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Abstract. The solution to elastic isotropic problems in three-dimensional (3-D) polyhedral domains
in the vicinity of an edge is provided in an explicit form. It involves a family of eigen-functions
with their shadows, and the associated edge stress intensity functions (ESIFs), which are functions
along the edges. Utilizing the explicit structure of the solution in the vicinity of the edge we
use the quasidual function method, recently presented in [Omer et al. (2004). International Journal
of Fracture 129:97–130] for scalar elliptic problems and in [Costabel et al. (2004). SIAM Journal
of Mathematical Analysis 35(5), 1177–1202] in a general theoretical framework, for the extraction of
ESIFs. This method provides a polynomial approximation of the ESIF along the edge whose order is
adaptively increased so to approximate the exact ESIF. It is implemented as a post-solution operation
in conjunction with the p-version finite element method. Numerical examples are provided in which
we extract ESIFs associated with traction free or homogeneous Dirichlet boundary conditions in 3-D
cracked domains or 3-D V-Notched domains. These demonstrate the efficiency, robustness and high
accuracy of the proposed quasi-dual function method.
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1. Introduction

Solutions to linear elastic problems in two-dimensional (2-D) polygonal domains in
the vicinity of reentrant corners, and especially crack tips, have been studied for over
50 years and known to be expressed as an asymptotic series. These are described in
terms of special singular functions (eigen-functions) depending on the geometry and the
boundary conditions in the vicinity of the corner on one hand, and of unknown coeffi-
cients (stress intensity factors) depending on the given body forces and tractions on the
other hand. The eigen-pairs (eigen-values and eigen-functions) may be obtained by sev-
eral techniques. An analytical method for computing eigen-pairs in isotropic domains is
provided in many prior publications (Williams, 1952; Karp and Karal, 1962; Grisvard,
1985; Beagles and Sändig, 1991). A semi-analytic approach for the eigen-pairs com-
putations was presented in Costabel et al. (2001), applicable to anisotropic domains.
Many numerical methods were developed, as for example in Leguillon and Sanchez -
Palencia (1987), Szabó and Yosibash (1996) and Yosibash and Szabó (1995) which are
applicable also to anisotropic and multi-material interfaces.
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In three-dimensional polyhedral domains, however, the solution is represented by
three different asymptotic expansions based on its vicinity to either an edge, a vertex
or a vertex-edge Dauge (1988). Herein we concentrate our attention to the solution
in the vicinity of edges. Its representation is characterized:

– by an exponent α which belongs to a discrete set {αi, i ∈ N} of eigen-values
depending only on the geometry, material properties and boundary conditions
in the vicinity of the edge, and which determines the level of non-smoothness
of the singularity. Any eigen-value αi is computed by solving a 2-D problem.

– by an associated eigen-function ϕ
(α)

0 (θ) which depends on the geometry of the
domain, material properties and boundary conditions. These eigen-functions are
computed by solving a set of 2-D problems.

– by a function along the edge, denoted by Ai(x3) (x3 is a coordinate along the
edge). Ai(x3) is associated with the ith eigen-value and called ‘Edge Stress Inten-
sity Function’ (ESIF) which determines the ‘amount of energy’ residing in each
singularity.

From the engineering perspective the ESIFs Ai(x3) when αi <1 are of major impor-
tance because these are correlated to failure initiation. In many situations αi <1 when
the opening at the edge is non-convex. For example αi can be equal to 1

2 in the pres-
ence of cracks.

The aim of this paper is two-fold – first to provide the mathematical algorithm for
the construction of the asymptotic elastic solution in the vicinity of an edge (which is
an extension of the 2-D case), and second, to compute a polynomial approximation
of the edge stress intensity function by a new extraction method explained in details
in Omer et al. (2004). on the basis of the scalar elliptic problem.

The eigen-pairs of the three dimensional cracked or notched domain in the vicinity
of the edge were first addressed by Hartranft and Sih in (1967), shown to be computed
by a recursive procedure. At the time however, these were not presented explicitly and
the general structure of the asymptotic expansion not observed.

Herein, the abstract formulation in Costabel et al. (2004), and its applicability to
scalar elliptic problem reported in Omer et al. (2004) are used to explicitly express
the elasticity solution in the vicinity of an edge as a combination of eigen-functions
and their shadows. These shadows are “new functions” appearing in 3-D domains,
having no counterparts in 2-D domains as far as homogeneous operators with con-
stant coefficients are concerned. The dual eigen-functions and their dual shadows are
computed also, which are required subsequently for the quasi-dual function method.
Using the eigen-functions and their shadows, the functional J [R] is used (following
Costabel et al. 2004; Omer et al. 2004), which can be viewed as an extension of
the 2-D contour integral to 3-D domains. This new functional, which is a surface
integral along a cylindrical surface, enables us to present the edge stress intensity
function explicitly as a function of x3 (the coordinate along the edge). The method
presented is implemented as a post-processing step in a p-version finite element code
and the numerical performance is documented on several example problems. By the
J [R] functional, and newly constructed extraction polynomials, we extract the ESIFs
in the vicinity of any edge (including crack front) in any polyhedron. This method
provides the functional representation of the ESIFs along x3 (as opposed to other
methods providing point-wise values of the ESIFs along the edge) and is very accu-
rate, efficient and robust. Most importantly, the method is adaptive, providing a better
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polynomial representation of the ESIF as the special hierarchical family of extraction
polynomials is increased. We extract the ESIF for several problems for which an ana-
lytical solution exists to demonstrate its accuracy and efficiency.

This paper is organized as follows:
– We start with notations, defining the domain of interest and the linear elastic

problem.
– The mathematical algorithm is then presented for obtaining the asymptotic expan-

sion of the solution in the neighborhood of an edge in terms of eigen-functions,
their shadows, and the structure of the ESIFs. The dual eigen-functions, and their
shadows, which are associated with the primal eigen-functions are addressed as
well.

– The J [R] integral is then introduced (Costabel et al. 2004). It requires the
construction of extracting polynomials, denoted by B(x3), and the data on a
cylindrical surface of radius R around the edge. A short explanation on its
application in conjunction with the finite element method is given.

– Subsequently, a hierarchical family of extraction polynomials is constructed.
– The hierarchical family of extraction polynomials is used in several numerical

tests to extract the ESIFs associated with:
• A cracked domain with traction free boundary conditions.
• V-notched domain with clamped boundary conditions.
For these two problems we provide in Appendices A and B the explicit formu-
las for the eigen-functions, duals and shadows. Numerical experimentations are
performed to demonstrate that the polynomial representation of the ESIF for
both example problem is accurate and efficient.

– Finally, we present an example problem of engineering relevance. We examine a
compact tension specimen subjected to tension load such that only Mode I is
excited along the crack front. We compare the extracted ESIF by our method
with a point-wise extraction method. This example problem demonstrates the
efficiency and robustness of the quasi-dual function method in handling realistic
geometries in engineering practice.

2. The elastic solution for an isotropic problem in the vicinity of an edge

In this section we derive the asymptotic solution in the neighborhood of an edge in
an isotropic elastic domain. It is shown that the elastic solution can be presented as
an asymptotic series of eigen-pairs (the well known eigen-pairs of the 2-D cross sec-
tion) and the associated edge stress intensity functions. However, as opposed to pla-
nar elastic problems, each of the eigen-pairs is accompanied by an infinite number of
shadow functions with an increasing exponential order.

2.1. Differential equations for the 3-D eigen-pairs

Consider a domain � in which one straight edge E of interest is present. The domain
is generated as the product �=G×I where I is the interval [−1,1], and G is a plane
bounded sector of opening ω∈ (0,2π ] and for simplicity assume it has a radius 1 (the
case of a crack, ω = 2π , is included), as shown in Figure 2.1. Although any G or I

can be chosen, these simplified ones have been chosen for simplicity of presentation.
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Figure 1. Domain of interest �.

The variables in G and I are (x1, x2) and x3 respectively, and the coordinates
(x1, x2, x3) are denoted by x. Let (r, θ) be the polar coordinates centered at the vertex
of G so that G coincides with {(x1, x2)∈R

2 | r ∈ (0,1), θ ∈ (0,ω)}. The edge E of inter-
est is the set {x∈R

3 | r =0, x3 ∈I }. The two flat planes that intersect at the edge E are
denoted by �1 and �2. For any R, 0<R <1, the cylindrical surface �R is defined as
follows:

�R :={
x ∈R

3 | r =R, θ ∈ (0,ω), x3 ∈ I
}
. (1)

Remark 1. The methods presented in the paper are restricted to geometries where
the edges are straight lines and the angle ω is fixed along x3.

Remark 2. In general the eigen-pairs associated with the elasticity operator may be
complex, however in most practical cases the eigen-values smaller than 1 are of inter-
est, and these are usually real. Herein we address real eigen-pairs only, whereas the
general case will be addressed in a future publication.

