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Abstract

The difference in the potential energy in an elastic three-dimensional domain with a V-notch with and without a
small crack ( δΠ ) under a general mixed mode I+II+III loading is provided as an asymptotic series. It involves the
V-notch edge stress intensity functions, the area of the formed crack, and special geometrical functions that can be
pre-computed and tabulated. Importantly, the stress intensity functions along the crack front and the solution for the
V-notched domain with the presence of the crack are un-necessary. The analytical formulation is verified by finite
element methods, demonstrating the accuracy of the obtained expressions.
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1. Introduction

Real life three dimensional (3D) structures often include cracks and V-notches that are subjected to mixed mode
loading - in-plane tension (mode I), in-plane shear (mode II) and out-of-plane shear (mode III). These cannot be
described adequately by 2D approximations (see for example the crack initiation at the edge of a V-notch in a
PMMA specimen loaded in a four-point-loading configuration in Fig. 1). The classical theory of linear elastic
fracture mechanics (LEFM) is aimed at predicting failure loads and direction in which a crack will propagate in
brittle structures loaded quasi-statically. A variety of materials can be considered brittle, homogeneous and isotropic
with good approximation. These include glasses, ceramics, and certain kinds of polymers (all of these usually
encountered in engineering applications). For V-notches LEFM cannot be used directly, and generalization of LEFM
concepts were published in recent years proposing several failure criteria for structures containing V-notch tips at
which mechanical failures initiate (see e.g. [1, 2, 3, 4, 5]).

We present an asymptotic expansion for δΠ - the difference in the potential energy between a V-notched 3D
linear elastic domain with and without a small crack (see Fig. 2). This expansion applies for all possible crack
orientations initiating at any point along the V-notch edge (except for the vertices). Explicit elastic solutions for
domains with a small crack inclined at any orientation at a V-notch tip is computationally intractable, so that an
asymptotic expression for δΠ in 3D is mandatory for the determination of a failure criterion and failure initiation
direction.

In a 2D domain, the asymptotic expression for δΠ under mixed modes I+II was presented in [6] as a constituent
of a failure criterion at a V-notch. This failure criterion was demonstrated to well predict the failure initiation angle,
and is chosen as the basis for further generalization to 3D loading conditions. This criterion is based on a small crack
instantaneously created so it satisfies both strength requirement - the normal stress exceeds a critical value: σn ≥ σc ,
and toughness requirement - a crack initiates along a direction at which δΠ is maximal and the incremental energy
release rate reaches its critical value: G ≥ Gc [7]. It may be used also for formulating the toughness requirement in
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Figure 1: PMMA specimen before (a) and after fracture (b). (c) Zoom-in on the fracture surface.

Figure 2: Considered domains for δΠ .

3D: − δΠ
S ≥ Gc , where S is the area of a crack surface, and Gc is the critical strain energy release rate which is a

material property.
Preliminaries and notations are provided in Sec. 2, including the stress and displacement fields in the vicinity

of a sharp V-notch within a 3D elastic isotropic domain. Sec. 3 details the asymptotic analysis which provides δΠ
within a domain containing a V-notch, due to a small crack which initiates at a point along the notch edge. Detailed
numerical methods for computation of all components required throughout the analysis are provided. Verification
of the analysis is presented in Sec. 4 by comparing the asymptotic analysis to finite element (FE) results. Summary
and conclusions are provided in Sec. 5.

2. Preliminaries and notations

Consider a linear elastic and isotropic 3D domain having a sharp V-notch with a straight edge. The 3D solution
in the vicinity of the V-notch edge may be expressed by cylindrical coordinates (r, θ, z) , where the z axis coincides
with the edge (Fig. 3). Spherical coordinates (ρ, φ, θ) with the origin at a chosen point z = z0 can also be used
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(Fig. 4). Throughout this work the notations were chosen so that the θ angle is the same in both cylindrical and
spherical coordinate systems (and is offset by −π/2 with the conventional engineering terminology).

Figure 3: Edge and vertex singularities in a 3D domain.

Figure 4: Spherical coordinates representation.

In the vicinity of a V-notch edge, the elastic solution (assuming no logarithmic terms ln(r)) is [8]:

u(r, θ, z) =

 ur

uθ

uz

 =
∑
i≥1

∑
j≥0

∂j
zAi(z)r

αi+jsij(θ) (1)

where αi and sij(θ) are called eigenpairs, sij(θ) =

 sr(θ)
sθ(θ)
sz(θ)


ij

, and θ is measured so that π
2 + ω

2 ≤ θ ≤

π
2 − ω

2 ( θ = 0 on the the x axis see Fig. 3).
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The corresponding stress vector is:

σ =



σrr

σθθ

σzz

σrθ

σrz

σθz


=
∑
i≥1

∑
j≥0

∂j
zAi(z)r

αi+j−1Sij(θ) (2)

The generalized edge stress intensity functions (GESIFs) Ai(z) represent the strength of each singularity and may
be computed by the quasi-dual function method [9].

For traction-free boundary conditions on both V-notch surfaces Γ1,Γ2 (see Fig. 3, 4) one has: Tr
Tθ
Tz


θ=π

2 ±ω
2

=

 0
0
0

 ⇒

 σrθ

σθθ

σθz


θ=π

2 ±ω
2

=

 0
0
0

 (3)

For a V-notch solid angle ω and traction free boundary conditions on the V-notch surfaces, the first non zero
eigenvalues α1 and α2 are determined by [8]:

sin2(αω)− α2sin2(ω) = [sin(α1ω)− α1sin(ω)]× [sin(α2ω) + α2sin(ω)] = 0 (4)

and α3 is determined by the non-trivial solution of the equation
(
α2
3 +

∂2

∂θ2

)
(sz(θ))30 = 0 . The eigen-values α1

and α2 are associated with the mode I and II of the 2D in-plane solutions (in a plane orthogonal to the V-notch
singular edge) and α3 corresponds to an out-of-plane solution ( α1 ≤ α3 ≤ α2 ).

For traction-free V-notch surfaces and a V-notch angle of ω = 315o , for example, α1 = 0.5050097 ,
α2 = 0.6597016, α3 = 0.5714286 . The explicit solution for u in the vicinity of the edge is [8]:

u(r, θ, z) =

 ur

uθ

uz

 = u0(0, θ, z)

+ A1(z) rα1


[
cos[(1 + α1)(θ − π

2
)] +

(λ+3µ−α1(λ+µ))
(λ+µ)(1−α1)

sin[ω(1+α1)/2]
sin[ω(1−α1)/2]

cos[(1− α1)(θ − π
2
)]
]
/2µα1

(
Sθθ(θ = π

2
)
)
10[

−sin[(1 + α1)(θ − π
2
)]− (λ+3µ+α1(λ+µ))

(λ+µ)(1−α1)
sin[ω(1+α1)/2]
sin[ω(1−α1)/2]

sin[(1− α1)(θ − π
2
)]
]
/2µα1

(
Sθθ(θ = π

2
)
)
10

0



+ A2(z) rα2


[
sin[(1 + α2)(θ − π

2
)] +

(λ+3µ−α2(λ+µ))
(λ+µ)(1+α2)

sin[ω(1+α2)/2]
sin[ω(1−α2)/2]

sin[(1− α2)(θ − π
2
)]
]
/2µα2

(
Srθ(θ = π

2
)
)
20[

cos[(1 + α2)(θ − π
2
)] +

(λ+3µ+α2(λ+µ))
(λ+µ)(1+α2)

sin[ω(1+α2)/2]
sin[ω(1−α2)/2]

cos[(1− α2)(θ − π
2
)]
]
/2µα2

(
Srθ(θ = π

2
)
)
20

0


+ A3(z) rα3 ω

πµ


0
0

sin[ π
ω
(θ − π

2
)]

+O
(
r1

)
(5)

where λ, µ are the Lamé constants, u0(0, θ, z) represents the rigid body motions, and we used the notations(
Sθθ(θ = π

2 )
)
10

= (1+α1)
(1−α1)

sin[ω(1+α1)/2]
sin[ω(1−α1)/2]

− 1,
(
Srθ(θ = π

2 )
)
20

= 1− (1−α2)
(1+α2)

sin[ω(1+α2)/2]
sin[ω(1−α2)/2]

which are normaliza-
tion factors for the stresses so that for mode I

(
Sθθ(θ = π

2 )
)
10

= 1 and for mode II
(
Srθ(θ = π

2 )
)
20

= 1 .
The explicit stress field corresponding to (5) is:
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σ(r, θ, z) =



