of requirements that need to be satisfied by a

proper phase-field approximation.
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3.1 Phase-field approximation of volume
and surface integrals
The reformulation of the elasticity problem in variational

forms 2 and 3 can be based on a diffuse representations

of the problem domain Ω in a phase-field function c. This

phase-field function can be perceived of as a regularized

approximation of the Heaviside function H,

H (x) =
{

1.0 ∀x ∈ Ω
0.0 otherwise,

(4)

which represents the sharp boundary limit. Figure 5 illus-

trates this concept in 1-D, showing a Heaviside function with

a sharp boundary and diffuse phase-field approximations of

different characteristic length scale 𝜀.

We first consider a general volume integral, for which we

can write

∫Ω
Q dΩ = ∫Ωem

QHdΩ ≈ ∫Ωem

QcdΩ, (5)

where Q is any well-behaved function to be integrated and

Ωem denotes an arbitrary embedding domain that fully con-

tains the physical domain Ω. We then consider the diffuse

representation of a surface integral

∫Γ
h dΓ = ∫Ωem

h δΓ dΩ ≈ ∫Ωem

h |∇c| dΩ, (6)

where the absolute value of the phase-field gradient approx-

imates a Dirac δ distribution at the boundary Γ, that is,

δΓ ≈ |∇c| . (7)

Figure 6 plots the absolute value of the gradient of the

phase-field functions shown in Figure 5. We observe that a

decrease in the diffuse boundary width leads to a contraction

of the gradient spike, which centers at the boundary location

Γ. To ensure consistent integration of the boundary function

h, the absolute value of all phase-field gradient functions must

reproduce the key property of a Dirac δ distribution, that

is, their integrals across the interface width are equal to 1.

FIGURE 5 Phase-field c with characteristic length-scale 𝜀 for a 1-D

domain

This requirement can be expressed concisely as

s2

∫
s1

δΓ ds =

s2

∫
s1

|||| d

ds
c

|||| ds = 1, (8)

where s is an arbitrary straight line with starting and end

points s1 and s2 that crosses the diffuse boundary region.

In fact, one can easily verify that this property holds for

any function that monotonically increases from 0 to 1 (or

monotonically decreases from 1 to 0).

Many surface integrals require a normal vector. As the

surface of the interface will no longer be parametrized explic-

itly, the normal vector is directly obtained from the implicit

phase-field representation as

n ≈ − ∇c|∇c| , (9)

where n denotes the outward unit normal along the boundary

of the physical domain Ω. This approximation that makes use

of the steepest descent property of the gradient allows us to

rewrite surface integrals that involve a normal in the following

form

∫Γ
q · ndΓ = ∫Ω

q · nδΓdΩ ≈ −∫Ω
q · ∇cdΩ, (10)

where q denotes an arbitrary flux quantity.

We finally emphasize that these relations are valid for any

phase-field function that satisfies the following 4 require-

ments:

1. The phase-field is a monotonically decreasing function

from 1 in the physical domainΩ to 0 outside (see Figure 5).

2. With decreasing length scale parameter 𝜀, the phase-field

converges to the Heaviside function described in

Equation 4.

3. With decreasing length scale parameter 𝜀 and given suf-

ficient smoothness of Γ, the negative normalized gradient

of the phase-field converges to the normal of the interface.

4. The diffuse boundary, that is, the spike of the gradient

function, centers at the sharp boundary.

FIGURE 6 Absolute value of the gradient of the phase-field

functions for different length-scales 𝜀
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In the following subsection, we will discuss that the

phase-field solution obtained from a correctly initialized

Allen-Cahn problem satisfies all of these requirements.

3.2 An initial boundary value problem
on the basis of the Allen-Cahn equation
We construct suitable auxiliary phase-field functions that are

able to implicitly parametrize imaging-based geometries irre-

spective of their geometric complexity. For the diffuse repre-

sentation of the boundary Γ, we consider the initial boundary

value problem on the basis of the Allen-Cahn equation

𝜕c
𝜕t

= 𝜀2 ∇2c − 𝜕F(c)
𝜕c

on Ωem × (0,T), (11)

∇c · n = 0 at 𝜕Ωem, (12)

c(x) = H at t = 0, (13)

where c(x, t) represents the phase-field function. Following

FENTON et al,56 we choose the potential function F(c) as a

double-well potential

F(c) = −(2c − 1)2

4
+ (2c − 1)4

8
= 2c2(c − 1)2 − 1

8
(14)

with minima at c = 0 and c = 1. As a result, the phase-field

solution c separates into 2 regions at values 0 and 1, while

the diffusion operator tends to smooth out the spatial discon-

tinuity of c at the interface between these 2 regions 56,57 (see

also Figure 5). The balance between double-well potential

and the diffusion operator leads to a diffuse boundary region,

whose width is controlled by the length-scale parameter 𝜀.

In line with the double-well potential, we choose the Heav-

iside function 4 as the initial condition, which characterizes

the sharply defined domain with an explicit boundary surface.

The Heaviside function can be directly derived from implicit

representations of the geometry, eg, an analytical expression

or imaging data.

With Equation 14, the 1-dimensional steady-state

phase-field solution of Equation 11 in an infinite half space

with boundary x = a is given by

c(x) = 1

2

(
1 + tanh

(a − x
𝜀

))
. (15)

The diffuse functions plotted in Figure 5 correspond to

Equation 15 with different values of 𝜀. It is straightforward

to see in the 1-dimensional case that functions of the form

15 satisfy all requirements stated above. Phase-fields con-

verge to a Heaviside function with the jump at x = a, when 𝜀

is decreased. They represent monotonically decreasing func-

tions from 0 to 1, so that integrating the absolute value of their

gradients across the diffuse boundary equals to 1 for any 𝜀.

This can be easily verified as

∫Ω
|∇c| dΩ = −1

2

(
tanh

(a − x
𝜀

)) ||||
∞

−∞
= 1. (16)

The dynamic behavior of the Allen-Cahn equation has been

studied in Chen.57 Before reaching its steady state, the solu-

tion passes through different evolution phases, each character-

ized by a certain time scale. In the present scope, we are only

interested in the short-term dynamics. At first, given a random

initial condition, the forcing associated with 𝜕cF(c) dominates

the solution behavior, driving the initial data at each point to

the closest minimum of the potential (Equation 14). As the

phase-field values locally approach the 2 minima, the effect

of 𝜕cF(c) decreases. At a boundary location, the forcing that

wants to form a jump in c starts to compete with the effect of

the diffusion term. This finally leads to the formation of a dif-

fuse boundary region instead of a sharp boundary jump. The

result is a smooth phase-field function that we adopt as our

diffuse geometry model.