To distinguish between the displacements vector in Cartesian or Polar coordinates,
we denote these by u= {u1, u2, u3}T , ũ= {ur, uθ , ux3}T respectively and use either of
them when convenient.

The Navier–Lamé equations that describe the elastic isotropic problem in polar
coordinates is:

(λ+2µ)∂2
r ur + (λ+2µ)

1
r
∂rur − (λ+2µ)

1
r2

ur +µ
1
r2

∂2
θ ur +µ∂2

3 ur

− (λ+3µ)
1
r2

∂θuθ + (λ+µ)
1
r
∂r∂θuθ + (λ+µ)∂r∂3u3 =0 (2)

(λ+µ)
1
r
∂r∂θur + (λ+3µ)

1
r2

∂θur + (λ+2µ)
1
r2

∂2
θ uθ +µ∂2

r uθ

+µ
1
r
∂ruθ −µ

1
r2

uθ +µ∂2
3 uθ + (λ+µ)

1
r
∂3∂θu3 =0 (3)
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(λ+µ)∂r∂3ur + (λ+µ)
1
r
∂3ur + (λ+µ)

1
r
∂3∂θuθ +µ∂2

r u3

+µ
1
r
∂ru3 +µ

1
r2

∂2
θ u3 + (λ+2µ)∂2

3 u3 =0 (4)

with λ,µ being the Lamé constants associated with the engineering material con-
stants E the Young modulus and ν the Poisson ratio. The system (2)–(4) can be split-
ted into three operators:

L(ũ)= [M0(∂r , ∂θ )]ũ+ [M1(∂r , ∂θ )]∂3ũ+ [M2(∂r , ∂θ )]∂2
3 ũ=0 (5)

with:

[M0]= 


(λ+2µ)
(
∂2
r + 1

r
∂r − 1

r2

)+µ 1
r2 ∂

2
θ −(λ+3µ) 1

r2 ∂θ +(λ+µ) 1
r
∂r∂θ 0

(λ+µ) 1
r
∂r∂θ +(λ+3µ) 1

r2 ∂θ (λ+2µ) 1
r2 ∂

2
θ +µ

(
∂2
r + 1

r
∂r − 1

r2

)
0

0 0 µ
(
∂2
r + 1

r
∂r + 1

r2 ∂
2
θ

)


(6)

[M1]=

 0 0 (λ+µ)∂r

0 0 (λ+µ) 1
r
∂θ

(λ+µ)
(
∂r + 1

r

)
(λ+µ) 1

r
∂θ 0


 , [M2]=


µ 0 0

0 µ 0
0 0 (λ+2µ)



(7)

The splitting allows the consideration of a solution ũ of the form:

ũ=
∑
j≥0

∂
j

3 A(x3)�j (r, θ) (8)

The N–L system in view of (8) becomes:∑
j≥0

∂
j

3 A(x3)[M0]�j +
∑
j≥0

∂
j+1
3 A(x3)[M1]�j +

∑
j≥0

∂
j+2
3 A(x3)[M2]�j =0 (9)

and after rearranging:

A(x3)[M0]�0 + ∂3A(x3)([M0]�1 + [M1]�0)+
+

∑
j≥0

∂
j+2
3 A(x3)([M0]�j+2 + [M1]�j+1 + [M2]�j )=0 (10)

Equation (10) has to hold for any smooth function A(x3). Thus, the functions �j

must satisfy the three equations below, each defined on a 2-D domain G:


[M0]�0 =0
[M0]�1 + [M1]�0 =0 (r, θ)∈G

[M0]�j+2 + [M1]�j+1 + [M2]�j =0, j ≥0

(11)
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accompanied by homogeneous boundary conditions on the two surfaces �1 and �2,
discussed in the sequel.

The first partial differential equation in (11) generates the solution �0 associated
with the eigen-value α, denoted primal singular function, which is the well known 2-D
eigen-function:

�0 = rαϕ0(θ) (12)

The second PDE in (11) generates the function �1 which depends on �0:

�1 = rα+1ϕ1(θ) (13)

The sequence �j (where j �2) are the solutions of the third equation of (11). These
are of the form:

�j = rα+jϕj (θ) (14)

All �j , j � 1 are called shadow functions of the primal singular function �0. There
exist an infinite number of shadow functions �j for each eigen-value αi (these are
obtained by applying boundary conditions as will be discussed in subsection 2.2):

�
(αi)
j = rαi+jϕ

(αi)
j (θ), j =0,1, . . . (15)

Thus, for each eigen-value αi , the 3-D solution, in the vicinity of an edge is:

ũ
(αi) =

∑
j≥0

∂
j

3 Ai(x3)r
αi+jϕ

(αi)
j (θ) (16)

and the overall solution ũ is:

ũ=
∑
i≥1

ũ
(αi) =

∑
i≥1

∑
j≥0

∂
j

3 Ai(x3)r
αi+jϕ

(αi)
j (θ) (17)

where Ai(x3) is the ESIF of the ith eigen-value.
Because the operator L is self-adjoint, for any real eigen-value αi the number −αi

is also an eigen-value. It is associated with an eigen-function �
(−αi)

0 and its shadows
�

(−αi)
j by similar formulas as in (15). Solutions of (11) for the negative eigen-values

−αi are called the dual singular solutions, and are denoted by �(αi)
j . For normaliza-

tion purpose a real coefficient c
(αi)

0 is chosen, linking �(−αi)
j with �

(αi)
j :

�
(αi)

0 = r−αiψ
(αi)

0 (θ)= c
(αi)

0 r−αiϕ
(−αi)

0 (θ) (18)

and

�
(αi)
j = r−αi+jψ

(αi)
j (θ)= c

(αi)

0 r−αi+jϕ
(−αi)
j (θ). (19)

Theoretical details and rigorous mathematical formulation are provided in Costabel
et al. (2004). Detailed explanation about the shadow functions of the scalar elliptic
problem is presented in Omer et al. (2004).
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2.2. Boundary conditions for the primal and dual shadow functions

Two types of boundary conditions are considered on �1 and �2 surfaces, either trac-
tion free or clamped.

2.2.1. Traction free boundary conditions
The traction free boundary conditions on �1, �2 result in:

[T ](ũ)|�1,�2 = (
[T0(∂r , ∂θ )]ũ+ [T1(∂r , ∂θ )]∂3ũ

) |�1,�2 =0 (20)

Inserting (8) in (20) one obtains:

A(x3)[T0]�0|�1,�2 +
∑
j≥0

∂
j+1
3 A(x3)

(
[T0]�j+1 + [T1]�j

) |�1,�2 =0 (21)

Equation (21) has to hold for any smooth function A(x3) and therefore the boundary
conditions for the eigen-functions are:{

[T0]�0 =0
[T0]�j+1 + [T1]�j =0, j ≥0

on �1,�2 (22)

The first equation in (22) is the boundary conditions for �0 which is identical to the
two-dimensional boundary conditions. The second equation in (22) is the boundary
conditions for each �j where j ≥1.

The operator-matrices [T0] and [T1] are explicitly obtained if traction free bound-
ary conditions (20) are considered on �1, �2:


(σrθ ) |θ=0,ω =0
(σθθ ) |θ=0,ω =0
(σθ3) |θ=0,ω =0

⇒



(
µ

( 1
r
∂θur + ∂ruθ − 1

r
uθ

)) |θ=0,ω =0(
(λ+2µ) 1

r
ur+λ∂rur+(λ+2µ) 1

r
∂θuθ +λ∂3u3

) |θ=0,ω =0(
µ

(
∂3uθ + 1

r
∂θu3

)) |θ=0,ω =0

obtaining:

[T0]=

 µ 1

r
∂θ µ∂r −µ 1

r
0

(λ+2µ) 1
r
+λ∂r (λ+2µ) 1

r
∂θ 0

0 0 µ 1
r
∂θ


 , [T1]=


0 0 0

0 0 λ

0 µ 0


 (23)

2.2.2. Clamped boundary conditions
Clamped boundary conditions on �1, �2 are:

ũ|�1,�2 =
∑
j≥0

∂
j

3 A(x3)�j (r, θ)|�1,�2 =0 (24)

Equation (24) has to hold for any smooth function A(x3) and therefore the clamped
boundary conditions for the eigen-functions are:

�j (r, θ)=0 on �1,�2 (25)

Explicit expressions for the primal and dual eigen-functions and their shadows for a
traction free crack, and a clamped 3π/2 V-notch are presented in Appendices A and
B, respectively.
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3. Extracting ESIFs by the J [R]-integral

Once the asymptotic series representing the elastic solution in the vicinity of an edge
is available, we proceed to extraction of edge stress intensity functions by recalling the
J [R]-integral introduced in 2004. Costabel et al. (2004). The numerical performance
of this extraction method has been presented for scalar elliptic problems in Omer et
al. (2004). Herein we show an improvement of the method and apply it to the elas-
ticity equations.