σrr

σθθ

σzz

σrθ

σrz

σθz



= A1(z) rα1−1



[
cos[(1 + α1)(θ − π

2
)] +

(3−α1)
(1−α1)

sin[ω(1+α1)/2]
sin[ω(1−α1)/2]

cos[(1− α1)(θ − π
2
)]
]
/
(
Sθθ(θ = π

2
)
)
10[

−cos[(1 + α1)(θ − π
2
)] +

(1+α1)
(1−α1)

sin[ω(1+α1)/2]
sin[ω(1−α1)/2]

cos[(1− α1)(θ − π
2
)∗]

]
/
(
Sθθ(θ = π

2
)
)
10

2λ
λ+µ

sin[ω(1+α1)/2]
sin[ω(1−α1)/2]

cos[(1−α1)(θ−π
2
)]

1−α1
/
(
Sθθ(θ = π

2
)
)
10[

−sin[(1 + α1)(θ − π
2
)] +

sin[ω(1+α1)/2]
sin[ω(1−α1)/2]

sin[(1− α1)(θ − π
2
)]
]
/
(
Sθθ(θ = π

2
)
)
10

0
0



+ A2(z) rα2−1



[
sin[(1 + α2)(θ − π

2
)] +

(3−α2)
(1+α2)

· sin[ω(1+α2)/2]
sin[ω(1−α2)/2]

sin[(1− α2)(θ − π
2
)
]
/
(
Srθ(θ = π

2
)
)
20[

−sin[(1 + α2)(θ − π
2
)] +

sin[ω(1+α2)/2]
sin[ω(1−α2)/2]

sin[(1− α2)(θ − π
2
)]
]
/
(
Srθ(θ = π

2
)
)
20

2λ
λ+µ

sin[ω(1+α2)/2]
sin[ω(1−α2)/2]

sin[(1−α2)(θ−π
2
)]

1+α2
/
(
Srθ(θ = π

2
)
)
20[

cos[(1 + α2)(θ − π
2
)]− (1−α2)

(1+α2)
sin[ω(1+α2)/2]
sin[ω(1−α2)/2]

cos[(1− α2)(θ − π
2
)]
]
/
(
Srθ(θ = π

2
)
)
20

0
0



+ A3(z) rα3−1



0
0
0
0

sin[ π
ω
(θ − π

2
)]

cos[ π
ω
(θ − π

2
)]


+ O(r0)

(6)

3. Asymptotic representation of δΠ because of a crack initiating at the V-notch edge

Let us consider δΠ , the difference in the potential energy between a V-notched domain with and without a small
crack created at its tip (see Fig. 5). Since it is practically impossible to compute the explicit elastic solution for the
domain with a small crack inclined at all different angles at a V-notch tip, there is a need for an asymptotic expansion
to provide an asymptotic approximation for δΠ [7, 6].

3.1. Asymptotic representation of displacements in the “far” and “near” domains

A “far” (outer) elastic solution denotes the solution as if a small crack does not exist and we have a V-notch
without the crack at r → 0 . This solution clearly serves as a better approximation as one moves away from the
small crack, or - outside the cracks’ surroundings, and therefore is named the far (outer) solution. To resolve the
dependence on the small crack area S , the domain coordinates are “stretched” by 1√

S
:

ρ∗ =
ρ√
S

(7)

As
√
S → 0 , an unbounded domain ρ∗ = ρ√

S
is obtained, in which the crack area equals 1. The solution

can now be otherwise represented, in the form of a “near” (inner) field, which represents an elastic solution for a V-
notched domain with a small crack initiating at a point along its edge. This solution serves as a better approximation
as one moves towards the crack, and therefore is named the near (inner) solution.
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We consider a point z0 along the V-notch front where a small crack may initiate, and locate there the spherical
coordinate system (ρ, φ, θ) (see Fig. 3, 4). At z = z0 the far field displacements (as if no crack exists) is:

ufar(r, θ, z) = u0(0, 0, 0) +A1(z0)× rα1 × s10(θ) +A2(z0)× rα2 × s20(θ) +A3(z0)× rα3 × s30(θ) + ...

= u0(0, 0, 0) +A1(z0)× (ρ sinφ)α1 × s10(θ) +A2(z0)× (ρ sinφ)α2 × s20(θ)

+A3(z0)× (ρ sinφ)α3 × s30(θ) + ...

= ufar(ρ, φ, θ) (8)

where u0(0, 0, 0) represents the rigid body motion, and the terms s20, s20 and s30 are explicitly presented in
(5). The stretched spherical domain around the point ( z0 ) is considered next (an “inflated point”), where r∗ =
ρ∗ sin(φ) . By substituting (7) in (8) one obtains:

ufar(ρ∗
√
S, φ, θ) = u0(0, 0, 0) +A1 × (

√
S)α1 × (ρ∗sinφ)α1 × s10(θ) +A2 × (

√
S)α2 × (ρ∗sinφ)α2 × s20(θ)

+A3 × (
√
S)α3 × (ρ∗sinφ)α3 × s30(θ) + ... (9)

The 3D near field domain is a sphere around the notch tip denoted Ω∗
c in which a planar crack exists (Fig. 5),

and by constructions S∗ = 1 ( S∗ is the crack area in Ω∗
c ).

Figure 5: The outer and inner expansions in 3D

The far and near field expansions must be matched appropriately at ρ∗ → ∞ . The near field asymptotic
expansion in Ω∗

c , similarly to the 2D asymptotic expansion derived in [6], is assumed to be represented by:

unear(ρ, φ, θ) = unear(ρ∗
√
S, φ, θ) (10)

= d0(
√
S)× V0(ρ

∗, φ, θ) + d1(
√
S)× V1(ρ

∗, φ, θ) + d2(
√
S)× V2(ρ

∗, φ, θ) + d3(
√
S)× V3(ρ

∗, φ, θ) + ...

Matching of the far and near fields as ρ∗ → ∞ imposes the following terms in the asymptotic series (10):

d0(
√
S) = 1, V0(ρ

∗, φ, θ) = u0(0, 0, 0)

d1(
√
S) = A1 × (

√
S)α1 , V1(ρ

∗, φ, θ) ∼ (ρ∗sinφ)α1 × s10(θ)

d2(
√
S) = A2 × (

√
S)α2 , V2(ρ

∗, φ, θ) ∼ (ρ∗sinφ)α2 × s20(θ)

d3(
√
S) = A3 × (

√
S)α3 , V3(ρ

∗, φ, θ) ∼ (ρ∗sinφ)α3 × s30(θ)

(11)

It terms of ”regular” coordinates (ρ, φ, θ) or (r, θ, z) , the domain Ω∗
c is small and represents an “inflated

point”, and since the GESIFs Ai(z) are smooth functions along the edge, Ai(z) = Ai(z0) ≡ Ai = const .
It terms of ”normalized” coordinates (ρ∗, φ, θ) , Ω∗

c is infinitely large. To match the inner solution as ρ∗ → ∞ ,
the terms Vi(ρ

∗, φ, θ) are expressed by:

Vi(ρ
∗, φ, θ) = (ρ∗sinρ)αi × si 0(θ) + V̂i(ρ

∗, φ, θ) i = 1, 2, 3 (12)
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in which V̂i is bounded, i.e. V̂i(ρ
∗, φ, θ)

ρ∗→∞−→ 0 . The solution Vi in (12) can be therefore composed of the
solution in the vicinity of a V-notch tip + a term V̂i confined to the Ω∗

c domain, which is added by the presence of
the crack. Substituting (11)-(12) in (10) one obtains:

unear(ρ∗
√
S, φ, θ) = u0(0, 0, 0) +A1 × (

√
S)α1 × [(ρ∗sinφ)α1 × s10(θ) + V̂1(ρ

∗, φ, θ)]

+A2 × (
√
S)α2 × [(ρ∗sinφ)α2 × s20(θ) + V̂2(ρ

∗, φ, θ)]

+A3 × (
√
S)α3 × [(ρ∗sinφ)α3 × s30(θ) + V̂3(ρ

∗, φ, θ)] + ... (13)

As ρ∗ → ∞ Vi in the near field coincides with the far field as ρ → 0 (the near field and far field solutions
are matched). Vi satisfies the elasticity problem and therefore, V̂i has to satisfy (see Figure 5):

L(Vi) = L((ρ∗sinφ)αi × si0(θ)) + L(V̂i) = 0 ⇒ L(V̂i) = 0 inΩ∗
c (14)

T (Vi) = T ((ρ∗sinφ)αi × si0(θ)) + T (V̂i) = 0 ⇒ T (V̂i) = 0 onΓ1,Γ2 (15)

T (Vi) = T ((ρ∗sinφ)αi × si0(θ)) + T (V̂i) = 0 ⇒ T (V̂i) = −T ((ρ∗sinφ)αi × si0(θ)) onΓ3,Γ4 (16)

σ(V̂i) ∼
ρ∗→∞

0 or V̂i ∼
ρ∗→∞

0 (17)

where Γ1,Γ2 are the V-notch faces, Γ3,Γ4 are the crack faces, Ti = σij n̂j and L represents the Navier-Lamé
operator (see [8] eq. (13.5), (13.22)). n̂ = (nx, ny, nz) is the unit normal vector which describes the unit area
crack orientation.