It is important to note that these short-term phase-field

solutions, also called metastable patterns, are extremely

resilient and stable over a long period.57 They therefore consti-

tute a quasi–steady-state solution that can be reliably and effi-

ciently computed. We note that on the long-term time scale,

however, diffuse boundaries will eventually start to move

and dissipate, leading to either the annihilation of all diffuse

boundaries or to 1 single straight diffuse boundary. While

metastable patterns have fully formed at a timescale of order

𝜀−1, the time scale associated with the start of the annihilation

and coalescence is at least of order el/𝜀, where l corresponds

to the smallest distance separating 2 boundaries.58

3.3 Discretization in space and time
We discretize the variational weak form of Equation 11 in

space with standard nodal finite elements on the basis of lin-

ear triangles and tetrahedra and in time with a second-order

semi-implicit scheme on the basis of a backward differenti-

ation formula (BDF) and Adams-Bashforth methods.59 The

time-discretized variational form reads

1

2δt ∫
(
3cn+1 − 4cn + cn−1

)
𝜓 dΩ + 𝜀2 ∫ ∇cn+1 · ∇𝜓 dΩ

+ ∫
(
2F′(cn) − F′(cn−1)

)
𝜓 dΩ = 0,

(17)

where δt is the time step size, n denotes the current time

step, and 𝜓 is a test function. The time integration scheme

17 is simple to implement, second-order accurate, and

energy-stable for reasonably small time steps (see Shen and

Yang59 for the stability criterion).

In practice, we integrate the discretized variational form

17 until a reasonably smooth diffuse boundary has been

achieved, following the short-term dynamic behavior of the

Allen-Cahn equation discussed above. We assume that we

have achieved the metastable state when the 2-norm of the

difference between the phase-field solutions at the previous

and current time steps falls below a specified fraction of the

initial difference between the first 2 time steps.
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FIGURE 7 Diffuse geometry example with straight boundary. Phase-field solutions are computed for different length-scale parameters 𝜀 on

adaptive meshes with minimum local mesh size h = 𝜀

FIGURE 8 Diffuse geometry example generated from imaging data

The width of the diffuse boundary is approximately 4𝜀56

and needs to be resolved by a sufficiently fine mesh size in

its vicinity. Therefore, the local mesh size h has to be propor-

tional to the length scale 𝜀 of the diffuse interface. Figure 7

illustrates the method for a simple geometry with a straight

interface. Adaptivity is driven by the criterion to achieve a

local mesh size of h = 𝜀 in the vicinity of the diffuse interface.

3.4 Transferring imaging data into
phase-fields
In the context of imaging data, we adapt the procedure out-

lined above to determine a phase-field description c of the

implicit voxel model. To this end, we assume the complete

domain that is covered by the voxel model as the embedding

domain Ωem. We then define a threshold that specifies the dis-

tinction between the physical domainΩ of interest and the rest

of the domain outside. This yields an initial condition, with

which we can solve the Allen-Cahn problem 11 through 14 on

a suitable mesh that is adaptively refined at all voxels close to

the threshold such that the local element size h corresponds to

the characteristic length scale 𝜀 of the Allen-Cahn problem.

The phase field is another implicit representation of the

geometry, but in contrast to the voxel model, allows the

extraction of boundary information in its gradient. Since the

boundary in a voxel model is not determined sharply, the

phase-field approximation c corresponds to the “data reality”

of the original imaging representation.

Figure 8 illustrates the process of transferring imaging data

given in a CT scan into a diffuse phase-field representation for

a 2-dimensional example. We note that in a general setting,

unsupervised image processing such as histogram intensity

transfers or growing and shrinking algorithms60 might be

required to eliminate noise or small features in the imaging

data. For the analysis of bone structures on the basis of CT

scans in Section 5, the distinction between a hard tissue and

a soft tissue can be made on the basis of the Hounsfield unit

(HU). All voxels with a HU above the threshold are defined

to be the bone and the ones below are defined as “outside of

the bone.” We note that in the scope of this work, we will

work with segmented bone data, so that we directly start at

the thresholding stage and do not require noise removal.
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4 A GEOMETRICALLY DIFFUSE
PHASE-FIELD APPROACH FOR THE
SURFACE-FREE IMPOSITION OF
BOUNDARY CONDITIONS

In this section, we derive geometrically diffuse variational

formulations in the context of linear elasticity that can be eval-

uated without surface parametrization. To this end, we replace

integrals in the variational formulations shown in Section 2

that are based on sharply defined domains by diffuse inte-

grals, on the basis of the phase-field framework discussed in

Section 3. Finally, we link the resulting geometrically diffuse

formulations back to the voxel finite cell method.

4.1 Neumann boundary conditions
We first consider the variational formulation 1 that consists

of volumetric integrals and a surface integral for the bound-

ary traction at the sharply defined Neumann boundary ΓN.

Assuming a suitable phase-field solution c whose diffuse

boundary corresponds to ΓN, we can use the identities 5 and

6 to replace integrals over the geometrically exact domain Ω
and its sharp boundary ΓN by integrals over the embedding

domain Ωem. The resulting geometrically diffuse variational

formulation follows as

δW(u, δu) = ∫Ωem

(𝝈 ∶ δ𝜺) c dΩ − ∫Ωem

(b · δu) c dΩ

− ∫Ωem

(t · δu) |∇c| dΩ = 0.

(18)

If the boundary traction is formulated in the boundary normal

n, for example, a pressure load p, we can use Equation 9 to

rewrite the surface integral as follows

∫Ωem

(p n · δu) |∇c| dΩ = ∫Ωem

p ∇c · δu dΩ. (19)

Readers interested in a more details on convergence and accu-

racy of diffuse Neumann boundary conditions are referred to

the computational study in the Appendix.

4.2 Dirichlet boundary conditions
In the next step, we consider the variational formulations

2 and 3, from which we obtain the symmetric Nitsche

method.51,52 We assume again a suitable phase-field solu-

tion c whose diffuse interface represents the sharp Dirichlet

boundary ΓD. We then use the identities 5 and 6 to replace

integrals over the physical domain Ω and its sharp boundary

ΓD by integrals over the embedding domain Ωem. The result is

the following geometrically diffuse formulation of Nitsche’s

method: Find the displacements u such that δWK = δWf,

where

δWK(u, δu) = ∫Ωem

(𝝈 ∶ δ𝜺) c dΩ

− ∫Ωem

u · (δ𝝈 · ∇c) dΩ − ∫Ωem

(𝝈 · ∇c) · δu dΩ

+ 𝛽∫Ωem

u · δu |∇c| dΩ,

(20)

δWf (δu) = ∫Ωem

b · δu dΩ − ∫Ωem

û · (δ𝝈 · ∇c) dΩ

+ 𝛽∫Ωem

û · δu |∇c| dΩ.
(21)

The stabilization parameter 𝛽 ensures coercivity of the bilin-

ear form and hence stability of the finite element method.