We start by constructing the quasidual-singular functions: for each eigen-value αi , a
set of quasidual-singular functions K(αi)

m [B] are constructed where m is a natural inte-
ger called the order of the quasidual function, and B(x3) is a function (we choose it
to be related to the Jacobi polynomials) called extraction polynomial. Each K(αi)

m [B] is
characterized by the number of dual singular functions m needed to construct it and
the extraction polynomial B:

K(αi)
m [B] def=

m∑
j=0

∂
j

3 B(x3)�
(αi)
j (26)

By using the quasidual functions, one can extract a scalar product of Ai(x3) with
B(x3) on E . This is accomplished with the help of the anti-symmetric boundary inte-
gral J [R], over the surface �R (1). We define J [R](f, v) to be:

J [R](f,v)def=
∫

�R

([T ]|�R
f ·v−f · [T ]|�R

v)dS =
∫

I

∫ ω

0
([T ]|�R

f ·v−f · [T ]|�R
v)|r=RRdθ dx3

(27)

where I ≡ E (the edge) along x3 axis (Figure 2.1) and [T ]|�R
is the radial Neumann

trace operator related to the operator L on �R surface:

[T ]|�R
ũ

def=

σrr

σrθ

σr3


=


(λ+2µ)∂r +λ 1

r
λ 1

r
∂θ λ∂3

µ 1
r
∂θ −µ 1

r
+µ∂r 0

µ∂3 0 µ∂r





ur

uθ

u3


 (28)

With the above definitions we have the following theorem Costabel et al., (2004):

Theorem 1. Take B(x3) such that

∂
j

3 B(x3)=0 for j =0, . . . ,m−1 on ∂I (29)

then, if the ESIFs Ai in the expansion (17) are smooth enough:

J [R](ũ,K(αi)
m [B])=

∫
I

Ai(x3)B(x3) dx3 +O(Rα1−αi+m+1), as R →0 (30)

Here α1 is the smallest of the positive real eigen-values αi , i ∈N, and we assume that
any other complex eigen-value α with positive real part satisfies �α ≥ α1, as men-
tioned in Remark 2.

Theorem 1 allows a precise determination of
∫
I
Ai(x3)B(x3) dx3 by computing (30)

for two or three R values and using Richardson’s extrapolation as R →0.
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3.1. Projection of the ESIFs into the space spanned by Jacobi polynomials

We are interested in extracting the ESIF (Ai(x3)). Because its functional representa-
tion is unknown, its polynomial approximation is sought. According to Theorem 1
the computation of ESIFs is associated with a chosen extracting function B(x3) that
has to satisfy several boundary conditions on ∂I . Choosing to represent Ai(x3) by a
polynomial basis, we construct an adaptive class of orthonormal polynomials with a
given weight w(x3)= (1−x2

3)
n so to represent Bn(x3). This suggests the use of Jacobi

polynomials as a natural basis. In this way, if Ai(x3) is a polynomial of degree N , it
can be represented by a linear combination of Jacobi polynomials as:

Ai(x3)= ã0J
(0)
n + ã1J

(1)
n (x3)+· · ·+ ãNJ (N)

n (x3) (31)

where J (k)
n is the Jacobi polynomial of degree k and order n, i.e. associated with the

weight w(x3)= (1−x2
3)

n, which is denoted in literature by P
(n,n)
k . There holds the fol-

lowing orthogonality property (Abramowitz and Stegun, 1964, pp. 773–774):∫ 1

−1
(1−x2

3)
nJ (p)

n (x3)J
(k)
n (x3) dx3 = δpkhk (32)

with some real coefficients hk (depending on n). The hierarchical family of extrac-
tion polynomials, denoted by B(k)

n (x3), has to be chosen so to satisfy the conditions
of Theorem 1: B(k)

n (±1)=∂3B
(k)
n (±1)=· · ·=∂m−1

3 B(k)
n (±1)=0. To fulfil this, we choose

the specific extraction polynomials denoted in the sequel by BJ as:

BJ (k)
n (x3)= (1−x2

3)
n J (k)

n (x3)

hk

(33)

so that, according to (32), we retrieve the coefficients ãk in (31) as a simple scalar
product:∫ 1

−1
Ai(x3)BJ (k)

n (x3) dx3 = ãk, k =0,1, . . . ,N (34)

Thus, by virtue of Theorem 1, the J [R] integral evaluated for the quasi-dual func-
tions K(αi)

m [BJ ] with the extraction polynomials B = BJ (k)
n , k = 0,1, . . . ,N provides

approximations of the coefficients ãk. Notice that the notation BJ (k)
n indicates that

the extraction polynomials are based on the Jacobi polynomials, the number of
homogeneous derivatives at ±1 is the subscript n (the order of the Jacobi polyno-
mial), and the polynomial degree is the superscript k. Of course, in general Ai(x3) is
an unknown function and we wish to find a projection of it into spaces of polyno-
mials. It is expected that as we increase the polynomial space, the approximation is
better.

The ESIF Ai(x3) has an infinite Fourier expansion in the basis J (k)
n with a

sequence of coefficients ãk:

Ai(x3)=
∑
k≥0

ãkJ
(k)
n (35)

converging in the weighted space L2[w] with w = (1 − x2
3)

n. For each fixed n, the
computation of the k +1 coefficients ã0, . . . , ãk provides the orthogonal projection of
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A(αi)(x3) into the space of polynomials of degree up to k in the weighted space L2[w].
To accomplish this we use the k + 1 extraction polynomials BJ (0)

n (x3), . . . ,BJ (k)
n (x3)

defined in (33), so that there holds according to (32):∫ 1

−1
Ai(x3)BJ (k)

n (x3) dx3 = ãk, k =0,1, . . . ,N. (36)

If we want to increase the space in which Ai(x3) is projected, all which is needed
is the computation of (36) for k = N + 1. This way: Anew(x3) = Aprevious(x3) +
ãN+1JN+1(x3).

3.2. Jacobi extraction polynomials of order 4

For the sake of simplicity, the first three dual singular functions K(αi)

0 , K(αi)

1 and
K(αi)

2 are considered herein. Thus, according to Theorem 1, it is necessary that the
Jacobi extraction polynomials satisfy the conditions in (29) at least to m=2. In Omer
et al. (2004). it was noticed that if the minimal condition is satisfied one does indeed
recover the expected rate of convergence in respect with R, however, poor results are
evident at the two ends of the edge (this behavior was noticed also if the edge portion
at which EFIFs was entirely within the domain, i.e. −0.6<x3 <0.6). This phenome-
non is attributed to the large values of the derivatives of the Jacobi polynomials at
the end points as explained in details in Appendix C. Therefore we select the Jacobi
extraction polynomials BJ

(k)

4 , which satisfy (29) up to m = 4. The Jacobi extraction
polynomials BJ

(k)

4 are used for the construction of the dual singular functions K(αi)

0 ,
K(αi)

1 and K(αi)

2 . There holds (Abramowitz and Stegun, 1964, pp. 773–774):

J
(k)

4 (x3)= (k +4)!
(k +8)!

k∑
l=0

(k + l +8)!
2l l! (k − l)! (4+ l)!

(x3 −1)l (37)

and the constant hk in (32) is equal to

hk = 29(k +4)!(k +4)!
(2k +9)(k +8)!

(38)

Inserting (38) and (37) in (33), we finally obtain:

BJ
(k)

4 (x3)= (2k +9)(1−x2
3)

4

29(k +4)!

k∑
l=0

(k + l +8)!
2l l! (k − l)! (4+ l)!

(x3 −1)l (39)

3.3. Numerical computation of J [R] integral

The exact solution ũ is in general unknown, so we use instead a finite element
approximation ũFE and the integral (27) is computed numerically using a Gaussian
quadrature of order nG:

J [R](ũ,K(αi)
m [BJ ])=

nG∑
k=1

nG∑
�=1

ω

2
wkw�

(
[T ]ũFE ·K(αi)

m [BJ (k)
n ]− ũFE · [T ]K(αi)

m [BJ (k)
n ]

)
ξk,η�

(40)



Edge stress intensity functions in polyhedral domains 47

where wk are the weights and ξk and η� are the abscissas of the Gaussian quadrature.
The Neumann trace operator, [T ], operates on both ũ and K(αi)

m [BJ (k)
n ]. For T ũ we

use the numerical approximations T ũFE computed by finite elements (notice that such
extractions are easily computed by the p-version of the FEM at any point within an
element) whereas [T ]K(αi)

m [BJ (k)
n ] is computed analytically. These values are evaluated

at the specific Gaussian points at which the integral is computed numerically.