The change in potential energy due to the creation of a crack of area S in the V-notched domain at z = z0 is
expressed by (see derivation in Appendix A):

δΠ = Ψ
[
unear,ufar

] △
= −1

2

´
Γsph

(
T (unear)ufar − T (ufar)unear

)
dΓ (18)

where Γsph is the spherical part of the inner domain (the crack and V-notch surfaces do not contribute to the surface
integral). Inserting (9) and (13) in (18) and using the linearity property of the functional Ψ one obtains:

δΠ = Ψ[u0(0, 0, 0),u0(0, 0, 0)] + Ψ[u0(0, 0, 0) , A1 × (
√
S)α1 × (ρ∗sinφ)α1 × s10(θ)]

+Ψ[u0(0, 0, 0), A2 × (
√
S)α2 × (ρ∗sinφ)α2 × s20(θ)] + Ψ[u0(0, 0, 0), A3 × (

√
S)α3 × (ρ∗sinφ)α3 × s30(θ)]

+Ψ[A1 × (
√
S)α1 ×

(
(ρ∗sinφ)α1 × s10(θ) + V̂1(ρ

∗, φ, θ)
)
,u0(0, 0, 0)]

+Ψ[A1 × (
√
S)α1 ×

(
(ρ∗sinφ)α1 × s10(θ) + V̂1(ρ

∗, φ, θ)
)
, A1 × (

√
S)α1 × (ρ∗sinφ)α1 × s1 0(θ)]

+Ψ[A1 × (
√
S)α1 ×

(
(ρ∗sinφ)α1 × s10(θ) + V̂1(ρ

∗, φ, θ)
)
, A2 × (

√
S)α2 × (ρ∗sinφ)α2 × s20(θ)]

+Ψ[A1 × (
√
S)α1 ×

(
(ρ∗sinφ)α1 × s10(θ) + V̂1(ρ

∗, φ, θ)
)
, A3 × (

√
S)α3 × (ρ∗sinφ)α3 × s30(θ)]

+Ψ[A2 × (
√
S)α2 ×

(
(ρ∗sinφ)α2 × s20(θ) + V̂2(ρ

∗, φ, θ)
)
,u0(0, 0, 0)]

+Ψ[A2 × (
√
S)α2 ×

(
(ρ∗sinφ)α2 × s20(θ) + V̂2(ρ

∗, φ, θ)
)
, A1 × (

√
S)α1 × (ρ∗sinφ)α1 × s10(θ)]

+Ψ[A2 × (
√
S)α2 ×

(
(ρ∗sinφ)α2 × s20(θ) + V̂2(ρ

∗, φ, θ)
)
, A2 × (

√
S)α2 × (ρ∗sinφ)α2 × s20(θ)]

+Ψ[A2 × (
√
S)α2 ×

(
(ρ∗sinφ)α2 × s20(θ) + V̂2(ρ

∗, φ, θ)
)
, A3 × (

√
S)α3 × (ρ∗sinφ)α3 × s30(θ)]

+Ψ[A3 × (
√
S)α3 ×

(
(ρ∗sinφ)α3 × s30(θ) + V̂3(ρ

∗, φ, θ)
)
, u0(0, 0, 0)]

+Ψ[A3 × (
√
S)α3 × (ρ∗sinφ)α3 × s30(θ) + V̂3(ρ

∗, φ, θ) , A1 × (
√
S)α1 × (ρ∗sinφ)α1 × s10(θ)]

+Ψ[A3 × (
√
S)α3 × (ρ∗sinφ)α3 × s30(θ) + V̂3(ρ

∗, φ, θ) , A2 × (
√
S)α2 × (ρ∗sinφ)α2 × s20(θ)]

+Ψ[A3 × (
√
S)α3 × (ρ∗sinφ)α3 × s30(θ) + V̂3(ρ

∗, φ, θ) , A3 × (
√
S)α3 × (ρ∗sinφ)α3 × s30(θ)] (19)

+high order terms (H.O.T)

After some technical manipulations (see Appendix B), expression (20) is reduced to:
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δΠ = A2
1 × (

√
S)2α1 ×Ψ[V̂1(ρ

∗, φ, θ) , (ρ∗sinφ)α1 × s10(θ)]

+A1 ×A2 × (
√
S)α1+α2 ×Ψ[V̂1(ρ

∗, φ, θ) , (ρ∗sinφ)α2 × s20(θ)]

+A1 ×A3 × (
√
S)α1+α3 ×Ψ[V̂1(ρ

∗, φ, θ) , (ρ∗sinφ)α3 × s30(θ)]

+A1 ×A2 × (
√
S)α1+α2 ×Ψ[V̂2(ρ

∗, φ, θ) , (ρ∗sinφ)α1 × s10(θ)]

+A2
2 × (

√
S)2α2 ×Ψ[V̂2(ρ

∗, φ, θ) , (ρ∗sinφ)α2 × s20(θ)]

+A2 ×A3 × (
√
S))α2+α3 ×Ψ[V̂2(ρ

∗, φ, θ) , (ρ∗sinφ)α3 × s30(θ)]

+A1 ×A3 × (
√
S)α1+α3 ×Ψ[V̂3(ρ

∗, φ, θ) , (ρ∗sinφ)α1 × s10(θ)]

+A2 ×A3 × (
√
S))α2+α3 ×Ψ[V̂3(ρ

∗, φ, θ) , (ρ∗sinφ)α2 × s20(θ)]

+A2
3 × (

√
S)2α3 ×Ψ[V̂3(ρ

∗, φ, θ) , (ρ∗sinφ)α3 × s30(θ)] +H.O.T. (20)

or in general:

δΠ =
∑
i

∑
j

Ai Aj × (
√
S)αi+αjΨ[V̂i , (ρ

∗sinφ)αjsj0(θ)] +H.O.T. for i, j = 1, 2, 3 (21)

The expression for δΠ involves V̂i defined in the near domain. Therefore we consider the integrals
Ψ[V̂i , (ρ

∗sinφ)αj × sj0(θ)] over the sphere Γ∗
sph for ρ∗ = R → ∞ . By definition (18):

Ψ[V̂i, (ρ
∗sinφ)αj × sj0(θ)]

△
= −1

2

ˆ

Γsph

(
T (V̂i)× (ρ∗sinφ)αj × sj0(θ)− T ((ρ∗sinφ)αj × sj0(θ))× V̂i

)
dΓ

(22)
Because V̂i = 0 on the sphere at which ρ∗ → ∞ , (22) reduces to:

Ψ[V̂i , (ρ
∗sinφ)αj × sj0(θ)] = −1

2

ˆ

Γsph

T (V̂i)× (ρ∗sinφ)αj × sj0(θ) dΓ (23)

Note that:

dΓ = ρ2sinφ dφdθ = (ρ∗
√
S)2sinφ dφdθ = S (ρ∗)2sinφ dφdθ = S dΓ∗ (24)

Observe that the angles θ, φ do not change in the coordinate transformation in the “stretched” domain.
The coordinate transformation also necessitates to consider the T (•) operator. By the chain rule: d(•)

dρ =
d(•)
dρ∗

dρ∗

dρ = d(•)
dρ∗

1√
S

. For the other derivatives d(•)
ρdφ = d(•)

(ρ∗
√
S) dφ

= d(•)
ρ∗dφ

1√
S

and similarly d(•)
ρ sin(φ) dθ =

d(•)
(ρ∗

√
S)× sin(φ) dθ

= d(•)
ρ∗sin(φ) dθ

1√
S

. We can therefore conclude that T (V̂i) = 1√
S
T ∗(V̂i) (where T and T ∗

represent the traction operators in the un-stretched and stretched coordinates, respectively).
With these definitions (23) becomes:

Ψ[V̂i , (ρ
∗sinφ)αj × sj0(θ)] =

[
−1

2

´
Γ∗sph

(
T ∗(V̂i) × (ρ∗sinφ)αj × sj0(θ)

)
× (ρ∗)2sinφ dφdθ

]
√
S (25)

We define:

Hij , −Ψ
[
V̂i(ρ

∗, φ, θ), (ρ∗sinφ)αj × sj0(θ)
]
/
√
S

=
1

2

ˆ

Γ∗sph

(
T ∗(V̂i) × (ρ∗sinφ)αj × sj0(θ)