In analogy to Nitsche’s method on the basis of sharp inter-

faces, it is proportional to the elastic material parameter and a

configuration-dependent constant and, inversely, proportional

to a suitable mesh size. In the scope of this work, we empiri-

cally choose 𝛽 as 5 times Young modulus. This choice resulted

in stable finite element computations in all simulations, while

an influence of the stabilization term on the convergence

behavior could not be observed in the numerical tests. For

more information on accuracy, convergence, and stabiliza-

tion, interested readers are referred to the computational study

in the Appendix and further results reported in Nguyen et al61

that focuses on the diffuse Nitsche method from a numerical

analysis viewpoint. In particular, the latter provides a general-

ization of the eigenvalue-based estimation of the stabilization

parameter and a comparison with consistent penalty-type

methods derived, for example, in Li et al.27

4.3 Imaging data vs phase-fields: the link
back to the voxel finite cell method
Although the convergence of the diffuse method exhibits sig-

nificant differences to the accuracy of the finite cell method

with sharply defined domains, there is a sweet spot when

diffuse boundaries are combined with the voxel finite cell

method. Our idea is based on the following rationale:

1. Combining the voxel finite cell method for the evalu-

ation of the volume integrals and the diffuse interface

method for the evaluation of the surface integrals leads to

a method that does not require any explicit representation

of geometric entities.

2. The geometric fidelity of the voxel finite cell method, and

hence the maximum accuracy level of its physical solution

fields, is limited by the available resolution of the imag-

ing data. The limiting parameter is the maximum voxel

spacing Δ.

3. The accuracy of the diffuse method is limited through

the length scale 𝜀 that governs the width of the diffuse
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boundary region. Consequently, the voxel finite cell

method and the diffuse boundary method exhibit the same

limitation in accuracy and convergence.

This indicates that if the 2 limiting factors Δ and 𝜀 are prop-

erly related, the combination of the voxel finite cell method

with the diffuse boundary strategy enables the same accuracy

as the voxel finite cell method with sharply defined surfaces,

but removes the roadblock of explicit surface parametrization.

To consolidate this idea, we will first summarize the cor-

responding changes in the variational form. The core com-

ponent of the voxel finite cell method described in Section

2.3 is to use quadrature rules on the basis of voxel data for

numerically integrating volume integrals. In view of our tar-

get application, the image-based elastic analysis of bone, we

assume that we have approximations of Ω on the basis of

1 or several phase-field functions c and a rasterized voxel

representation Ωvox. Since both approximations are defined

over the complete embedding domain Ωem, we can replace

phase-field volume integrals by voxel integrals as follows

∫Ωem

Q c dΩ ≈ ∫Ωvox

Q dΩ. (22)

We now apply Equation 22 to all volume terms in the diffuse

boundary methods introduced in Equations 18 through 21.

Merging all terms leads to the following single variational for-

mulation: Find the displacement field u such that δWK = δWf,

where

δWK(u, δu) = ∫Ωvox

𝝈 ∶ δ𝜺 dΩ

− ∫Ωem

u · (δ𝝈 · ∇cD) dΩ

− ∫Ωem

(𝝈 · ∇cD) · δu dΩ

+ 𝛽∫Ωem

u · δu |∇cD| dΩ,

(23)

δWf (δu) = ∫Ωvox

b · δu dΩ + ∫Ωem

(t · δu) |∇cN| dΩ

− ∫Ωem

û · (δ𝝈 · ∇cD) dΩ

+ 𝛽∫Ωem

û · δu |∇cD| dΩ.

(24)

We note that Equations 23 and 24 require further assump-

tions. First, we have split the phase-field c into 2 individ-

ual phase-fields cN and cD whose diffuse boundary regions

approximate the sharp Neumann and Dirichlet boundaries.

Second, in the multidimensional case, we assume that each

component of the traction vector t and the given displacement

vector û, initially defined as functions on the sharp surfaces

ΓN and ΓD, can be extended along the surface normal such

that they are well defined over the complete diffuse interface

region.27

4.4 Three-dimensional benchmark: a
spherical thick shell
To illustrate accuracy and convergence of the voxel finite cell

method with phase-field boundary conditions, we consider

the spherical thick shell shown in Figure 9. We assume an

inner radius Ri = 50, an outer radius Ra = 100, Young

modulus E = 10000, Poisson ratio 𝜈 = 0.3, and either an

internal pressure p = 50 as a Neumann condition or the equiv-

alent boundary displacement ur = 0.2 in radial direction as a

Dirichlet condition. Because of symmetry, we consider only

one eighth of the original problem. There exists an analytical

solution 62,63 in spherical coordinates {r, 𝜙, 𝜃} that yields the

exact strain energy Uex=157 079.6326794896.

FIGURE 9 A thick spherical shell

FIGURE 10 Voxel model (resolution δ = 1)
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FIGURE 11 Geometric description of the inner surface: A, sharp (very fine tesselation) and, B, diffuse (phase field with resolution 𝜀 = 1)

For the geometric description of its volume, we consider

either the sharp boundary representation shown in Figure 9

or a corresponding voxel model of the embedding cube with

an isotropic voxel resolution of Δ = 1. The latter is illus-

trated in Figure 10 that plots all voxels with Young modulus

E = 10000, omitting all voxels with no stiffness outside the

thick shell. For the geometric description of the inner sur-

face, where Neumann or Dirichlet boundary conditions need

to be applied, we consider either a sharp surface given by a

very fine tesselation or the gradient of a diffuse phase-field

function, generated analytically as

c(r) = 1

2

(
1 + tanh

(
r − Ri

𝜀

))
. (25)

Figure 11 illustrates both surface representations. We observe

that both the voxel model and the diffuse phase-field model

are characterized by a characteristic length scale, the voxel

spacing Δ, and the phase-field parameter 𝜀, respectively. We

note that if the voxel model is known, we can generate a

corresponding phase-field representation via the Allen-Cahn

problem as described in Section 3.2. If the phase-field func-

tion is known, we can generate a corresponding voxel repre-

sentation by assigning full stiffness to all elements of a given

voxel grid, where the phase-field is larger than 0.5 in its center.

In the first step, we use the tetrahedral finite cell method,

where integration over the volume is based on the sharp rep-

resentation and integration over surfaces is based either on the

sharp explicit or the diffuse implicit surface representations

shown in Figure 11A,B, respectively. To capture the volumet-

ric geometry in cut elements, we use the recursive quadrature

scheme summarized in Section 2.2. We use quadratic tetra-

hedral meshes generated for the embedding cube, where all

elements are removed, for which the phase-field stays below

10−6 in the element support. Symmetry boundary conditions

along straight boundaries are imposed strongly. Figure 12

illustrates the initial unfitted mesh.

FIGURE 12 Initial unfitted finite element mesh used in all voxel

finite cell computations. All elements away from the physical domain

(shaded in green) have been removed

We examine the effect of diffuse boundary conditions on

the accuracy of the finite cell method by measuring the strain

energy error defined over the sharp volume. Figures 13A

and 14A plot the relative error under mesh refinement for

Neumann and Dirichlet boundary conditions at the inner sur-

face, respectively. We observe that the boundary conditions

on the basis of a sharp surface enable optimal convergence

rates throughout the complete accuracy range. Diffuse bound-

ary conditions on the basis of the phase-field function 25

enable optimal convergence rates in the pre-asymtotic range,

but level off at a critical error level that is controlled by

the characteristic length scale parameter 𝜀. These results

confirm the convergence behavior outlined above for the

1-dimensional bar.