4. Numerical example – a cracked domain (ω=2π)(ω=2π)(ω=2π) with traction free boundary
conditions

We can generate an exact solution to a crack in a 3-D isotropic domain with trac-
tion free boundary conditions by computing analytically the primal and shadow ei-
gen functions �0, �1, �2 and the dual and shadow eigen functions �0, �1, �2.
Their formulas are presented in Appendix A. We refer to the first three eigen-
values only where in a case of cracked domain the first three eigen values are iden-
tical: α1 = α2 = α3 = 1

2 and are the only eigen-values which are smaller then 1. Next
we chose the ESIF Ai(x3) to be, for example, a polynomial of order 3 at most, i.e.
Ai(x3)= a

(i)

0 +a
(i)

1 x3 +a
(i)

2 x2
3 . We obtain therefore an exact solution (16) with a finite

number of terms in the sum, because the 3rd and higher derivatives are zero. The
exact solution is:

ũ
(αi) =

2∑
j≥0

∂
j

3 Ai(x3)r
αi+jϕ

(αi)
j (θ) (41)

Let us consider the following exact ESIFs (polynomials of order 3):

A1(x3)=3+4x3 +5x2
3 , A2(x3)=2+3x3 +4x2

3 , A3(x3)=5+4x3 +2x2
3 (42)

corresponding to the exact solution

ũ=
3∑

i=1

ũ
(αi) =

3∑
i=1

2∑
j≥0

∂
j

3 Ai(x3)r
αi+jϕ

(αi)
j (θ) (43)

The domain has been discretized by using a p-FEM mesh, with geometrical progres-
sion towards the singular edge with a factor of 0.15, having 4 layers of elements. In
the x3 direction, a uniform discretization using 5 elements has been adopted. In Fig-
ure 2 we present the mesh used for the cracked domain.

We specify on the entire boundary ∂� Dirichlet boundary conditions according
to the exact solution ũ (43) of Navier–Lamé operator (2),(3),(4). This way, the exact
solution at any point x ≡ (r, θ, x3) is therefore (43). In all numerical examples the
Young modulus is taken to be 1 and the Poisson ratio 0.3, so the Lamé constants
are λ=0.5769 and µ=0.3846.

4.1. Numerical tests of J[R] integral, using K(αi)
m

Computing J [R] for different values of R using the quasidual function K(αi)
m and

BJ
(k)

4 (x3) should provide J [R]= ã
(αi )
k with an error of O(Rα1−αi+m+1). For a traction

free cracked domain α1 = α2 = α3 = 1
2 , and therefore we expect the convergence rate
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Figure 2. The p-FEM model of the cracked domain.

to be at least O(R) for K(αi)

0 , O(R2) for K(αi)

1 and O(R3) for K(αi)

2 for all first three
eigen-pairs.

The numerical tests use the boundary condition (43) with the exact ESIF’s as spec-
ified in (42), and we compute J [R] at different values of R for K(αi)

0 , K(αi)

1 and K(αi)

2 .
The Gauss quadrature is of order 10 in both θ and x3 directions and the finite ele-
ment solution at p = 7 is used. Taking 32 integration points and p = 8 does not
improve the results considerably.

We plot in Figure 3 log((Jex −J [R])/Jex) vis. log(R), showing the numerical con-
vergence rate. As the finite element solution has a numerical error of about 0.1–1% in
energy norm, the values of J [R] cannot be computed with a better accuracy, there-
fore, a relative error of 10−3 is the lower limit expected. We use BJ

(0)

4 (x3), BJ
(1)

4 (x3)

and BJ
(2)

4 (x3) for K(αi)

0 , K(αi)

1 , K(αi)

2 , so J [R] represents the nine coefficients ã
(αj )

i , i =
0,1,2, j =1,2,3.

Because the exact ESIFs are at most polynomials of order 2, the J [R] value for
BJ

(3)

4 (x3), BJ
(4)

4 (x3), BJ
(5)

4 (x3) (computed with K(αi)

2 ) are expected to be zero and
shown in Table 1.

We can see in Figure 3 that the convergence rate of J [R] is of order Rm+1 as we
expected.

4.2. Numerical computation of ESIFs

When J [R] is computed with the quasi-dual function K(αi)
m and BJ

(k)

4 (x3) we obtain
according to (30) the coefficient ã

(αi )
j :

J [0]=
∫ 1

−1
Ai(x3)BJ

(j)

4 (x3)dx3 = ã
(αi )
j , j =0,1, . . . , n (44)

The ESIF is then easily represented by a linear combination of the Jacobi polynomi-
als as:

Ai(x3)= ã0J
(0)

4 (x3)+ ã1J
(1)

4 (x3)+ ã2J
(2)

4 (x3)+· · · (45)
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Figure 3. Convergence rates of J [R] (the coefficients of the polynomial describing the ESIFs) using
BJ

(k)

4 , k =0,1,2 and K(αi )

0 , K(αi )

1 , K(αi )

2 for the traction free cracked domain.

The advantage of the hierarchical family of polynomials is that one can adap-
tively increase the polynomial order of the ESIF. For example, if one is interested
in projecting Ai(x3) into the space of polynomials of degree up to n, the n + 1
coefficients ã0, . . . , ãn are being computed using the n + 1 extraction polynomials
BJ

(0)

4 (x3), . . . ,BJ
(n)

4 (x3) defined in (33).
To increase the space in which Ai(x3) is projected, all which is needed is the com-

putation of (40) for n+1. This way, the new Anew
i =A

previous
i + ãn+1J

(n+1)

4 (x3). We illus-
trate the extracted polynomial representation of the ESIF, A1(x3), A2(x3), A3(x3) of
order 2,3,4,5, and its relative error using the data at R =0.05 in Figure 4, 5 and 6
respectively and using K(αi)

2 .
Notice that the relative error of the extracted ESIFs is lower than 0.1%. The

results show an accurate and efficient method.

5. Numerical example - clamped V-notched domain (ω= 3π
2 )

Similar to the previous section, we generate an exact solution to a V-notched domain
(ω = 3π

2 ) with clamped boundary conditions on the surfaces �1 and �2 by comput-
ing analytically the primal and shadow eigen functions �0, �1, �2 and the dual and
shadow eigen functions �0, �1, �2. Their formulae are presented in Appendix B.
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Table 1. Numerical results of J [R] using BJ
(k)

4 , k = 3,4,5 and K(αi )

2 , for the traction free cracked
domain.

R Jex BJ
(3)

4 Jex BJ
(4)

4 Jex BJ
(5)

4

α1 =0.5
0.9 0 −1.09E-04 0 3.18E-04 0 6.44E-05
0.8 0 1.65E-04 0 7.75E-05 0 −1.28E-04
0.7 0 −4.93E-05 0 −1.87E-04 0 3.75E-05
0.6 0 −7.77E-05 0 −1.00E-04 0 5.18E-05
0.5 0 3.35E-05 0 6.53E-05 0 −2.14E-05
0.4 0 2.81E-05 0 5.74E-05 0 −8.31E-06
0.3 0 −1.65E-05 0 −6.23E-05 0 −1.87E-06
0.2 0 2.17E-05 0 −7.46E-06 0 −6.25E-06
0.1 0 1.98E-05 0 −3.21E-05 0 −3.01E-05
0.05 0 1.97E-05 0 1.10E-06 0 −2.75E-05

α2 =0.5
0.9 0 1.06E-04 0 −1.93E-04 0 −7.91E-05
0.8 0 −1.08E-04 0 3.50E-05 0 1.05E-04
0.7 0 −1.26E-05 0 9.74E-05 0 −1.11E-05
0.6 0 6.24E-05 0 −3.34E-05 0 −6.44E-05
0.5 0 1.01E-05 0 −7.81E-05 0 2.93E-06
0.4 0 −2.51E-05 0 2.76E-06 0 3.26E-05
0.3 0 1.30E-05 0 2.72E-05 0 −2.17E-05
0.2 0 1.17E-05 0 −4.06E-05 0 −2.02E-06
0.1 0 1.98E-05 0 −3.01E-05 0 −2.90E-05
0.05 0 1.82E-05 0 7.32E-06 0 −2.28E-05

α3 =0.5
0.9 0 3.81E-04 0 1.74E-04 0 1.42E-03
0.8 0 −6.56E-04 0 −2.89E-04 0 −2.62E-04
0.7 0 4.24E-05 0 −3.16E-04 0 −9.26E-04
0.6 0 8.01E-04 0 4.44E-04 0 4.59E-04
0.5 0 1.88E-04 0 3.00E-04 0 6.39E-04
0.4 0 −4.26E-04 0 −1.57E-04 0 −1.09E-04
0.3 0 −4.16E-05 0 −2.33E-05 0 −1.35E-04
0.2 0 9.19E-05 0 −1.13E-05 0 8.38E-05
0.1 0 6.03E-05 0 −4.20E-06 0 −1.65E-05
0.05 0 3.29E-05 0 −4.39E-07 0 −1.26E-05

We select the ESIF to be polynomials of order 2 as presented in (42), such that
the exact solution (16) contain only three terms in the sum, (41).