)
× (ρ∗)2sinφ dφdθ (26)

One notices that Hij depend on ω , θ , φ and material properties, and may be computed by a FE model of a
sphere with outer radius ρ∗ → ∞ , containing a V-notch and a crack located at its center and inclined at the angles
φ, θ .
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Remark 1. One may seek either Vi or V̂i . For the calculation of the Hij , the V̂i solution was considered
in Ω∗

c . This dictated traction boundary conditions on the crack faces (16), and clamped boundary conditions over
the outer surface of Ω∗

c (17). If Vi would had been sought, the crack faces within Ω∗
c would have been traction

free and on the outer surface of the domain, the solution would had approach that of a V-notch with no crack

(Vi
ρ∗→∞−→ (ρ∗sinρ)αi × si 0(θ))

Inserting (25) and (26) in (20) one obtains:

−δΠ = A2
1 × (

√
S)2α1+1H11 +A1A2 × (

√
S)α1+α2+1(H12 +H21) +A2

2 × (
√
S)2α2+1H22

+A1A3 × (
√
S)α1+α3+1 × (H13 +H31) +A2A3 × (

√
S)α2+α3+1(H23 +H32)

+A2
3 × (

√
S)2α3+1H33 +H.O.T. (27)

Or in concise form:

−δΠ u
3∑

i=1

3∑
j=1

Ai Aj (
√
S)αi+αj+1 Hij (28)

Remark 2. Note that once Hij are available (and can be pre computed and tabulated), then δΠ (due to a crack
initiation) can be easily computed for any crack surface S , at any location along the V-notch edge z , having the
GESIFs Ai(z) of a V-notch without a crack being inserted.

Remark 3. The expression in (28) resembles that in 2D [6], with the important distinction that in 2D one has
ℓαi+αj ( ℓ being the crack length), and in 3D it is (

√
S)αi+αj+1

3.2. Computation of Hij ’s

Hij depend on V̂i which can be computed by FE analysis. p-method FE models were constructed for Hij

calculation. The relative error in energy norm may be monitored as the p-level is increased in the FE analyses. A
numerical integration process (detailed throughout this section) is required for the calculation of Hij , with Gauss
quadrature order of 54, and FE models with polynomial degree of 6.

Since V̂i is determined in Ω∗
c , a sphere with a radius ρ∗ = R >> 1 containing a V-notch and a crack located

at its center is considered. Hij also depend on ω , the spatial orientation of the crack ( θ, φ ) and crack shape, and
we compute it for crack orientations taken in intervals (or combination of angles φ, θ ). An alternative method for
Hii calculation is presented in Appendix C.

Because of (16), one needs to apply T (V̂i) = −T ((ρ∗sinφ)αi × si0(θ)) on the crack faces Γ3,Γ4 . Since
Hij functions are obtained by a surface intergral over the outer spherical surface of Ω∗

c (ρ∗ → ∞) , T (V̂i)ρ∗→∞
is extracted from the FE model.

For modes I,II and III, a 3D FE model Ω∗
c is used as shown in Fig. 6. Traction free boundary conditions are

applied on the V-notch faces. On the crack faces tractions according to (16) are applied as three different sets - for
mode I, for mode II, and for mode III, so that the traction vectors are defined individually for each FE model. Hij

is computed for each crack inclination angle, and crack shape (S∗ = 1) .
The outer radius of Ω∗

c was chosen as ρ∗ = R = 100 , large compared to the crack size. Calculations of Hij

with different R’s between 100 and 400 have shown a negligible influence on the results (less than 2% difference
compared with the model with ρ∗ = 100 ), indicating that ρ∗ = R = 100 is large enough. Typically the models
contain 13000 tetrahedral elements, resulting in ∼ 1, 500, 000 DOF at p=6.

For every choice of angles φ, θ , having ω and the material properties, choosing a crack shape and applying

9



(a) (b)

(c)

Figure 6: p-FE models for Hij computation. (a) The FE model of Ω∗
c , (b, c) Zoom-in on the crack at the center of the V-notch tip (crack

borders marked in red).

boundary conditions, Hij can be computed by (26) over the outer spherical surface of the domain:

Hij =
1

2

π+ω
2̂

π−ω
2

π̂

0

T (V̂i)× (ρ∗ sinφ)αj × sj0(θ)× (ρ∗)
2
sinφ dφdθ|ρ∗=R

=
Rαj+2

2

π+ω
2̂

π−ω
2

π̂

0

T (V̂i)|ρ∗=R(sinφ)
αj+1 × sj0(θ) dφdθ (29)

T (V̂i)|ρ∗=R =

 σρ∗ρ∗

σρ∗φ

σρ∗θ


ρ∗=R

is extracted from the FE solution.

The integrals in (29) are computed numerically using a Gaussian quadrature:
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Hij =
Rαj+2

2

ω

2

π

2

N∑
k=1

N∑
ℓ=1

WkWℓ

[
T (V̂i)× (sinφk)

αj+1 sj0(θℓ)
]

(30)

where φk, θℓ are the angles associated with the Gaussian quadrature, N is the Gaussian quadrature order, and
Wk,Wℓ are the Gaussian weights. sj0(θ) is taken from (5), where they are given in cyllindrical coordinates in the
“far” domain. sj0(θ) in (5) are in (r, θ, z) coordinate system:

s10(θ) =

 sr(θ)
sθ(θ)
sz(θ)


10

=


[
cos[(1 + α1)(θ − π

2
)] +

(λ+3µ−α1(λ+µ))
(λ+µ)(1−α1)

sin[ω(1+α1)/2]
sin[ω(1−α1)/2]

cos[(1− α1)(θ − π
2
)]
]
/2µα1

(
Sθθ(θ = π

2
)
)
10[

−sin[(1 + α1)(θ − π
2
)]− (λ+3µ+α1(λ+µ))

(λ+µ)(1−α1)
sin[ω(1+α1)/2]
sin[ω(1−α1)/2]

sin[(1− α1)(θ − π
2
)]
]
/2µα1

(
Sθθ(θ = π

2
)
)
10

0


s20(θ) =

 sr(θ)
sθ(θ)
sz(θ)


20

=


[
sin[(1 + α2)(θ − π

2
)] +

(λ+3µ−α2(λ+µ))
(λ+µ)(1+α2)

sin[ω(1+α2)/2]
sin[ω(1−α2)/2]

sin[(1− α2)(θ − π
2
)]
]
/2µα2

(
Srθ(θ = π

2
)
)
20[

cos[(1 + α2)(θ − π
2
)] +

(λ+3µ+α2(λ+µ))
(λ+µ)(1+α2)

sin[ω(1+α2)/2]
sin[ω(1−α2)/2]

cos[(1− α2)(θ − π
2
)]
]
/2µα2

(
Srθ(θ = π

2
)
)
20

0


s30(θ) =

 sr(θ)
sθ(θ)
sz(θ)


30

=


0
0

ω
πµ

sin[ π
ω
(θ − π

2
)]


(31)

Therefore a transformation from cylindrical to spherical coordinates is performed: sρ∗(θ)
sφ(θ)
sθ(θ)


i0

=

 sinφ 0 cosφ
cosφ 0 −sinφ
0 1 0

 sr∗(θ)
sθ(θ)
sz(θ)


i0

(32)

Substituting (32) in (30) one obtains:

T (V̂i)× (sinφ)αj+1 sj0(θ) =

(sinφ)αj+1
[
(σρ∗ρ∗)FE i × (sρ∗(θ))j0 + (σρ∗φ)FE i × (sφ(θ))j0 + (σρ∗θ)FE i × (sθ(θ))j0

]
ρ∗=R

(33)

where (σρ∗ρ∗)FE i , (σρ∗φ)FE i , (σρ∗θ)FE i are FE stresses on ρ∗ = R resulting from BCs on crack faces associ-
ated with mode i ( i = 1, 2, or 3 ). Finally (30) in an explicit form is:
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H11 =
Rα1+2

2

2π − ω

2

π

2

N∑
k=1

N∑
ℓ=1

WkWℓ

{
(sinφk)

α1+1 ×
[(
σρ∗ρ∗

)
FE 1

(
sρ∗ (θℓ)

)
10

+
(
σρ∗φ

)
FE 1

(sφ(θℓ))10 +
(
σρ∗θ

)
FE 1

(sθ(θℓ))10
]}

ρ∗=R

H12 =
Rα2+2

2

2π − ω

2

π

2

N∑
k=1

N∑
ℓ=1

WkWℓ

{
(sinφk)

α2+1 ×
[(
σρ∗ρ∗

)
FE 1

(
sρ∗ (θℓ)