In the second step, we repeat the same study, but use the

voxel finite cell method. The underlying voxel modelΩvox that

implicitly describes the volume of the thick spherical shell is

shown in Figure 10. To capture the volumetric geometry, we

use the voxel quadrature scheme of Section 2.3. Figures 13B

and 14B plot the corresponding relative error in strain energy
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FIGURE 13 Neumann boundary conditions at inner spherical boundary for the spherical thick shell problem: Convergence in strain energy for

sharp and diffuse surface integration

FIGURE 14 Dirichlet boundary conditions at inner spherical boundary for the spherical thick shell problem: convergence in strain energy for

sharp and diffuse surface integration

for the Neumann and Dirichlet case, respectively. In addi-

tion, the sharp surface results are added as a reference. We

observe that convergence curves level off at a critical accuracy

level, even if Neumann and Dirichlet boundary conditions are

imposed at a sharply defined surface. These results confirm

that the accuracy of the voxel finite cell method is limited by

the voxel resolution. Of particular interest from an engineer-

ing point of view is the pre-asymptotic range, where sharp and

diffuse boundary conditions achieve exactly the same accu-

racy and optimal rates of convergence. These results support

our initial hypothesis that the voxel finite cell method with

diffuse boundary conditions enables the same accuracy as the

voxel finite cell method with sharply defined surfaces.

4.5 Relating phase-field length scale, voxel
spacing, and mesh size
The numerical behavior of the benchmark tests demonstrate

that the success of the voxel finite cell method with diffuse

boundary conditions depends on a suitable relation between

the length scales involved in the method. These are the charac-

teristic length scale of the phase-field solution, 𝜀, that controls

the width of the diffuse boundary region, the spacing of the

voxels, Δ, that controls the resolution of the voxel model,

and the mesh size, h, that controls the accuracy of the finite

element approximation of the solution fields.

We observe in Figures 13B and 14B that if we properly

relate the 2 length scale parameters Δ and 𝜀, the conver-

gence curves obtained for diffuse boundary conditions level

off at approximately the same critical accuracy level. Accord-

ing to the numerical tests, 𝜀 = 0.5Δ seems a good choice.

Figures 13 and 14 also show that the strain energy error

increases again when the mesh size has passed the critical

point, where the convergence curve levels off from the ref-

erence. Our observations indicate that the reason for this

phenomenon are spurious stress oscillations in the diffuse

boundary regions. They start to appear when the mesh size is

small enough to resolve the solution fields in the part of the

diffuse region outside of the voxel model that has no stiffness

(see also Figure 15). From a practical viewpoint, it is therefore

important to bound the minimum mesh size h in 𝜀. Our numer-

ical tests indicate that for quadratic basis functions, h > 10𝜀

is a reliable lower bound for the mesh size that ensures that

stress oscillations do not occur. Therefore, we can summarize

the relation between the three inherent length scales as follows
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FIGURE 15 A, Voxel data, B, diffuse boundary band, and, C, element outside the physical domain but cut by the diffuse band therefore not

removed, and, D, element completely outside the physical domain will be removed. For elements as in C, all quadrature points will be assigned a

small stiffness to maintain solvability of the system

h ∼ 10𝜀 ≈ 5Δ. (26)

We note that the constraint on the mesh size h by the voxel

spacing Δ in Equation 26 that automatically follows from the

above considerations is in line with the limitation that the

accuracy of the voxel finite cell method cannot be increased

by mesh refinement beyond the voxel resolution.15,17

4.6 Implementation aspects
The accuracy of diffuse boundary conditions relies on accu-

rately integrating the phase-field gradient throughout the

complete diffuse boundary region. This requires an adequate

number of quadrature points in the diffuse boundary region.

Standard element quadrature rules are not sufficient, since in

general, the length scale parameter 𝜀 is significantly smaller

than the element size h. In the context of the finite cell

method, we can leverage recursive subdivision quadrature as

described in Section 2.2 to achieve accurate integration of the

phase-field gradient. The application of recursive quadrature

in the diffuse boundary region is illustrated in Figure 15. Our

numerical tests indicate that a subcell size of 2𝜀 is sufficient

to achieve full accuracy.

Combining the voxel finite cell method with diffuse bound-

ary conditions leads to several pitfalls that require special

care. On the one hand, the part of the diffuse interface region

not covered by the voxel model still needs to be integrated,

even if there is no stiffness. In the context of the finite cell

method, we suggest the following strategy: We only remove

those elements from the discretization of the embedding

domain that have no support in the voxel volume and for

which the phase-field stays below a tolerance (in our case,

c < 10−6) everywhere in the element support. To maintain

solvability of the system, we assign a very small stiffness (in

our case, c < 10−8) to all voxels outside the physical domain,

which is in line with the original concept of the finite cell

method.29,30 Figure 15 illustrates this strategy.

On the other hand, the evaluation of the surface terms of

the diffuse Nitsche method in Equations 23 and 24 cannot

rely on the volumetric voxel model for choosing the appropri-

ate stiffness parameters. We recall that the derivation of the

formulation of diffuse boundary conditions assumes that all

surface input is extended in normal direction. Therefore, when

evaluating the surface terms of the diffuse Nitsche method

outside of the voxel model, we still need to assume full stiff-

ness for those terms. In our implementation, we trace the

voxels along the negative normal vector (Equation 9) until we

find a voxel with significant stiffness.

5 PATIENT-SPECIFIC ELASTIC
ANALYSIS OF BONE WITHOUT
EXPLICIT GEOMETRY
RECONSTRUCTION

In the following, we demonstrate the validity, accuracy, and

effectiveness of the voxel finite cell method with diffuse

phase-field boundary conditions for the patient-specific anal-

ysis of bones. We focus on vertebra and femur bones that

are of particular interest for patient-specific predictions, eg,

because of the critical role they play in osteoporosis-induced

fractures.

5.1 Femur
We first consider a femur that constitutes a well-studied test

case, for which results from a number of previous successful

computational and experimental studies are available. These

studies were performed in the groups of ERNST RANK at

the Technische Universität München, Germany, and ZOHAR

YOSIBASH at the Ben-Gurion University of the Negev,
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FIGURE 16 Femur: discretization with the voxel finite cell method

Beer-Sheva, Israel, and have led to a number of publications,

eg, previous studies.15,16,22-24 The input for the femur simula-

tions are quantitative CT scans in the form of a DICOM *

file that provides the HU for a specific layer and pixel spac-

ing. It was obtained by a clinical Philips Brilliance 64 CT

(Eindhoven, The Netherlands): 120 kVp, 250 mAs, 1.25 slice

thickness 0.195 mm (bone shaft tilted by 5◦ with respect to

the axial direction of the CT scan). A calibration phantom

provides a linear conversion between HU and an equiva-

lent mineral density 𝜌eqm[g∕cm3] that is then transferred to

voxel-wise Young moduli.