The domain ω = 3π
2 has been discretized by using a p-FEM mesh, with geomet-

rical progression towards the singular edge with a factor of 0.15, having 4 layers
of elements. In the x3 direction, a uniform discretization using 5 elements has been
adopted, as presented in Figure 7. We specify over the entire boundary ∂� displace-
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Figure 4. A1(x3)(lef t) and its relative error (right) at R = 0.05. Computations done with BJ
(k)

4 , k =
2,3,4,5, where Aex

1 (x3)=3+4x3 +5x2
3 , ω=2π, λ=0.5769 and µ=0.3846.

Figure 5. A2(x3) (lef t) and its relative error (right) at R = 0.05. Computations done with BJ
(k)

4 ,
k =2,3,4,5, where Aex

2 (x3)=2+3x3 +4x2
3 , ω=2π , λ=0.5769 and µ=0.3846.

Figure 6. A3(x3) (lef t) and its relative error (right) at R = 0.05. Computations done with BJ
(k)

4 ,
k =2,3,4,5, where Aex

3 (x3)=5+4x3 +2x2
3 , ω=2π , λ=0.5769 and µ=0.3846.
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Figure 7. The p-FEM model of the ω= 3π

2 V-notched domain.

ments boundary conditions according to the exact solution ũ (43). The FE solution
at any point x≡ (r, θ, x3) is therefore the exact solution (43).

5.1. Numerical tests of J[R] integral, using K(αi)
m

We again compute J [R] for different values of R using the quasidual function
K(αi)

m and BJ
(k)

4 (x3) similarly to the case of the crack. In this case the first three
eigen-values are distinct, α1 =0.595156, α2 =0.759042, α3 =0.666667 and therefore we
expect the convergence rate of J [R] for:

– α1 to be at least O(R),O(R2) and O(R3) when using K(αi)

0 ,K(αi)

1 , and K(αi)

2 ,
respectively

– α2 to be at least O(R0.83611),O(R1.83611) and O(R2.83611) when using K(αi)

0 ,K(αi)

1 ,
and K(αi)

2 , respectively
– α3 to be at least O(R0.92848),O(R1.92848) and O(R2.92848) when using K(αi)

0 ,K(αi)

1 ,
and K(αi)

2 , respectively
We compute J [R] at different values of R for K(αi)

0 , K(αi)

1 and K(αi)

2 . The Gauss
quadrature is of order 10 in both θ and x3 directions and the finite element solution
at p =7 is used.

We plot in figure 8 log((Jex −J [R])/Jex) vis. log(R), showing the numerical conver-
gence rate. As the finite element solution has a numerical error of about 0.1–1% in
energy norm, the values of J [R] cannot be computed with a better accuracy, there-
fore, a relative error of 10−3 is the lower limit expected. We use BJ

(0)

4 (x3), BJ
(1)

4 (x3)

and BJ
(2)

4 (x3) for K(αi)

0 , K(αi)

1 , K(αi)

2 , so J [R] represents the nine coefficients ã
(αj )

i ,
i =0,1,2, j =1,2,3.

Because the exact ESIFs are at most polynomials of order 2, the J [R] value for
BJ

(3)

4 (x3), BJ
(4)

4 (x3), BJ
(5)

4 (x3) (computed with K(αi)

2 ) are close to zero and have typ-
ical values similar to the ones in Table 1 so are not repeated.

One may notice in Figure 8 that the convergence rate of J [R] is at least of order
Rm+1 as we expected.
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Figure 8. Convergence rates of J [R] (the coefficients of the polynomial describing the ESIFs) using
BJ

(k)

4 , k =0,1,2 and K(αi )

0 , K(αi )

1 , K(αi )

2 for the clamped V-notched domain.

5.2. Numerical computation of ESIFs

After computing the J [R] integrals, the computation of the polynomial representa-
tion of the ESIF is simple, using a linear combination of the Jacobi polynomials (45).
We illustrate the extracted polynomial representation of the ESIF, A1(x3), A2(x3),
A3(x3) and their relative errors using the data at R = 0.05 in Figure 9, 10 and 11,
respectively, using K(αi)

2 .
The relative error of the extracted ESIF is not higher than 0.1%.

6. Compact tension specimen – An example problem of engineering importance

In this section we compare the ESIFs computed by the quasi-dual function method
with a pointwise extraction method of stress intensity factors (SIFs – KI and KII )
available in STRESS CHECK Mster Guide – V-7 (2004). In the classical fracture-
mechanics literature the plane-strain SIFs are reported, which multiply a specific
‘mode I’ or ‘mode II’ eigen-functions. To compare between the ESIFs and the SIFs,
we first present the relationship between the functions A1, A2 and the SIFs KI and
KII . We then describe the compact tension specimen (CTS) used for determination of
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Figure 9. A1(x3) (left) and its relative error (right) at R = 0.05 using BJ
(k)

4 , k = 2,3,4,5, where
Aex

1 (x3)=3+4x3 +5x2
3 , ω= 3π

2 , λ=0.5769 and µ=0.3846.

Figure 10. A2(x3) (left) and its relative error (right) at R = 0.05 using BJ
(k)

4 , k = 2,3,4,5, where
Aex

1 (x3)=2+3x3 +4x2
3 , ω= 3π

2 , λ=0.5769 and µ=0.3846.

Figure 11. A3(x3) (left) and its relative error (right) at R = 0.05 using BJ
(k)

4 , k = 2,3,4,5, where
Aex

3 (x3)=5+4x3 +2x2
3 , ω= 3π

2 , λ=0.5769 and µ=0.3846.
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fracture toughness. For the CTS we extract the ESIF using the quasi-dual function
method and pointwise values of SIFs and compare between them.

6.1. The relation between the SIFs KI , KII and the ESIF

Under the assumption of plane-strain and mode I loading, the classical solution u in
the vicinity of a crack edge is (see e.g. Kanninen and Popelar, 1985):

{
u1

u2

}
= KI(x3)

2µ

√
r

2π

{
cos((θ +π)/2)[κ −1+2 sin2

((θ +π)/2)]

sin((θ +π)/2)[κ +1−2 cos2((θ +π)/2)]

}
(46)

where κ = 3 − 4ν. In the case of plane-strain assumption and mode II loading the
classical solution u in the vicinity of a crack edge is:

{
u1

u2

}
= KII (x3)

2µ

√
r

2π

{
sin((θ +π)/2)[κ +1+2 cos2((θ +π)/2)]

cos((θ +π)/2)[κ −1−2 sin2
((θ +π)/2)]

}
(47)

Comparing the displacements expressed above with these expressed in terms of the
ESIFs (for λ=0.5769 and µ=0.3846, see Appendix A), the relation between A1 and
KI and the relation between A2 and KII in the case of plane strain is:

KI

0.7692
√

2π
cos((θ +π)/2)

[
0.8+2 sin2

((θ +π)/2)
]
=A1

[
−2.6 sin

(
1
2
θ

)
− sin

(
3
2
θ

)]
(48)

KII

0.7692
√

2π
sin((θ +π)/2)

[
2.8+2 cos2((θ +π)/2)

]=A2

[
2.2 cos

(
1
2
θ

)
− 1

3
cos

(
3
2
θ

)]
(49)

which after algebraic manipulation is shown to be independent of θ :

A1 =0.259312KI , A2 =0.777938KII (50)

Remark 3. The strain component ε33 computed using the displacements in (A.2), for
the case A1 is a constant is:

ε33 = ∂2u3

∂x2
3

=0 (51)

On the other hand if plane-stress condition is assumed ε33 is given by:

ε33 = σ11

E
− ν

E
(σ11 +σ22) ⇒ ε33 =− ν

E
(σ11 +σ22)=−0.923076r− 1

2 sin
(

1
2
θ

)
(52)

and therefore in 3-D the plane-stress condition can not be represented in the vicinity
of a singular edge.
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Figure 12. Dimensions of CTS. The thickness of the specimen is 2 ranging from −1<x3 <1.

Figure 13. The p-FEM model of the CTS with a constant loading in x3 direction (the loading at the
upper hole is as in the shown lower hole, in the opposite direction).

6.2. Compact tension specimen (CTS) under a constant tension along x3

Consider the classical compact tension specimen (see Figure 12) under bearing loads
at the tearing holes having an equivalent force in the x2 direction and constant in x3

direction, as presented in Figure 13. All other faces are traction free. The thickness
of the specimen is 2 ranging from −1 < x3 < 1. The specimen is subjected to a ten-
sion load of 100[N ] such that only Mode I is excited along the crack front. Although
the loading is independent of x3, because of the vertex singularities at x3 = ±1 we
anticipate to see a variation in A1 as the vertices are approached. The domain is dis-
cretized by using a p-FEM mesh, with geometrical progression towards the singular
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edge with a factor of 0.15 where the smallest layer in the vicinity of the edge is at
r = 0.153. In x3 direction we also used a mesh graded in a geometrical progression
close to the vertex singularity at x3 =±1. Smallest layer in the vicinity of the vertex
is −1<x3 <−1+0.152, 1<x3 <1−0.152.