)
20

+
(
σρ∗φ

)
FE 1

(sφ(θℓ))20 +
(
σρ∗θ

)
FE 1

(sθ(θℓ))20
]}

ρ∗=R

H13 =
Rα3+2

2

2π − ω

2

π

2

N∑
k=1

N∑
ℓ=1

WkWℓ

{
(sinφk)

α3+1 ×
[(
σρ∗ρ∗

)
FE 1

(
sρ∗ (θℓ)

)
30

+
(
σρ∗φ

)
FE 1

(sφ(θℓ))30 +
(
σρ∗θ

)
FE 1

(sθ(θℓ))30
]}

ρ∗=R

H21 =
Rα1+2

2

2π − ω

2

π

2

N∑
k=1

N∑
ℓ=1

WkWℓ

{
(sinφk)

α1+1 ×
[(
σρ∗ρ∗

)
FE 2

(
sρ∗ (θℓ)

)
10

+
(
σρ∗φ

)
FE 2

(sφ(θℓ))10 +
(
σρ∗θ

)
FE 2

(sθ(θℓ))10
]}

ρ∗=R

H22 =
Rα2+2

2

2π − ω

2

π

2

N∑
k=1

N∑
ℓ=1

WkWℓ

{
(sinφk)

α2+1 ×
[(
σρ∗ρ∗

)
FE 2

(
sρ∗ (θℓ)

)
20

+
(
σρ∗φ

)
FE 2

(sφ(θℓ))20 +
(
σρ∗θ

)
FE 2

(sθ(θℓ))20
]}

ρ∗=R

H23 =
Rα3+2

2

2π − ω

2

π

2

N∑
k=1

N∑
ℓ=1

WkWℓ

{
(sinφk)

α3+1 ×
[(
σρ∗ρ∗

)
FE 2

(
sρ∗ (θℓ)

)
30

+
(
σρ∗φ

)
FE 2

(sφ(θℓ))30 +
(
σρ∗θ

)
FE 2

(sθ(θℓ))30
]}

ρ∗=R

H31 =
Rα1+2

2

2π − ω

2

π

2

N∑
k=1

N∑
ℓ=1

WkWℓ

{
(sinφk)

α1+1 ×
[(
σρ∗ρ∗

)
FE 3

(
sρ∗ (θℓ)

)
10

+
(
σρ∗φ

)
FE 3

(sφ(θℓ))10 +
(
σρ∗θ

)
FE 3

(sθ(θℓ))10
]}

ρ∗=R

H32 =
Rα2+2

2

2π − ω

2

π

2

N∑
k=1

N∑
ℓ=1

WkWℓ

{
(sinφk)

α2+1 ×
[(
σρ∗ρ∗

)
FE 3

(
sρ∗ (θℓ)

)
20

+
(
σρ∗φ

)
FE 3

(sφ(θℓ))20 +
(
σρ∗θ

)
FE 3

(sθ(θℓ))20
]}

ρ∗=R

H33 =
Rα3+2

2

2π − ω

2

π

2

N∑
k=1

N∑
ℓ=1

WkWℓ

{
(sinφk)

α3+1 ×
[(
σρ∗ρ∗

)
FE 3

(
sρ∗ (θℓ)

)
30

+
(
σρ∗φ

)
FE 3

(sφ(θℓ))30 +
(
σρ∗θ

)
FE 3

(sθ(θℓ))30
]}

ρ∗=R
(34)

Remark 4. It seems as if Hij in (34) tend to infinity since R → ∞ . However, since σij → 0 we obtain
Hij → const. Hij were calculated for R between 100 and 400 and the influence of R on the results was negligible
- Hij approaches a constant value, therefore R = 100 is already large enough to “represent infinity”.

4. On the accuracy of the asymptotic estimation of δΠ

To verify the accuracy of δΠ obtained by the asymptotic expansion, we consider a rectangular bar with a V-
notch as shown in Fig. 10. We compute the potential energy twice, with and without a crack located at the V-notch
edge. The difference in the potential energy is: δΠFE = ΠFE

V−notch+crack − ΠFE
V−notch (see Fig. 2). For both FE

models, the V-notch angle is ω = 315◦ , perpendicular to the specimen facet. For the models containing a crack, the
crack intersected the V-notch at its middle ( z0 = 5mm ). The specimen was given material properties of PMMA:
E = 3900MPa, ν = 0.332 . δΠ is also computed by the asymptotic expression (28).

4.1. Numerical evaluation of Hij

Hij ’s have been computed in a spherical FE model with an outer radius of ρ∗ = R = 100 (see Fig. 6).
Several crack orientations and shapes were considered: a half-circular crack along (100) plane, which can be
represented as φ = 90o, θ = 0o , and (−110) plane, where φ = 90o, θ = 135o , and also a half elliptical
crack (Fig. 8) with a/b = 2 ratio (see Fig. 13 for notations) along the (100) plane and (−

√
310) plane,

where φ = 90o, θ = 150o . θ represents the angle between the normal to the plane and the x axis. Circular
cracks along the (−101) , (111) , (212) and (51(−3)) planes were also considered. The Hij values obtained
for these geometries are presented in Tables 1 and 2. Schematic representations of the crack orientations are shown
in Fig. 7 and 9.
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crack
orientation

(100) (−110) (100) (−
√
310)

crack shape
a/b

circular
1

circular
1

ellipse
2

ellipse
2

H11 8.45 · 10−4 6.25 · 10−4 1.04 · 10−3 9.13 · 10−4

H12 −8.52 · 10−8 3.8 · 10−4 1.25 · 10−7 3.51 · 10−4

H13 −4.67 · 10−8 −2.22 · 10−7 1.22 · 10−7 7.08 · 10−8

H21 1.24 · 10−8 3.8 · 10−4 8.2 · 10−8 3.54 · 10−4

H22 5.32 · 10−4 5.85 · 10−4 5.53 · 10−4 6.19 · 10−4

H23 −1.32 · 10−7 −2.8 · 10−6 6.13 · 10−8 −1.62 · 10−7

H31 1.61 · 10−8 −3.53 · 10−7 5.72 · 10−8 4.65 · 10−8

H32 2.85 · 10−7 −2.56 · 10−6 1.89 · 10−7 −4 · 10−7

H33 7.98 · 10−4 6.52 · 10−4 1.02 · 10−3 9.49 · 10−4

Table 1: Hij at different orientations ( E = 3900MPa, ν = 0.332 ), ω = 315◦ as in Fig. 7

Figure 7: Schematic representation of models containing cracks (in red) along (a) (100) (b) (−
√
310) (c) (−110) .

(a) (b)

Figure 8: Zoom-in on the (a) half-circular and (b) half-elliptical cracks area in the FE models. The cracks edge is marked in red.

4.2. Numerical evaluation of δΠ

To compute δΠ , Ai(z) for the V-notch edge with no crack must be computed. These were computed by the
Quasi-Dual Function Method [9], using a FE model having refinements arround the V-notch edge (see Fig. 10).
Having Hij , Ai and the crack area from the respective bar-shaped model (eigenvalues αi are known), δΠApprox

is computed by (28).
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crack
orientation

(−101) (111) (212) (51(−3))

crack shape
a/b

circular
1

circular
1

circular
1

circular
1

H11 2.73 · 10−4 2.28 · 10−4 2.59 · 10−4 3.82 · 10−4

H12 1.05 · 10−8 −1.37 · 10−4 −9.32 · 10−5 −6.29 · 10−5

H13 2.65 · 10−4 −1.71 · 10−4 −2.34 · 10−4 2.52 · 10−4

H21 7.76 · 10−9 −1.36 · 10−4 −8.45 · 10−5 −6.22 · 10−5

H22 1.23 · 10−4 1.76 · 10−4 1.18 · 10−4 1.92 · 10−4

H23 8.21 · 10−8 1.15 · 10−4 6.75 · 10−5 −1.76 · 10−5

H31 2.64 · 10−4 −1.7 · 10−4 −2.32 · 10−4 2.5 · 10−4

H32 −2.66 · 10−8 1.15 · 10−4 7.12 · 10−5 −1.78 · 10−5

H33 3.15 · 10−4 2.44 · 10−4 2.96 · 10−4 3.37 · 10−4

Table 2: Hij at different orientations ( E = 3900MPa, ν = 0.332 ), ω = 315◦ as in Fig. 9.