5.1.1 Discretization with the voxel finite cell
method
By using an unfitted mesh, we discretize the embedding

domain with 4216 hexahedral finite elements of polynomial

degree p = 4, where each hexahedral element exactly cov-

ers (15 × 15 × 5) voxels. Elements outside the physical

domain are removed from the discretization. For the evalua-

tion of the volumetric integrals, we adopt the voxel quadrature

rules that have been described in Section 2.3. We assume an

isotropic heterogeneous linear elastic material and determine

the Young modulus at each voxel with the following model

relations

𝜌ash = (1.22 𝜌eqm + 0.0523) [g∕cm3], (27)

Etrab = 5307×𝜌ash+469 [MPa], if 0 < 𝜌ash < 0.4, (28)

Ecort = 10200 × 𝜌2.01
ash [MPa], if 𝜌ash ⩾ 0.4, (29)

where 𝜌ash denotes the ash density corresponding to 𝜌eqm.19

In addition, we use a homogeneous Poisson ratio 𝜈 = 0.3.

The distal face of the femur is a flat plane, where displace-

*Digital Imaging and Communications in Medicine.

ment boundary conditions can be easily applied with the sharp

Nitsche method. Figure 16 illustrates the discretization of the

femur in the context of the voxel finite cell method, including

the distribution of HU and voxel quadrature.

Remark 1. There are a number of critical points that can
be raised against the empirical CT-to-elasticity relations 27
to 29. For example, they do not fulfill the basic require-
ment of dimensional analysis that any physical law in terms
of relations between measurable physical properties should
be independent of the chosen units of measurement.64 In
addition, it is well known from micromechanics that overall
mechanical properties of a material in a representative vol-
ume element arise from the material constituent properties
and their volume fractions.65 Hence, in the case of a multi-
component material such as bone, apparent density alone is
only indirectly (and not necessarily uniquely) related to its
elastic properties.66-68 We emphasize, however, that the empir-
ical material models 27 to 29 have been successfully used in
a large number of numerical studies, including the valida-
tion versus experimental tests.69 In particular, it was shown in
Yosibash et al69 that FE models on the basis of Equations 27
to 29 yield results that closely match the results obtained with
a physically more rigorous model that blends X-ray physics
with continuum micromechanics.20,70,71 We therefore believe
that their use within the scope and objectives of the present
work is justified. Nonetheless, when clinical data will allow
a micromechanics-based method for subject-specific analy-
ses of human bones, their use will probably result in more
accurate results.

5.1.2 Loading on sharp explicit surfaces
In line with the experimental setup shown in Figure 17A, we

need to apply a load of 1000 N on the femoral head. Fol-

lowing previous successful computational studies,15,22,23 the
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FIGURE 17 Loading via a sharply defined explicit surface on the femural head

FIGURE 18 The thin cortical shell makes it difficult to find a cap position that guarantees a tight fit

compression zone is idealized as a spherical cap, over which

a parabolically distributed load is defined (see Figure 17B).

The corresponding Neumann boundary condition in the voxel

finite cell method is taken into account by tessellating the

spherical cap and evaluating surface integrals via standard

quadrature rules in each triangular facet.30,47 However, the

accurate imposition of the loading via a sharply defined sur-

face requires to find a location that guarantees a tight fit with

the thin cortical shell of the femoral head. In particular, if

some part of the loading cap is located above the cortical shell,

where the stiffness is below the stiffness threshold, the load-

ing cannot be properly transferred into the structure, leading

to a significant loss of accuracy. Therefore, the entire load-

ing surface must be covered by voxels that contain non-zero

stiffness. Figure 18 illustrates the difficulty of tightly fitting

a sharp surface to the thin cortical shell. As a consequence,

the resulting simulation workflow critically relies on manual

intervention.

5.1.3 Loading on diffuse implicit phase fields
To remove the bottleneck of finding an explicitly defined

loading surface, we establish a workflow that uses the voxel

finite cell method and the diffuse formulation of Neumann

boundary conditions on the basis of a suitable phase field.

Its individual steps are illustrated in Figure 19. To obtain a

diffuse representation of the loading surface, we first iden-

tify a suitable mesh, on which we can solve the Allen-Cahn

problem. To minimize the computational effort, we suggest

to use a sphere whose position and circumference at the inter-

section with the cortical shell corresponds to the cylindrical

loading device in the experiment (see Figure 17A). The sphere

can be easily generated from the experimental setup. We note

that one could also use an extended cylinder, if finding a

sphere is too cumbersome. We then determine a suitable ini-

tial condition for the Allen-Cahn problem from the imaging

data that is located within the sphere. On the basis of the initial

condition, we generate a cloud of local h-values, from which

we can generate an adaptive tetrahedral mesh (see Varduhn

et al17 for details on octree-based adaptive mesh generation).

We use standard linear tetrahedral elements, where the small-

est element size corresponds to the length-scale parameter 𝜀

of the Allen-Cahn equation, which in turn, is chosen as one

half of the largest voxel spacing (𝜀 = 0.5Δ). Solving the

Allen-Cahn problem as detailed in Section 3.3, we finally

obtain a phase-field function that is shown in Figure 19.

By using the phase field, we can impose the corresponding

Neumann boundary condition in a diffuse sense by comput-

ing the traction term in Equation 24. As shown in Figure 17A,

the traction vector t is assumed to be a parabolic function
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FIGURE 19 Workflow for imposing loads on the femoral head in a diffuse sense

that depends on the distance from the center of the cap. Since

we know the position of the center of the cylindrical load-

ing device, we can easily compute the distance of each point

and determine a relative traction intensity. The direction of

the traction vector t is known and does not depend on the

geometric description of the loading surface. Since we do not

know the total area of the diffuse implicit surface in advance,

we cannot directly control the total load that is imposed. We

therefore scale the entries of the right hand side vector of the

discrete system in such a way that the absolute value of the

load resultant corresponds to 1000 N.

The workflow outlined in Figure 19 involves several steps

and requires an additional computational cost compared with

imposing loads on a sharp surface. However, it eliminates

the need for the construction of a tightly fitted spherical cap,

while each of the associated steps can be potentially auto-

mated. The result is a diffuse phase field that is guaranteed to

tightly fit the cortical shell surface. Therefore, the resulting

modification of the voxel finite cell method is able to directly

operate on imaging data, completely avoiding a transfer of

implicit voxel-based bone geometry into explicit volume and

surface parametrizations.