We extract the ESIF A1, A2 and A3 as polynomials of degree 4 and 5 at R=0.05.
A2 and A3 are of order of 10−3 (the exact value is zero except maybe at the vertices),
therefore negligible compared to A1, and thus not plotted herein. The difference in
A1 as the polynomial degree is increased from 4 to 5 is shown in Figure 14. It may be
noticed that the difference between the approximation of 4th and 5th order polyno-
mial is negligible and we use in the sequel polynomial degree 5 for approximating A1.
Next we compute A1 and KI (extracted by the pointwise contour integral method,
see STRESS CHECK Mster Guide – V-7 (2004), at several points along the edge) at
R =0.5, R =0.3, R =0.2, and R =0.05 and plot these in Figure 15.

Figure 14. A1 extracted at R =0.05 using polynomials of degree up to 4 and up to 5 for the CTS.

Figure 15. A1(x3) and KI extracted using different R’s for the compact tension specimen.
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One may notice the good convergence of the ESIF as R → 0 compared to the
pointwise SIFs.

Next, we wish to demonstrate that the ESIFs can be used away from the singu-
lar edge, so a coarse mesh is sufficient. We use the same model with a coarse mesh
in the vicinity of the edge where the smallest layer in the vicinity of the edge is at
r =0.15. In x3 direction same discretization as in the fine mesh is employed, and per-
form a FE analysis, using the trunk space up to p = 7, having 125,442 DOF. The
computed A1(x3) function and the pointwise values of KI at R=0.5, R=0.3 and R=
0.2 are presented in Figure 16. Although the loading is constant in x3, the vertex sin-
gularities influence the the ESIF, and as seen usually in practice the crack propaga-
tion in the middle of the specimen is usually faster than at the outer surfaces. The
results obtained using ESIF extraction method are generated faster than pointwise
extraction methods (KI extraction) and do not require plane stress or plane strain
assumptions.

It is easy to see that the results of the extracted ESIF using the coarse mesh with
125,442 DOF are similar to the results obtained using the refined mesh with 150,726
DOF.

7. Summary and conclusions

The quasi-dual function extraction method presented herein is based on the mathe-
matical framework in Costabel et al. (2004). The implementation of the method on
the EFIF extraction was presented in Omer et al. (2004). and the results presented in
this paper provide a natural extension to the elasticity system where the method has
been slightly improved and realistic engineering problems addressed. Herein we also
address cases when both ‘mode I’, ‘mode II’ and ‘mode III’ exist. The method pro-
vides a functional (polynomial) representation of the ESIF along the edge. This accu-
rate and efficient method is implemented as a post-solution operation in conjunction
with the p-version finite element method.

Figure 16. A1(x3) and KI extracted using different R’s for the compact tension specimen using coarse
grid with 125442 DOF.
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A hierarchical family of extraction polynomials was constructed, based on Jacobi
orthogonal polynomials. The quasi-dual function method, with the use of the
‘hierarchial family of extraction polynomials’ becomes adaptive in the sense that it
uses a simple procedure to increase the degree of the extracted ESIF polynomial,
thus enable a reliable and efficient determination of ESIFs.

Analytical solutions have been constructed for cracked and V-notched domains,
against which the extracted ESIFs were compared. As shown, the relative errors of
the extracted ESIF were less than 1%, when the degree of the extracted ESIF poly-
nomials is determined by an adaptive procedure.

We also compared the extracted ESIF with point-wise solutions of KI and KII

in the case of a compact tension specimen subject to Mode I loading. It has been
shown that the extracted ESIF converge to the solution faster than the stress inten-
sity coefficient KI , as R is decreased.

The results presented herein indicate that the method proposed for ESIF extrac-
tion is accurate and efficient.

Appendix

A. Primal and dual eigen- and shadow-functions for a traction free crack

The displacements ũ (17) in the case of a cracked domain (ω=2π ) with traction free
boundary conditions on the crack surfaces �1 and �2 is constructed by the primal
and shadow functions �j , j �0. �0 and �0 are the solutions of the first differential
equation of (11). The boundary conditions applied on �0 and �0 are prescribed in
the first equation of (22). There are an infinite number of eigen-values αi for which
there is an associated �(αi)

0 and �(αi)

0 where the positive αi ’s are associated with �(αi)

0
and the negative αi ’s are associated with �(αi)

0 . We consider the first three eigen-value
only equal to 1

2 (α1 =α2 =α3 = 1
2 ). The dual eigen function �(αi)

0 includes the normal-
ization factor c

(αi)

0 chosen such that the primal and dual eigen-function, satisfy the
orthonormal condition:∫ ω

0
[[T ]�(αi)

0 ·�(αi)

0 −�(αi)

0 · [T ]�(αi)

0 ]R dθ =1 (A.1)

After the primal eigen-functions �(αi)

0 and the dual eigen-function �
(αi)

0 are com-
puted, the first shadow function �

(αi)

1 and the first dual shadow function �
(αi)

1 may
be computed by the second differential equation in (11), with the second equation of
(22) as the boundary conditions. The boundary conditions contain the operators [T0]
and [T1], as defined in (23).

The shadow function �
(αi)

2 and the dual shadow function �
(αi)

2 are the solution
of the third equation in (11), with the second equation of (22) as the boundary
conditions.

The primal solution �
(α1)

0 in the case of a crack is known as mode I solution.
The eigen-value in the case is α1 = 1/2 and the primal and shadow functions for
λ=0.5769 and µ=0.3846 are:
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�
(α1)

0 (r, θ)= r
1
2




2.6 sin
( 1

2θ
)+ sin

( 3
2θ

)
4.6 cos

( 1
2θ

)+ cos
( 3

2θ
)

0


 ,

�
(α1)

1 (r, θ)= r
3
2




0

0

−2 sin
( 1

2θ
)−3.06667 sin

( 3
2θ

)

 ,

�
(α1)

2 (r, θ)= r
5
2




0.23333 sin
( 1

2θ
)+0.65644 sin

( 3
2θ

)
−0.76667 cos

( 1
2θ

)+0.03244 cos
( 3

2θ
)

0


 (A.2)

and the dual shadow functions are:

�
(−α1)

0 (r, θ)=0.05542r− 1
2




sin
( 1

2θ
)+1.53333 sin

( 3
2θ

)
cos

( 1
2θ

)+0.86667 cos
( 3

2θ
)

0


 ,

�
(−α1)

1 (r, θ)=0.05542r
1
2




0

0

−1.73333 sin
( 1

2θ
)−0.66667 sin

( 3
2θ

)

 ,

�
(−α1)

2 (r, θ)=0.05542r
3
2




0.23778 sin
( 1

2θ
)−0.1 sin

( 3
2θ

)
0.495556 cos

( 1
2θ

)−0.43333 cos
( 3

2θ
)

0


 (A.3)

The primal and dual eigen- and shadow-functions associated with α1 = 1/2 are
presented in Figure 17.

The primal solution �
(α2)

0 in the case of a crack is known as mode II solution.
The eigen-value in the case is α2 = 1/2 and the primal and shadow functions where
λ=0.5769 and µ=0.3846 are:

�
(α2)

0 (r, θ)= r
1
2




0.86667 cos
( 1

2θ
)+ cos

( 3
2θ

)
−1.53333 sin

( 1
2θ

)− sin
( 3

2θ
)

0


 ,

�
(α2)

1 (r, θ)= r
3
2




0

0

−0.66667 cos
( 1

2θ
)

 ,
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Figure 17. The eigen-functions (Top) and the dual eigen-functions (Bottom) associated with α1 = 1
2 in

the case of cracked domain (ω=2π ), λ=0.5769 and µ=0.3846.

�
(α2)

2 (r, θ)= r
5
2




0.07778 cos
( 1

2θ
)−0.07956 cos

( 3
2θ

)
0.25556 sin

( 1
2θ

)+0.10775 sin
( 3

2θ
)

0


 (A.4)

and the dual shadow functions are:

�
(−α2)

0 (r, θ)=0.05542r− 1
2




cos
( 1

2θ
)+4.6 cos

( 3
2θ

)
sin

( 1
2θ

)−2.6 sin
( 3

2θ
)

0


 ,

�
(−α2)

1 (r, θ)=0.05542r
1
2




0

0

−2 cos
( 3

2θ
)

 ,

�
(−α2)

2 (r, θ)=0.05542r
3
2




−0.27067 cos
( 1

2θ
)−0.3 cos

( 3
2θ

)
−0.31067 sin

( 1
2θ

)+1.3 sin
( 3

2θ
)

0


 (A.5)

The primal and dual eigen- and shadow-functions associated with α2 = 1/2 are
presented in Figure 18.

The third eigen-value in the case of cracked domain with traction free boundary
conditions is α3 = 1/2 and the primal and shadow functions where λ = 0.5769 and
µ=0.3846 are:
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Figure 18. The eigen-functions (Top) and the dual eigen-functions (Bottom) associated with α2 = 1
2 in

the case of cracked domain (ω=2π ), λ=0.5769 and µ=0.3846.