4.2.1. δΠ for mode I loading
Out of several configurations considered under mode I loading, we provide a representative example: a FE model

10 × 5 × 10mm under tension is shown in Fig. 10. An auto-mesher was used, and various FE meshes have been
examined to reduce the numerical errors of the models. The mesh was refined around the V-notch edge, crack,
loading and support regions. Tension boundary conditions ( 100MPa ) were applied along the x direction. The
crack shape was half a circle, located in the center of the V-notch edge, with orientation along the (100) plane.
Both FE models (V-notched with and without a crack) were identically meshed, so that the crack was defined as two
separate surfaces and in the V-notched model without the crack the surfaces were merged. The two identical meshes
ensure that the numerical errors associated with mesh away from the crack cancel each other when computing

δΠFE , ΠFE
V−notch+crack −ΠFE

V−notch (35)

A1(z) along the V-notch edge (0 ≤ z ≤ 10mm) was extracted by the QDFM and presented graphically in
Fig. 10 (A2(z) = A3(z) = 0) . The crack is located at the middle of the V-notch edge so we used A1(z0 = 5)
to compute δΠApprox by (28). Several crack radii between 0.01 − 0.1mm2 were examined. Cracks with areas
larger than 0.1mm2 - compared to the 10 mm long V-notch edge - are probably inadequate for the δΠ calculation
as they are not “small” enough. Potential energy, δΠFE , and δΠApprox results for this geometry are presented in
Table 3.

One may notice that for all crack areas the difference between δΠFE and δΠApprox is under 5%. For other
bar-shaped geometries examined under tension, such as 16×5×10mm (which are not presented in this article), the
difference between δΠFE and δΠApprox was under 8%. The difference in the results is attributed to the numerical
errors in δΠFE , numerical errors in the computation of Hij and Ai(z) , and of course δΠApprox is a better
approximation as δS → 0 .

To ensure the accuracy of δΠFE , we also computed by the h-FEA program ABAQUS, obtaining similar results.
In spite of attempts to obtain accurate δΠFE , the error is hard to evaluate, and it is difficult to further increase
the accuracy of the results. The numerical errors from both the bar-shaped models and the spherical models for
δΠApprox calculation contribute to the overall relative error. The ratio δΠFE

ΠFE is very small for all geometries tested,
as can be seen in Table 3: δΠFE

ΠFE ∼ 0.0019 for S = 0.1 and δΠFE

ΠFE ∼ 0.00018 for S = 0.01 , whereas the error
in energy norm of the FE models is about 3%.

Nevertheless, the small difference between δΠFE and δΠApprox indicates that δΠApprox is an accurate esti-
mation.
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Figure 9: The planes: (a) (111) , (b) (−101) , (c) (212) and (d) (51(−3)) within a 10× 5× 10mm geometry, and circular cracks along
the same planes. The V-notch edge ( z axis) is represented by the blue line.

4.2.2. δΠ for mixed mode (I+II+III) loading
δΠ under mixed-mode conditions (modes I+II+III) was computed for the same bar as in section 4.2.1 with

different boundary conditions (Fig. 11). The left face was clamped whereas on the opposite face tractions of
1000MPa were applied in directions x, y, and z . Several crack orientations, shapes and sizes were examined as
shown in Table 4. The cracks were located at the center of the V-notch edge in all cases (z0 = 5) . δΠFE results
from several FE models (for polynomial degree of p=6 and ∼ 850000 DOF) and respective δΠApprox computed
by (28) are presented in Table 4 with Hij values presented in Table 1 and Ai(z) extracted by the QDFM are
shown in Fig. 12. Schematic representation of the crack orientations are shown in Fig. 7 and 9.

The difference between δΠApprox and δΠFE for the mixed mode loading is less than 9% for all crack orien-
tations shapes and sizes presented in Table 4. Together with the previous results (Table 3), we have obtained less
than 9% error between δΠApprox and δΠFE results for a variety of boundary conditions, cracks shapes, sizes
and orientations.

We can conclude, that the small difference of δΠApprox compared to δΠFE throughout this section reassures
the correctness of the asymptotic analysis presented in Chapter 3.

4.3. Crack shape influence on the Hij ’s

Hij depends on the crack shape (in addition to dependence on the orientation, V-notch solid angle ω and
mechanical properties). We examine the sensitivity to crack shape, by considering half ellipses with an area of 1
with different major to minor radii ratios - see Figs. 13 and 8. The crack orientation was along the V-notch bisector
(100), and a/b between 10 and 0.1. Hii results were obtained by both methods described in Appendix C, and are
presented in Table 5. The Hij results computed by (34) are denoted by Hij and obtained for polynomial degree
p = 6 and 54 integration points. The results using Appendix C for a polynomial degree of p = 6 are presented for
Hii and denoted by HΩ∗

ii . A graphical representation of the H11 and H33 as a function of a/b is presented in
Fig. 14.
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(a)

(b)

Figure 10: (a) A FE model of a 10× 5× 10mm bar with a V-notch and (b) the respective A1(z) along the V-notch edge

One may observe that the crack shape influences the Hij results significantly (between a/b = 0.1 and a/b = 10
there is a difference of an order of magnitude in Hij ).

Fig. 14 presents monotonic increase in H11 values. As a result, δΠ values will increase monotonically as well, as
a/b increases. This behavior is expected since a larger a/b means that a larger portion of the unit area crack is
close to the V-notch edge and therefore the contribution of this cracks formation to the potential energy difference is
larger.

The difference between Hij and HΩ∗

ij is under 3%. Appendix C elaborates on the additional method for Hii

calculation.
In [6] the relation between 2D Hij functions for different E [MPa] and ν values was introduced:

Hnew
ij (ω, θ) = Hij(ω, θ)

E

1− ν2
1− (νnew)2

Enew
(36)

This relation was examined for the 3D Hij functions. Two spherical models for Hij calculation with differ-
ent crack orientation and shape were given combinations of material properties within a wide range: 1 ≤ E ≤
104 [MPa], 0 ≤ ν ≤ 0.4 . The Hij values for models with different E, ν were compared with those calculated
by (36) with E = 1[MPa], ν = 0.3 as reference properties. Hij depends linearly on E , but not so for ν and
(36) is incorrect with respect to ν in 3D.
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crack
orientation

crack
area

[mm2]

ΠFE p → ∞
[N ·mm]

FE error
in energy
norm at

p=7

δΠFE

[N ·mm]

from FE
models

δΠApprox

[N ·mm]

% difference
between
δΠFE and
δΠApprox

no crack -840.83 2.56%
-1.609 -1.53 4.89%

(100) 0.1 -842.43 2.61%

no crack -840.74 2.76%
-1.12 -1.07 4.53%

(100) 0.07 -841.86 2.79%

no crack -840.73 2.73%
-0.798 -0.762 4.4%

(100) 0.05 -841.53 2.74%

no crack -840.73 2.65%
-0.476 -0.456 4.14%

(100) 0.03 -841.21 2.66%

no crack -840.74 2.81%
-0.157 -0.151 3.7%

(100) 0.01 -840.9 2.82%

Table 3: δΠFE results compared to δΠApprox for the 10× 5× 10mm V-notched geometry.

Figure 11: FE model for the mixed mode computations.
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Figure 12: A1(z) , A2(z) , and A3(z) for a 10× 5× 10mm bar with a V-notch of ω = 315◦ under mixed mode loading.

Figure 13: Ellipse notations
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crack
orientation

crack
shape:
a/b of
ellipse

crack
area

[mm2]

ΠFE p →
∞[N ·mm]

FE error
in

energy
norm at

p=7

δΠFE

[N ·mm]

from FE
models

δΠApprox

[N ·mm]

% difference
between
δΠFE and
δΠApprox

no crack -2828702 3.57%
-8910 -8723 2.1%

(100) 1 0.1 -2837612 3.63%

no crack -2828727 3.6%
-11267 -10972 2.35%

(100) 2 0.1 -2839964 3.64%

no crack -2828645 3.86%
-4488 -4325 3.63%

(−
√
310) 2 0.05 -2833133 3.86%

no crack -2828674 3.93%
-2924 -2786 4.7%

(−110) 1 0.05 -2831598 3.93%

no crack -2828667 3.85%
-944 -1027 -8.9%

(−101) 1 0.05 -2829608 3.86%

no crack -2828677 3.7%
-3537 -3261 7.8%

(111) 1 0.1 -2832214 3.75%

no crack -2828656 3.6%
-3906 -3758 3.8%

(212) 1 0.1 -2832563 3.62%

no crack -2828699 3.84%
-1628 -1691 -3.9%

(51− 3) 1 0.05 -2830327 3.85%

Table 4: δΠFE results compared to δΠApprox for the 10× 5× 10mm models under mixed mode (I+II+III) loading