5.1.4 Validation and comparison
We assess the accuracy of the diffuse formulation by com-

paring numerical strain results with experimental measure-

ments available for 3 different shaft inclination angles (0◦, 7◦,

FIGURE 20 Position and numbering of the 11 strain gauges on the

surface of the femur specimen

15◦). In the experiments conducted in ZOHAR YOSIBASH’s

group at the Ben-Gurion University, Beer Sheva, Israel, the

largest principal strains, eg, either 𝜖1 (tension) or 𝜖3 (compres-

sion), were measured at 11 different locations. We note that

these measurements have been successfully used in several

other validation studies.22-24 Figure 20 illustrates the locations

and the numbering of the strain results. We compute cor-

responding strains with the voxel finite cell method, using

either the sharply defined load cap or the diffuse phase-field
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FIGURE 21 Comparison of relative errors in strain for 3 different

inclinations of the shaft (experiment vs simulations based on a sharp

loading cap and a diffuse phase-field surface)

representation of the load surface described above. We note

that all simulations are based on the same unfitted finite ele-

ment mesh shown in Figure 16A. Numerical strains from

the simulation results were extracted at the 11 locations on

the bone’s surface by averaging 15 values taken in the direct

vicinity of the strain gauge location. A more detailed descrip-

tion of the data acquisition from the simulation results and the

corresponding assumptions are given in Ruess et al.15

Figure 21 provides 3 plots (1 for each inclination angle of

the shaft) that compare the relative error of both sets of simu-

lation results with respect to the experimental reference value

for each of the 11 locations. We observe that the voxel finite

cell method with both loading surface representations is able

FIGURE 22 Linear regression of strains for three different

inclinations of the shaft (experiment vs simulations on the basis of a

sharp loading cap and a diffuse phase-field surface)

to correctly predict the strain behavior of the femur bone.

For each gauge location at each inclination angle, the relative

error obtained with the diffuse boundary conditions is in the

same order of magnitude (or better) as the one obtained with

the sharply defined loading surface. In addition, the simula-

tion results obtained with the diffuse phase field consistently

correlate with the simulation results obtained with the sharp

cap. Considering the complete set of results, we observe that
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FIGURE 23 Vertebra: A, layer of the original computed tomography scan and, B, voxel model of the geometry of the segmented vertebra

the relative error in the diffuse case tends to be slightly higher

than in the sharp case. However, only 2 of 33 data points show

a sizable increase at a significant error level. These are gauge

8 at an inclination angle of 0◦ with 21% error (diffuse) vs 8%

error (sharp) and gauge 10 at an inclination angle of 7◦ with

53% error (diffuse) vs 22% error (sharp).

Figure 22 provides linear regression plots of the experi-

mental measurements versus the 2 sets of simulation results.

Although the voxel finite cell method with both loading sur-

face representations seems to tentatively underestimate the

experimental response of the femur, we still observe good

overall correlation between experiments and numerical pre-

dictions, with coefficients of determination R2 that are consis-

tently above 0.85 (R2 = 1: fully correlated, optimum; R2 = 0:

fully uncorrelated). To put these correlation values into per-

spective, we compare them to values that have been reported

for similar studies in the literature. For example, good correla-

tions between numerically predicted and experimental results

can be found in Schileo et al72 on the basis of standard finite

element analyses with conforming meshes (R2 > 0.89) and in

Taddei et al73 on the basis of a meshless MCM approach (R2 >

0.85). The present validation study therefore demonstrates

the validity and accuracy of the phase-field–based boundary

conditions in the context of the voxel finite cell method.

5.2 Vertebra
In the second example, we apply the diffuse phase-field for-

mulation to impose traction and displacement constraints on

the surface of a vertebra. Because of their complicated geom-

etry, creating an explicit parametrization of the loading and

support surfaces at the upper and lower faces of the ver-

tebra constitutes a significant challenge for the automation

of simulation workflows. This example therefore illustrates

the advantages and flexibility of our approach for imposing

boundary conditions at very complex surfaces.

5.2.1 Imaging data and material properties
The geometric basis of the structure is again an implicit voxel

model that has been derived from CT scans as illustrated

in Figure 23. Computed tomography images were acquired

on a iCT (Philips Healthcare, Best, the Netherlands) using a

high spatial resolution kernel (YB). Computed tomography

intensity values were converted to bone mineral density val-

ues using a dedicated calibration phantom (Mindways, CA,

USA). We note that we separated the vertebra from the sur-

rounding bone structures with the help of the open-source

medical image processing library ITK†. The voxel spacing

is Δx = Δy = 0.1465 mm and Δz = 0.3 mm. For each

voxel in the vertebra structure, we assume the following mate-

rial parameters: Young modulus E = 10 GPa, Poisson ratio

𝜈 = 0.3.74

Remark 2. For the CT-based analysis of the vertebra, the
same critical assessment of the material model expressed in
Remark 1 holds.

5.2.2 Diffuse phase-field representations
of upper and lower faces
To minimize computational cost, we define the Allen-Cahn

equation on an embedding rectangular domain that contains

only the boundary region instead of the complete vertebral

body. This is illustrated in Figure 24A for the upper face of

the vertebral body. We choose the length scale of the phase

field as 𝜖 = 0.15 mm, one half of the largest voxel spac-

ing δz = 0.3 mm, and discretize the rectangular domain

with linear tetrahedral elements of mesh size h = 0.1 mm.

Figure 24B,C illustrates the resulting phase-field representa-

tion of the upper surface of the vertebra. In particular, we

can observe in Figure 24C that the phase-field resolves both

the upper and lower side of the cortical shell. To distinguish

between the upper and the lower side, we monitor the normal

vector of the diffuse surface, defined in Equation 9. If at any

point in the phase-field domain the normal vector points away

from the vertebra core, we assume that this point belongs

to the surface, where diffuse boundary conditions are to be

†Insight Segmentation and Registration Toolkit (ITK), https://itk.org/.
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FIGURE 24 Diffuse representation of the upper surface: A, domain for computing the Allen-Cahn problem and, B and C, part of the phase-field

solution

FIGURE 25 Implicit and explicit description of the upper vertebra surface

FIGURE 26 Upper half of the vertebral body: A, Voxel model and boundary conditions and, B, unfitted tetrahedral mesh

imposed. To be able to compare accuracy with the voxel finite

cell method and a sharp boundary, we also manufacture a cor-

responding explicit surface representation by transferring the

phase-field isosurface at c = 0.5 into a tessellation composed

of approximately 13 000 triangular facets. The corresponding

outward surfaces of the vertebra are shown in Figure 25A,B,

respectively.

5.2.3 Analysis of the upper half of the
vertebra
Since we are particularly interested in the stresses in the ver-

tebral body that carries the bulk of the load, we cut away the

vertebral arch from the body. In a first step, we consider only

the upper half of the vertebra shown in Figure 26A. We dis-

cretize the structure with a quadratic tetrahedral finite element

mesh shown in Figure 26B. The unfitted mesh consists of

252 558 nodes and 757 674 degrees of freedom. In the sense

of the voxel finite cell method, we apply voxel quadrature with

1 subdivision level of subcells, so that quadrature points can

better resolve the geometric details of the voxel model. We

assume a distributed compressive load p = 1 N/mm2 at the

top surface that we can impose either in a diffuse sense via

the phase-field solution or in a sharp boundary sense via the

tessellation. To distinguish between the upper and the lower

side of the fully resolved cortical shell (see Figure 24C), we
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FIGURE 27 Displacement solution obtained with the voxel finite cell method: A, diffuse Neumann boundary conditions on implicit phase-field

surface and, B, Neumann boundary conditions on sharply defined upper surface

FIGURE 28 von Mises stress for the upper half of vertebra: A, diffuse phase-field boundary conditions and, B, boundary conditions on sharply

defined tesselation

monitor again the normal vector of the diffuse surface

(Equation 9) at each quadrature point. We add the Gauss point

contribution of the diffuse loading term to the load vector,

only if the vertical component of the normal vector is within

the range nz ⩾ 0.8. This constitutes an effective way to prevent

that loads are taken into account for portions of the diffuse

phase-field representation that correspond to surfaces at the

lower side of the cortical shell and to horizontal surfaces at the

lateral sides of the vertebra. Displacement boundary condi-

tions are imposed at the planar mesh boundaries at the cutting

planes as outlined in Figure 26A.