�
(α3)

0 (r, θ)= r
1
2




0

0

cos
( 1

2θ
)

 ,

�
(α3)

1 (r, θ)= r
3
2




−0.29333 cos
( 1

2θ
)

0.10667 sin
( 1

2θ
)

0


 ,

�
(α3)

2 (r, θ)= r
5
2




0

0

−0.3 cos
( 1

2θ
)

 (A.6)

and the dual shadow functions are:

�
(−α3)

0 (r, θ)=0.82760r− 1
2




0

0

cos
( 1

2θ
)

 ,

�
(−α3)

1 (r, θ)=0.82760r
1
2




−0.13333 cos
( 1

2θ
)

−0.53333 sin
( 1

2θ
)

0


 ,
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�
(−α3)

2 (r, θ)=0.82760r
3
2




0

0

−1.16667 cos
( 1

2θ
)

 (A.7)

The primal and dual eigen- and shadow-functions associated with α3 = 1/2 are
presented in Figure 19.

B. Primal and dual eigen- and shadow-functions for clamped 270◦ V-notch

The displacements ũ ((17)) in the case of a V-notched domain (ω= 3π
2 ) with clamped

boundary conditions on the surfaces �1 and �2 is constructed by the primal and
shadow functions �j , j �0.

The primal and shadow functions �0, �1, �2 as well as the dual shadow functions
�0, �1, �2 are the solutions of the differential equations in (11). The boundary con-
ditions applied are prescribed in (25). There are an infinite number of eigen-values
αi for which there is an associated �

(αi)

0 and �
(αi)

0 where the positive αi ’s are associ-
ated with �

(αi)

0 and the negative αi ’s are associated with �
(αi)

0 . We consider the first
three eigen-value only of the 270◦ V-notched domain (ω = 3π

2 ), α1 = 0.595156, α2 =
0.759042, α3 =0.66667. The dual eigen function �(αi)

0 includes the normalization fac-
tor c

(αi)

0 , chosen such that the primal and dual eigen-functions satisfy the orthonor-
mal condition as defined in (A.1).

Figure 19. The eigen-functions (Top) and the dual eigen-functions (Bottom) associated with α3 = 1
2 in

the case of cracked domain (ω=2π ), λ=0.5769 and µ=0.3846.
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The primal and shadow functions for a clamped 270◦ V-notched domain associ-
ated with α1 =0.595156 where λ=0.5769 and µ=0.3846 are:

�
(α1)

0 (r, θ)= r0.59516

×




−1.40993 cos(0.40484θ)+1.40993 cos(1.59516θ)+ sin(0.40484θ)−1.98793 sin(1.59516θ)

1.98794 cos(0.40484θ)−1.98794 cos(1.59516θ)+2.80286 sin(0.40484θ)−1.40993 sin(1.59516θ)

0




�
(α1)

1 (r, θ)= r1.59516

×




0

0

1.17022 cos(0.40484θ)−1.17022 cos(1.59516θ)−0.82998 sin(0.40484θ)+1.64996 sin(1.59516θ)




�
(α1)

2 (r, θ)= r2.59516

×




−0.14583 cos(0.40484θ)+0.14583 cos(1.59516θ)+0.10343 sin(0.40484θ)−0.20562 sin(1.59516θ)

−0.31156 cos(0.40484θ)+0.31156 cos(1.59516θ)−0.43928 sin(0.40484θ)+0.22097 sin(1.59516θ)

0




(B.1)

and the dual shadow functions are:

�
(−α1)

0 (r, θ)=−0.05898r−0.59516

×




0.70924 cos(0.40484θ)−0.70924 cos(1.59516θ)−0.50303 sin(0.40484θ)+sin(1.59516θ)

−0.50303 cos(0.404844θ)+0.50303 cos(1.59516θ)−0.70924 sin(0.40484θ)+0.35677 sin(1.59516θ)

0




�
(−α1)

1 (r, θ)=−0.05898r0.40484

×




0

0

−0.296125 cos(0.40484θ)+0.29612 cos(1.59516θ)+0.21002 sin(0.40484θ)−0.41751 sin(1.59516θ)




�
(−α1)

2 (r, θ)=−0.05898r1.40484

×




0.07044 cos(0.40484θ)−0.07044 cos(1.59516θ)+0.15980 sin(0.40484θ)−0.11044 sin(1.59516θ)

0.32312 cos(0.40484θ)−0.32312 cos(1.59516θ)+0.02033 sin(0.40484θ)+0.20608 sin(1.59516θ)

0



(B.2)
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Figure 20. Eigen-functions (Top) and the dual eigen-functions (Bottom) associated with α1 =0.595156
for a clamped V-notched domain (ω= 3π

2 ), λ=0.5769 and µ=0.3846.

The primal and dual eigen- and shadow-functions associated with α1 = 0.595156
are presented in Figure 20.

The primal and shadow functions �(αi)

0 in the case of a clamped 270◦ V-notched
domain associated with α2 =0.759042 where λ=0.5769 and µ=0.3846 are:

�
(α2)

0 (r, θ)= r0.75904

×




1.56791 cos(0.24096θ)−1.56791 cos(1.75904θ)+ sin(0.24096θ)−2.45835 sin(1.75904θ)

2.45835 cos(0.24096θ)−2.45835 cos(1.75904θ)−3.85448 sin(0.24096θ)+1.56791 sin(1.75904θ)

0




�
(α2)

1 (r, θ)= r1.75904

×




0

0

−1.50622 cos(0.24096θ)+1.50622 cos(1.75904θ)−0.96065 sin(0.24096θ)+2.36163 sin(1.75904θ)




�
(α2)

2 (r, θ)= r2.75904

×




−0.15202 cos(0.24096θ)+0.15202 cos(1.75904θ)+0.10782 sin(0.24096θ)+0.03358 sin(1.75904θ)

−0.27837 cos(0.24096θ)+0.27837 cos(1.75904θ)−0.39248 sin(0.24096θ)+0.65140 sin(1.75904θ)

0




(B.3)
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and the dual shadow functions are:

�
(−α2)

0 (r, θ)=−0.05520r−0.75904

×




−0.63779 cos(0.240956θ)+0.63779 cos(1.75904θ)−0.40678 sin(0.24096θ)+Sin(1.75904θ)

−0.40678 cos(0.24096θ)+0.40678 cos(1.75904θ)+0.63779 sin(0.24096θ)−0.25944 sin(1.75904θ)

0




�
(−α2)

1 (r, θ)=−0.05520r0.24096

×




0

0

0.24923 cos(0.24096θ)−0.24923 cos(1.75904θ)+0.15896 sin(0.24096θ)−0.39077 sin(1.75904θ)




�
(−α2)

2 (r, θ)=−0.05520r1.24096

×




−0.00053 cos(0.24096θ)+0.00053 cos(1.75904θ)+0.00016 sin(0.24096θ)+0.00034 sin(1.75904θ)

0.17120 cos(0.24096θ)−0.17120 cos(1.75904θ)−0.42767 sin(0.24096θ)+0.26843 sin(1.75904θ)

0




(B.4)

The primal and dual eigen- and shadow-functions associated with α2 = 0.759042
are presented in Figure 21.

Figure 21. Eigen-functions (Top) and dual eigen-functions (Bottom) associated with α2 =0.759042 for
a clamped V-notched domain (ω= 3π

2 ), λ=0.5769 and µ=0.3846.
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The primal and shadow functions for a clamped 270◦ V-notched domain associ-
ated with α3 =0.666667 where λ=0.5769 and µ=0.3846 are:

�
(α3)

0 (r, θ)= r0.66667




0

0

sin(0.66667θ)


 , �

(α3)

1 (r, θ)= r1.66667




−0.28846 sin(0.66667θ)

0

0


 ,

�
(α3)

2 (r, θ)= r2.66667




0

0

−0.23654 sin(0.66667θ)


 (B.5)

and the dual shadow functions are:

�
(α3)

0 (r, θ)=−0.82760r−0.66667




0

0

− sin(0.66667θ)


 ,

�
(α3)

1 (r, θ)=−0.82760r0.33333




0.46875 sin(0.66667θ)

0

0


 ,

�
(α3)

2 (r, θ)=−0.82760r1.33333




0

0

1.45313 sin(0.66667θ)


 (B.6)

The primal and dual eigen- and shadow-functions associated with α3 = 0.666667
are presented in Figure 22.

C. Why BJ2 is insufficient for extraction purposes when K2 is used?

Although the extraction polynomials BJ
(k)

2 satisfy the conditions in (29) when using
the dual singular functions K(αi)

0 , K(αi)

1 and K(αi)

2 , we selected BJ
(k)

4 in order to extract
the ESIF’s (see subsection 3.2). In this section we examine the hierarchic family BJ

(k)

2
and present the reasons for preferring BJ

(k)

4 .

C.1. Jacobi extraction polynomials of order 2

The Jacobi Polynomials of Order 2 are of the form (see Abramowitz and stegun,
1964, pp. 773–774):

J
(k)

2 (x3)= 1
k2 +7k +12

k∑
l=0

(k + l +4)!
2l l! (k − l)! (2+ l)!