a/b 10 5 2 1 0.5 0.1

H11 1.21 · 10−3 1.17 · 10−3 1.04 · 10−3 8.45 · 10−4 6.05 · 10−4 1.94 · 10−4

HΩ∗
11 1.17 · 10−3 1.14 · 10−3 1.03 · 10−3 8.42 · 10−4 6.03 · 10−4 1.94 · 10−4

H12 5.85 · 10−6 −1.64 · 10−6 1.25 · 10−7 −8.52 · 10−8 −3.24 · 10−7 −4.03 · 10−8

H13 2.44 · 10−7 7.93 · 10−8 1.22 · 10−7 −4.67 · 10−8 −2 · 10−7 6.44 · 10−8

H21 5.73 · 10−6 −1.38 · 10−6 8.2 · 10−8 1.24 · 10−8 1.78 · 10−7 −4.5 · 10−8

H22 4.53 · 10−4 5.07 · 10−4 5.53 · 10−4 5.32 · 10−4 4.39 · 10−4 1.73 · 10−4

HΩ∗
22 4.48 · 10−4 5.03 · 10−4 5.51 · 10−4 5.34 · 10−4 4.4 · 10−4 1.73 · 10−4

H23 4.97 · 10−8 3.09 · 10−8 6.13 · 10−8 −1.32 · 10−7 2.48 · 10−7 −1.05 · 10−7

H31 5.34 · 10−7 −1.35 · 10−7 5.72 · 10−8 1.61 · 10−8 −1.51 · 10−7 7 · 10−8

H32 1.85 · 10−7 6.63 · 10−7 1.89 · 10−7 2.85 · 10−7 2.3 · 10−7 −1.27 · 10−7

H33 1.16 · 10−3 1.15 · 10−3 1.02 · 10−3 7.98 · 10−4 5.43 · 10−4 1.63 · 10−4

HΩ∗
33 1.13 · 10−3 1.13 · 10−3 1.01 · 10−3 7.95 · 10−4 5.43 · 10−4 1.62 · 10−4

Table 5: Hij values for elliptical cracks (100) and different a/b ratios.
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(a) (b)

Figure 14: Graphical representation of the H11 (a) and H33 (b) for elliptical cracks on plane (100) and different a/b ratios.
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5. Summary and conclusions

We have derived an explicit expression for δΠ , the difference in the potential energy between a V-notch with
and without a small crack initiating at its edge in a 3D elastic domain under a general mixed mode I+II+III loading.
δΠ depends on numerous variables - crack shape, size, orientation, far boundary conditions ( Ai(z) ), V-notch solid
angle (ω) and material properties. The functions Hij are independent of crack size and far boundary conditions,
so only one calculation of Hij is needed (for a chosen crack orientation and shape) in order to obtain δΠ for all
crack sizes and sets of far boundary conditions. The values approximated by the asymptotic expansion ( δΠApprox )
were verified by comparison to values obtained from two FE models of a chosen bar-shaped geometry ( δΠFE ),
with and without a crack initiating from the V-notch. Calculation by the δΠFE method is impractical since it
would compel the construction of two FE models (with and without a crack) for each crack size, location and set
of far boundary conditions separately, as opposed to δΠApprox , which can be easily computed for any crack size,
location and set of far boundary conditions once Hij are available (and can be pre-computed and tabulated), and
the GESIFs Ai(z) of a V-notch without a crack are known. In addition, the ratio δΠFE

ΠFE was shown to be very small
for all geometries tested (Table 3: δΠFE

ΠFE < 0.002 , whereas the error in energy norm of the FE models is about
3%), which may weaken the reliability of the results, especially for very small cracks. The Hij calculation, on the
other hand, involves numerical integration, which contributes to decreasing the numerical error. Nevertheless, the
difference between δΠFE and δΠApprox was small (for a variety of boundary conditions, cracks shapes, sizes and
orientations) which indicates that δΠApprox is an accurate estimation.

A crack shape must be determined to perform a 3D analysis. We have demonstrated that this parameter influences
Hij (and therefore δΠ ) significantly. In future work, we shall attempt to find a relation between Hij results for
different shapes, so that Hij could be calculated for a single shape and translated to other shapes by a simple
connection, thus further decreasing the amount of Hij calculations - to be performed only once - in order to find
δΠ for all variables. We will also attempt to improve the existing dependence of Hij on different values of ν so
that it could be calculated for one reference material only.

The extension of the failure initiation criterion in [6] to V-notch edges necessitates an expression of δΠ as pre-
sented herein (vertex singularities are not addressed herein). This expression will be utilized in a future publication
to predict crack initiation location and instance in 3D brittle elastic materials containing sharp V-notches under a
complex stress state.
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Appendix A. Derivation of δΠ = Ψ
[
unear, ufar

]
= −1

2

´
Γ∗

sph

(
T (unear)ufar − T (ufar)unear

)
dΓ

δΠ represents the difference in potential energy between two domains - with and without a crack. The presence
of a crack is the only difference between the two, so that the rest of the geometry and boundary conditions are
identical. We introduce notations for the displacement and stress fields: for a domain with a crack: σ

(c)
ij , u

(c)
i

and without a crack σ
(nc)
ij , u

(nc)
i . These represent the displacements and stresses throughout the entire domain

( ufar and unear represent the displacements well only in the vicinity of a V-notch tip, and in the vicinity of a
crack initiating from a V-notch edge, respectively). ΩD and ∂ΩD are the domain without a crack and its surface,
whereas ΩD

c and ∂ΩD
c are the domain containing a crack and its surface.

For ΩD the potential energy is:

Π(u(nc)) =
1

2

ˆ

ΩD

σ
(nc)
ij u

(nc)
i,j dΩ−

ˆ

∂ΩD

σ
(nc)
ij nju

(nc)
i dΓ−

ˆ

ΩD

fiu
(nc)
i dΩ (A.1)

where fi are components of body forces. For ΩD
c the potential energy is:

Π(u(c)) =
1

2

ˆ

ΩD
c

σ
(c)
ij u

(c)
i,j dΩ−

ˆ

∂ΩD
c

σ
(c)
ij nju

(c)
i dΓ−

ˆ

ΩD
c

fiu
(c)
i dΩ (A.2)

The difference in potential energy is:

δΠ = Π(u(c))−Π(u(nc)) (A.3)

= −
ˆ

∂ΩD
c

σ
(c)
ij nju

(c)
i dΓ +

ˆ

∂ΩD

σ
(nc)
ij nju

(nc)
i dΓ +

1

2

ˆ

ΩD
c

σ
(c)
ij u

(c)
i,j dΩ−

ˆ

ΩD
c

fiu
(c)
i dΩ− 1

2

ˆ

ΩD

σ
(nc)
ij u

(nc)
i,j dΩ+

ˆ

ΩD

fiu
(nc)
i dΩ

Using Cauchy’s law, Ti = σijnj , assuming no body forces - fi = 0 , and using the product rule σijui,j =
(σijui),j − σij,jui we obtain:

δΠ = −
ˆ

∂ΩD
c

T (c)
i u

(c)
i dΓ+

ˆ

∂ΩD

T (nc)
i u

(nc)
i dΓ+

1

2

ˆ

ΩD
c

((σ
(c)
ij u

(c)
i ),j−σ

(c)
ij,ju

(c)
i )dΩ−1

2

ˆ

ΩD

((σ
(nc)
ij u

(nc)
i ),j−σ

(nc)
ij,j u

(nc)
i )dΩ

(A.4)
The stress tensor satisfies the equilibrium equation σij,j = 0 , so (A.4) becomes:

δΠ = −
ˆ

∂ΩD
c

T (c)
i u

(c)
i dΓ +

ˆ

∂ΩD

T (nc)
i u

(nc)
i dΓ +

1

2

ˆ

ΩD
c

(σ
(c)
ij u

(c)
i ),jdΩ− 1

2

ˆ

ΩD

(σ
(nc)
ij u

(nc)
i ),jdΩ (A.5)

By the divergence theorem
´
Ω

F,jdΩ =
´
Γ

(F · n) dΓ and we have:

δΠ = −
ˆ

∂ΩD
c

T (c)
i u

(c)
i dΓ +

ˆ

∂ΩD

T (nc)
i u

(nc)
i dΓ +

1

2

ˆ

∂ΩD
c

σ
(c)
ij nju

(c)
i dΓ− 1

2

ˆ

∂ΩD

σ
(nc)
ij nju

(nc)
i dΓ

= −
ˆ

∂ΩD
c

T (c)
i u

(c)
i dΓ +

ˆ

∂ΩD

T (nc)
i u

(nc)
i dΓ +

1

2

ˆ

∂ΩD
c

T (c)
i u

(c)
i dΓ− 1

2

ˆ

∂ΩD

T (nc)
i u

(nc)
i dΓ

= −1

2

ˆ

∂ΩD
c

T (c)
i u

(c)
i dΓ +

1

2

ˆ

∂ΩD

T (nc)
i u

(nc)
i dΓ (A.6)

Same tractions are applied on both ∂ΩD and ∂ΩD
c and the crack is traction-free, so:

T (nc)
i = T (c)

i (A.7)
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Therefore we may interchange T (nc)
i and T (c)

i in (A.6):

δΠ = −1
2

´
∂ΩD

c

T (nc)
i u

(c)
i dΓ + 1

2

´
∂ΩD

T (c)
i u

(nc)
i dΓ (A.8)

The crack surfaces are traction free, so in the first term in (A.8), ∂ΩD
c can be changed to ∂ΩD . Thus (A.8)

becomes:

δΠ = −1

2

ˆ

∂ΩD

T (nc)
i u

(c)
i dΓ +

1

2

ˆ

∂ΩD

T (c)
i u

(nc)
i dΓ =

1

2

ˆ

∂ΩD

(
T (c)
i u

(nc)
i − T (nc)

i u
(c)
i

)
dΓ (A.9)

Let us apply (A.6) on a spherical domain in the vicinity of a crack. Denote by Ωsph
c a small spherical region in

V-notch vicinity (see Fig. A.15-A.16). The outer part of the domain ΩD − Ωsph = ΩD
c − Ωsph

c is in green in Fig.
A.15.