Figure 27 plots the total displacements obtained with the

voxel finite cell method with diffuse and sharp imposition

of the traction boundary condition at the top of the vertebral

body. The corresponding von Mises stresses are plotted in

Figure 28, including zooms of part of the trabecular region.

We observe that the displacement and stress solutions match

very well. In particular, the zoom areas indicate that the stress

pattern obtained with the diffuse and sharp variants agree very

well both qualitatively and quantitatively.

For a more rational comparison, we evaluate the relative

difference between the diffuse and sharp boundary condition

variants in the sense of a voxel version of the L2 norm as

follows

dL2 =

√√√√√√
∑
vox

(adiff − asharp)2∑
vox

(asharp)2
× 100%, (30)

where adiff and asharp denote either the total displacement or

von Mises stress at each voxel in the vertebral body, computed

with with diffuse and sharp boundary conditions, respec-

tively. Following the definition 30, we obtain an L2 difference

of 1.96% for the total displacements and an L2 difference of

3.36% for the von Mises stress. These results illustrate that the

diffuse formulation of Neumann boundary conditions yields

excellent accuracy.

5.2.4 Analysis of the full vertebral body
In a second step, we consider the full vertebral body shown

in Figure 29A. The full structure features complex surface

geometries at the upper and lower side faces. We discretize

the full structure with an unfitted quadratic tetrahedral mesh

shown in Figure 29B, which consists of 494 151 nodes and

1 482 453 degrees of freedom. We again define a compressive

load of p = 1 N/mm2 on top, but also support the struc-

ture at the outward surface of the cortical shell at the bottom.

We use the voxel finite cell method with voxel quadrature as
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FIGURE 29 Full vertebra: A, Voxel model and boundary conditions and, B, unfitted finite element mesh

FIGURE 30 Displacement magnitude: A, diffuse phase-field boundary conditions, including the diffuse Nitsche method, and, B, boundary

conditions on sharply defined tessellations

FIGURE 31 von Mises stress, A, diffuse phase-field boundary conditions, including the diffuse Nitsche method and, B, boundary conditions on

sharply defined tessellations

described in the previous paragraph, where we apply diffuse

phase-field formulations of Neumann and Dirichlet boundary

conditions, including the diffuse Nitsche method. To this end,

we compute a second phase-field representation for the lower

boundary region of the vertebra in the same way as shown in

Figure 24 for the upper boundary region. We note that at the

bottom surface, only quadrature points, for which the verti-

cal component of the phase-field normal vector 9 lies within

nz ≤ −0.8, are accounted for in the diffuse Nitsche method.

For comparison, we manufacture a corresponding tessellation

that explicitly parametrizes the lower surface by triangular

facets.

Figures 30 and 31 plot the solution fields in the total dis-

placements and the von Mises stress, respectively, obtained

with the voxel finite cell method and diffuse and sharp

boundary conditions. We note that in the latter case, the

displacement constraint at the bottom is imposed with the

standard form of Nitsche’s method on the sharp tessellation.

We observe in Figures 30 and 31 that both displacement

and stress solutions match very well. We highlight again the
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zoom areas in the stress plots that show equivalent stress

patterns and agree very well qualitatively and quantitatively.

Following the definition 30, we compute relative L2 differ-

ences between the diffuse and sharp variants, which results in

a relative difference of 3.18% for the total displacement mag-

nitude and a relative difference of 4.96% for the von Mises

stress. These results confirm the excellent agreement of the

2 simulation variants, extending this statement to the diffuse

Nitsche method.

6 SUMMARY AND CONCLUSIONS

The voxel finite cell method enables a seamless transfer of

diagnostic imaging data into patient-specific bone discretiza-

tions, but still requires the explicit parametrization of bound-

ary surfaces to impose traction and displacement boundary

conditions. In this paper, we presented a phase-field formu-

lation for imposing traction and displacement constraints in a

diffuse sense, integrated in the context of the voxel finite cell

method.

We started by briefly reviewing the building blocks of the

voxel finite cell method, ie, unfitted finite element meshes,

the imposition of unfitted boundary conditions, and recursive

subdivision and voxel quadrature rules. We then discussed a

methodology for transferring imaging data into a correspond-

ing phase-field function via solving an Allen-Cahn problem

with imaging data as initial condition. We formulated a set

of requirements that determine a valid phase-field function

in diffuse geometry modeling. These include (1) the phase

field monotonically decreases from 1 to 0; (2) with decreas-

ing length scale parameter, the phase-field converges to the

Heaviside function; (3) given sufficient smoothness of the

sharp boundary, the negative normalized gradient of the phase

field converges to the sharp normal vector; (4) the spike of

the phase-field gradient centers at the sharp boundary. We

showed that the metastable short-term phase-field solution

of the initial boundary value problem on the basis of the

Allen-Cahn equation satisfies all of these requirements.

We then introduced diffuse phase-field formulations for

the imposition of Neumann and Dirichlet boundary con-

ditions (ie, loads and displacements). Following geometric

arguments, we used the approximation of the Dirac distri-

bution on the basis of the phase-field gradient to transfer

surface integrals at the boundary into volumetric integrals.

We argued that for consistency, the phase-field approxima-

tion of the Dirac distribution needs to replicate the property

that its integration across the diffuse boundary region yields

one. We applied this mechanism to the surface integrals of

Neumann and Dirichlet boundary conditions. For the latter,

we derived a diffuse variant of Nitsche’s method with empir-

ically estimated stabilization parameter. We illustrated for a

benchmark test how different representations on the basis of

sharply defined geometry, diffuse phase fields, and imaging

data affect accuracy and convergence behavior of the finite

cell method.

On the one hand, our numerical tests illustrated that diffuse

boundary methods lead to suboptimal convergence, includ-

ing a pronounced error in the diffuse boundary region. On the

other hand, the voxel finite cell method with diffuse bound-

ary conditions enables the same accuracy as the voxel finite

cell method with sharply defined surfaces, if the characteris-

tic length scale of the phase field, 𝜀, the voxel spacing of the

imaging data, and the mesh size of the finite element approx-

imation are properly related. We found from our numerical

tests that 𝜀 should be approximately one half the voxel size

and that the mesh size must be larger than 10 times 𝜀.