(x3 −1)l (C.1)
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Figure 22. Eigen-functions (Top) and dual eigen-functions (Bottom) associated with α3 =0.666667 for
a clamped V-notched domain (ω= 3π

2 ), λ=0.5769 and µ=0.3846.

and the constant hk in (32) is

hk = 25(k +1)(k +2)

(2k +5)(k +3)(k +4)
(C.2)

Inserting (C.1) and (C.2) in (33), we finally obtain:

BJ
(k)

2 (x3)= (2k +5)(k +3)(k +4)

25(k +1)(k +2)

(1−x2
3)

2

k2 +7k +12

k∑
l=0

(k + l +4)!
2l l! (k − l)! (2+ l)!

(x3 −1)l. (C.3)

The computation of J [R] using BJ
(k)

2 requires the value of BJ
(k)

2 , ∂3BJ
(k)

2 , ∂2
3 BJ

(k)

2

and ∂3
3BJ

(k)

2 at the Gauss quadrate points, along the x3 axis. The polynomials BJ
(k)

2 ,
(0�k �5), and their first three derivatives are presented in Figure 23.

One may see that BJ
(k)

2 |x3=±1 = ∂3BJ
(k)

2 |x3=±1 = 0, as expected. The derivatives
∂2

3 BJ
(k)

2 and ∂3
3BJ

(k)

2 however have large gradients in the vicinity of x3 =±1. In fact,
as k increases, the second and third derivatives of BJ

(k)

2 have larger gradients at the
boundaries x3 =±1.

C.2. ESIF Extraction using BJ
(k)

2

To examine the influence of these large gradients we compute J [R] at different val-
ues of R using a Gauss quadrature of order 10 in both θ and x3 directions and with
p =7 in finite element analysis.

We plot in Figure 24 log((Jex −J [R])/Jex) vis. log(R), showing the numerical con-
vergence rate. J [R] is computed using BJ

(0)

2 (x3), BJ
(1)

2 (x3), BJ
(2)

2 (x3) and K(α1)

2 . The
results of J [R] are summarized in Table 2.

We can notice in Figure 24 that the convergence rate is at least of order R3, as
expected, but the relative error is still large even at R = 0.05 as can be observed in
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Figure 23. BJ
(k)

2 (x3) and the derivatives ∂3BJ
(k)

2 (x3), ∂2
3 BJ

(k)

2 (x3) and ∂3
3 BJ

(k)

2 (x3) where 0� k �5.

Figure 24. Convergence rate of J [R] using BJ
(k)

2 , k=0,1,2 and K(αi )

2 for cracked domain with traction
free boundary conditions, λ=0.5769 and µ=0.3846.
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Table 2. Numerical results of J [R] using BJ
(k)

2 , k=3,4,5 and K(αi )

2 , for cracked domain with traction
free boundary conditions, λ=0.5769 and µ=0.3846.

R Jex BJ
(3)

2 Jex BJ
(4)

2 Jex BJ
(5)

2

α1 =0.5
0.9 0 3.42799 0 13.50506 0 8.01406
0.8 0 2.14041 0 8.43103 0 5.00271
0.7 0 1.25450 0 4.94224 0 2.93283
0.6 0 0.67705 0 2.66751 0 1.58312
0.5 0 0.32661 0 1.28634 0 0.76332
0.4 0 0.13383 0 0.52706 0 0.31268
0.3 0 0.04228 0 0.16668 0 0.09895
0.2 0 0.00840 0 0.03286 0 0.01951
0.1 0 5.12E−04 0 0.00191 0 0.00114
0.05 0 3.13E−05 0 4.23E−05 0 4.06E−06

α2 =0.5
0.9 0 6.45270 0 −1.92391 0 15.08370
0.8 0 4.96463 0 −0.45001 0 11.60613
0.7 0 3.59874 0 0.30165 0 8.41273
0.6 0 2.42743 0 0.56981 0 5.67423
0.5 0 1.49162 0 0.54976 0 3.48683
0.4 0 0.80492 0 0.39421 0 1.88171
0.3 0 0.35565 0 0.21371 0 0.83134
0.2 0 0.10976 0 0.07734 0 0.25650
0.1 0 0.01421 0 0.01130 0 0.03314
0.05 0 0.00181 0 0.00147 0 0.00416

α3 =0.5
0.9 0 684.89057 0 358.50386 0 1601.03859
0.8 0 482.19792 0 270.91136 0 1127.22146
0.7 0 324.69828 0 194.30498 0 759.03606
0.6 0 206.08012 0 130.44288 0 481.73890
0.5 0 120.49220 0 80.15835 0 281.66752
0.4 0 62.47922 0 43.42907 0 146.05863
0.3 0 26.76345 0 19.33200 0 62.56450
0.2 0 8.06996 0 6.02719 0 18.86400
0.1 0 1.02870 0 0.79061 0 2.40439
0.05 0 0.13001 0 0.10112 0 0.30372

Table 2. The large error is especially expressed at the results obtained for the third
eigen-value, α3. It is easy to see that the results of J [R] obtained by using BJ

(k)

4 (as
presented in Table 1) as much more accurate than the results obtained by using BJ

(k)

2
(as presented in Table 2).

Because the results obtained using BJ
(k)

2 are as expected by the theory, we
extracted the ESIF of order 2, 3, 4, 5 and computed its relative error using the data
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at R = 0.05. The exact ESIF’s are A1 = 3 + 4x3 + 5x2
3 , A2 = 2 + 3x3 + 4x2

3 and A3 =
5+4x3 +2x2

3 . The relative error obtained is presented in Figure 25.
As seen in Figure 25, as we increase the order of the ESIF, the relative error in

the vicinity of x3 =−1 and x3 = 1 increases. This result is obtained due to the large
gradients of the second and third derivatives of BJ

(k)

2 close to x3 =±1 – see also this
phenomenon in the results presented in Omer et al. (2004). This phenomenon does
not obtained once computing the ESIF using BJ

(k)

4 as can be observed in Figure 6.
The large gradients of the ESIF is more pronounced in the results of the third

eigen-value, α3. Therefore, we extracted A3(x3) of order 5 at different R’s, and extrap-
olated the ESIF to R = 0 using the values obtained at R = 0.8,0.2,0.05, knowing
that the error behaves as O(R3). The results are presented in Figure 26. The accuracy
of the results obtained by Richardson extrapolation is higher even of the accuracy of
the result obtained using R = 0.05. We conclude at this point that convergence rate
of J [R] integral using the hierarchical family of polynomials BJ

(k)

2 is as expected by
the theory. However, because of large gradients of the second and third derivatives
of the extraction polynomials BJ

(k)

2 , the accuracy of the ESIF obtained close to the
singular point (R =0.05) is not sufficient and contains large gradients in the vicinity
of x3 =±1.

Figure 25. Relative error (%) of the extracted ESIF using BJ
(k)

2 , k �5 for cracked domain with trac-
tion free boundary conditions, λ= 0.5769 and µ= 0.3846. Aex

1 (x3)= 3 + 4x3 + 5x2
3 , Aex

2 (x3)= 2 + 3x3 +
4x2

3 , Aex
3 (x3)=5+4x3 +2x2

3 .
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Figure 26. A3(x3) (left) and its relative error (right) at R =0.2, R =0.1, R =0.05 and extrapolated to
R =0 using BJ

(k)

2 , k �5, where Aex
3 (x3)=5+4x3 +2x2

3 , ω=2π , λ=0.5769 and µ=0.3846.

Figure 27. BJ
(k)

4 (x3) and the derivatives ∂3BJ
(k)

4 (x3), ∂2
3 BJ

(k)

4 (x3) and ∂3
3 BJ

(k)

4 (x3) where 0� k �5

In order to avoid these large gradients resulting in poor accuracy of the computed
ESIF, a better family of extraction polynomials is considered that have to to satisfy
the condition in (29) and their derivatives have to be smoother than the derivatives
of BJ

(k)

2 .
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C.3. Extraction polynomials of order 4

If one chooses BJ
(k)

4 (39) as the extraction polynomials, it satisfies the condition in
(29) up to m=4, i.e.:

BJ
(k)

4 |x3=±1 = ∂3BJ
(k)

4 |x3=±1 = ∂2
3 BJ

(k)

4 |x3=±1 = ∂3
3BJ

(k)

4 |x3=±1 =0 (C.4)

The polynomials BJ
(k)

4 , (0 � k � 5), and their first three derivatives are presented
in Figure 27. Due to the extra two conditions that BJ

(k)

4 satisfy (∂2
3 BJ

(k)

4 |x3=±1 =
∂3

3BJ
(k)

4 |x3=±1 =0), there are no large gradients in the second and third derivatives of
the polynomials and therefore the extracted ESIF at sufficiently small R is of high
accuracy, as presented in Section 4 and 5.
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