We illustrated the strength of the voxel finite cell

method with diffuse phase-field boundary conditions for the

patient-specific stress analysis of femur and vertebra bone

structures, whose geometry and stiffness distribution are pro-

vided by CT scans. For the femur, we outlined a simplified

workflow that eliminates the time-intensive manual identi-

fication of a sharp loading surface and its location within

the thin cortical shell of the femoral head. Our simulation

results demonstrated that diffuse boundary conditions lead

to the same excellent overall correlation between experi-

ments and numerical predictions as standard sharp boundary

conditions. The numerical simulation of a compression test

for different vertebra configurations illustrated that diffuse

boundary conditions are able to handle extremely complicated

surfaces. We demonstrated that simulations on the basis of

diffuse and sharp boundary conditions produce stress patterns

that are indistinguishable from each other. The accuracy of

diffuse boundary conditions were further confirmed by the

relative difference in a L2 voxel norm between diffuse and

sharp results, which consistently led to differences as small

as 5% or less for displacements and stresses in all vertebra

configurations.

The combination of the voxel finite cell method with dif-

fuse boundary conditions leads to a new methodology that is

able to directly operate on imaging data, completely avoid-

ing the transfer of implicit imaging data into explicit volume

and surface parametrizations. At the same time, it reliably

delivers the level of accuracy in predicting mechanical bone

behavior that is required for clinically relevant applications.

We therefore believe that the new methodology provides a

potential pathway for further automating patient-specific sim-

ulation, with the eventual goal of establishing evidence-based

predictive tools in clinical practice.
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APPENDIX

The appendix provides interested readers with a more

detailed computational study that illustrates the conver-

gence behavior of diffuse Neumann and Dirichlet boundary

conditions.

A.1 Neumann boundary conditions
To illustrate accuracy and convergence of the phase-field for-

mulation 18, we consider the example of a 1-dimensional

bar shown in Figure A1. The bar is fixed at its left end and

loaded by a sine-shaped load and a concentrated force F at its

right end. To obtain a diffuse geometry for this example, we

use the analytical solution of the 1-dimensional Allen-Cahn

Equation 15, with the diffuse boundary position a = 1.0

located at the right end. For an illustration of the phase field,

we refer to Figures 5 and 6 in Section 3. We discretize the

variational form 18 with standard quadratic nodal elements,

where we consider an embedding domain Ωem = [0.0, 2.0]
such that the displacement constraint at the left end x = 0 can

be imposed strongly. To ensure that phase-field quantities are

integrated accurately, we increase the number of Gauss points

in elements in the diffuse boundary region. We remove ele-

ments from the discretization, for which the phase-field stays

below 10−6 in the complete support.

Figure A2. A plots the relative error in the H1 semi-norm

when the initial mesh is uniformly refined. We note that we

compute the error with respect to the exact domain Ω. We

observe that optimal rates of convergence are achieved, if

both domain and surface are taken into account exactly in a

sharp boundary sense. The corresponding convergence curve

is hence adopted as a reference. The geometrically diffuse for-

mulation 18 yields a suboptimal rate of convergence, even if

we tie the characteristic length scale of the phase-field to the

mesh size (h = 𝜀). The reason is that the overall accuracy is

controlled by the low-order accuracy of the phase-field, as the

value of 𝜀 is bisected.

In view of the voxel finite cell method, where volumetric

terms are integrated based on a voxel model, we integrate all

volumetric terms exactly and only impose the concentrated

load in a diffuse sense. Figure A2A plots the corresponding

convergence behavior for 3 different values of 𝜀 that are now

held constant during mesh refinement. We observe that in

this case, the diffuse formulation is able to achieve the same

accuracy as a sharp boundary method in the pre-asymptotic

range. The convergence curve levels off when the geome-

try error of the diffuse boundary becomes larger than the

approximation error and therefore starts to dominate the total

error. The three curves plotted in Figure A2A also demon-

strate that the maximum accuracy directly correlates with

the length scale parameter 𝜀 used in the diffuse phase-field

representation.

Finally, we focus on the strains computed for 𝜀 = 0.0025.

The first error curve plotted in Figure A2B refers to the

integration over the exact domain Ω and reproduces the corre-

sponding convergence curve shown in Figure A2A. We then

compute the error over the bulk of the domain, but omit the

diffuse boundary region. Figure A2B shows the error in H1

semi-norm under mesh refinement for the domains (L−2.5𝜀)
and (L − 5𝜀). We observe that the solution in the bulk of the

domain converges at optimal rates and the convergence curves

approach the reference. This illustrates that the error due to

a diffuse Neumann boundary condition accumulates in the

diffuse boundary region.

A.2 Dirichlet boundary conditions
To briefly illustrate the performance of the diffuse Nitsche

method, we modify the 1-dimensional bar example by replac-

ing the concentrated force F by a displacement constraint at

the right end. The adjusted system along with the new exact

solution is shown in Figure A3. We use the same analyti-

cal phase-field function as above, so that we can strongly

impose the displacement constraint at the left end, but use

the diffuse Nitsche formulations 20 and 21 with û = 0 at the

right end. Figure A4A illustrates the convergence behavior

of different variants of diffuse and sharp boundary methods

obtained with the same quadratic finite element discretiza-

tions as above. The standard symmetric Nitsche approach

with sharply defined domain and boundaries is again adopted

as a reference. When tying the characteristic length scale of

the phase-field to the mesh size (h = 𝜀), the geometrically

diffuse formulation 18 yields suboptimal rates of conver-

gence. We observe that the rate of convergence in the H1

semi-norm assumes (𝜀) in the pre-asymptotic range, while

in the asymptotic range, it tends towards (
𝜀

1

2

)
. The same

convergence behavior has been recently observed in simi-

lar methods, eg, the consistent penalty-type diffuse interface

method examined in Schlottbom,75 and corresponding conver-

gence rates have been rigorously proved.

In view of the voxel finite cell method, we test the numer-

ical behavior for the case, when we integrate all volumetric

terms exactly and only impose the Dirichlet constraint in a dif-

fuse sense. Figure A4A plots the corresponding convergence

behavior for 3 different values of 𝜀 that are now held constant

during mesh refinement. The results confirm that in analogy

to the Neumann case above, the diffuse Nitsche method is able

to achieve the same optimal accuracy as a sharp boundary
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FIGURE A1 Uniaxial bar example

FIGURE A2 One-dimensional bar with Neumann boundary condition: convergence of the error in H1 semi-norm

FIGURE A3 Uniaxial bar example with Dirichlet constraint

FIGURE A4 One-dimensional bar with Dirichlet boundary condition: convergence of the error in H1 semi-norm

method in the pre-asymptotic range. When the geometry

error due to the diffuse boundary region becomes larger

than the approximation error, the convergence curve levels

off. Figure A4B compares the error in H1 semi-norm under

mesh refinement computed for the full domain L and for the

domains (L− 5𝜀) and (L− 10𝜀) without the diffuse boundary

region. We observe that all curves remain identical, indicat-

ing that the error due to a diffuse Dirichlet condition does

not accumulate in the diffuse boundary region, but affects the

complete domain.
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