Figure A.15: Outer domain - schematic presentation

Throughout ΩD − Ωsph and ΩD
c − Ωsph

c , the elastic solution is identical and independent of the presence of a
crack, so that σ

(c)
ij = σ

(nc)
ij , u

(c)
i = u

(nc)
i . Therefore in the outer parts we obtain δΠ ≡ 0 , and δΠ is only because

of Ωsph and Ωsph
c .

∂Ωsph
c is composed of the V-notch faces Γ1,Γ2 , the crack faces Γ3,Γ4 , and the spherical part of the surface

Γsph , see Fig. A.16.

Figure A.16: The domain Ωsph
c
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In Ωsph
c , σ

(c)
ij = σnear

ij and u
(c)
i = unear

i , whereas in Ωsph , σ
(nc)
ij = σfar

ij and u
(nc)
i = ufar

i . Over Γsph ,
ufar
i = unear

i (but T far ̸= T near ). Eq. (A.6) is then:

δΠ = Π(u(c))−Π(u(nc)) = Π(unear)−Π(ufar) = −1

2

ˆ

∂Ωc

T near
i unear

i dΓ +
1

2

ˆ

∂Ω

T far
i ufar

i dΓ (A.10)

Since T near
i = T far

i = 0 on Γ1,Γ2, Γ3,Γ4 (A.10) becomes:

δΠ =
1

2

ˆ

Γsph

T far
i ufar

i dΓ− 1

2

ˆ

Γsph

T near
i unear

i dΓ (A.11)

Since ufar
i = unear

i on Γsph :

δΠ =
1

2

ˆ

Γsph

(
T far
i unear

i − T near
i ufar

i

)
dΓ (A.12)

Which is (A.9), with an opposite sign.

Appendix B. Derivation of the explicit expression of δΠ in 3D domains

The derivation of the expression for δΠ (21) from (20) is detailed.
δΠ is a result of a crack of area S at the tip of the V-notched domain at z = z0 as given in (A.12):

δΠ = Ψ
[
unear,ufar

]
△
= −1

2

ˆ

Γsph

(
T (unear)ufar − T (ufar)unear

)
dΓ (B.1)

The integral is calculated over the spherical part of Ω∗
c . Inserting (9) and (13) in (B.1) and using the linearity

property of the functional Ψ one obtains:

δΠ = Ψ[u0(0, 0, 0),u0(0, 0, 0)] + Ψ[u0(0, 0, 0) , A1 × (
√
S)α1 × (ρ∗sinφ)α1 × s10(θ)]

+Ψ[u0(0, 0, 0), A2 × (
√
S)α2 × (ρ∗sinφ)α2 × s20(θ)] + Ψ[u0(0, 0, 0), A3 × (

√
S)α3 × (ρ∗sinφ)α3 × s30(θ)]

+Ψ[A1 × (
√
S)α1 ×

(
(ρ∗sinφ)α1 × s10(θ) + V̂1(ρ

∗, φ, θ)
)
,u0(0, 0, 0)]

+Ψ[A1 × (
√
S)α1 ×

(
(ρ∗sinφ)α1 × s10(θ) + V̂1(ρ

∗, φ, θ)
)
, A1 × (

√
S)α1 × (ρ∗sinφ)α1 × s10(θ)]

+Ψ[A1 × (
√
S)α1 ×

(
(ρ∗sinφ)α1 × s10(θ) + V̂1(ρ

∗, φ, θ)
)
, A2 × (

√
S)α2 × (ρ∗sinφ)α2 × s20(θ)]

+Ψ[A1 × (
√
S)α1 ×

(
(ρ∗sinφ)α1 × s10(θ) + V̂1(ρ

∗, φ, θ)
)
, A3 × (

√
S)α3 × (ρ∗sinφ)α3 × s30(θ)]

+Ψ[A2 × (
√
S)α2 ×

(
(ρ∗sinφ)α2 × s20(θ) + V̂2(ρ

∗, φ, θ)
)
,u0(0, 0, 0)]

+Ψ[A2 × (
√
S)α2 ×

(
(ρ∗sinφ)α2 × s20(θ) + V̂2(ρ

∗, φ, θ)
)
, A1 × (

√
S)α1 × (ρ∗sinφ)α1 × s10(θ)]

+Ψ[A2 × (
√
S)α2 ×

(
(ρ∗sinφ)α2 × s20(θ) + V̂2(ρ

∗, φ, θ)
)
, A2 × (

√
S)α2 × (ρ∗sinφ)α2 × s20(θ)]

+Ψ[A2 × (
√
S)α2 ×

(
(ρ∗sinφ)α2 × s20(θ) + V̂2(ρ

∗, φ, θ)
)
, A3 × (

√
S)α3 × (ρ∗sinφ)α3 × s30(θ)]

+Ψ[A3 × (
√
S)α3 ×

(
(ρ∗sinφ)α3 × s30(θ) + V̂3(ρ

∗, φ, θ)
)
, u0(0, 0, 0)]

+Ψ[A3 × (
√
S)α3 × (ρ∗sinφ)α3 × s30(θ) + V̂3(ρ

∗, φ, θ) , A1 × (
√
S)α1 × (ρ∗sinφ)α1 × s10(θ)]

+Ψ[A3 × (
√
S)α3 × (ρ∗sinφ)α3 × s30(θ) + V̂3(ρ

∗, φ, θ) , A2 × (
√
S)α2 × (ρ∗sinφ)α2 × s20(θ)]

+Ψ[A3 × (
√
S)α3 × (ρ∗sinφ)α3 × s30(θ) + V̂3(ρ

∗, φ, θ) , A3 × (
√
S)α3 × (ρ∗sinφ)α3 × s30(θ)] + (H.O.T)(B.2)

For brevity, we denote:

Di(ρ
∗, φ, θ) = (ρ∗sinφ)αisi0(θ) (B.3)
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i.e. (B.2) is:

δΠ = Ψ[u0(0, 0, 0),u0(0, 0, 0)] + Ψ[u0(0, 0, 0), A1 × (
√
S)α1 × D1(ρ

∗, φ, θ)]

+Ψ[u0(0, 0, 0), A2 × (
√
S)α2 ×D2(ρ

∗, φ, θ)] + Ψ[u0(0, 0, 0), A3 × (
√
S)α3 ×D3(ρ

∗, φ, θ)]

+Ψ[A1 × (
√
S)α1 × (D1(ρ

∗, φ, θ) + V̂1(ρ
∗, φ, θ)), u0(0, 0, 0)]

+Ψ[A1 × (
√
S)α1 × (D1(ρ

∗, φ, θ) + V̂1(ρ
∗, φ, θ)), A1 × (

√
S)α1 ×D1(ρ

∗, φ, θ)]

+Ψ[A1 × (
√
S)α1 × (D1(ρ

∗, φ, θ) + V̂1(ρ
∗, φ, θ)), A2 × (

√
S)α2 ×D2(ρ

∗, φ, θ)]

+Ψ[A1 × (
√
S)α1 × (D1(ρ

∗, φ, θ) + V̂1(ρ
∗, φ, θ)), A3 × (

√
S)α3 ×D3(ρ

∗, φ, θ)]

+Ψ[A2 × (
√
S)α2 × (D2(ρ

∗, φ, θ) + V̂2(ρ
∗, φ, θ)), u0(0, 0, 0)]

+Ψ[A2 × (
√
S)α2 × (D2(ρ

∗, φ, θ) + V̂2(ρ
∗, φ, θ)), A1 × (

√
S)α1 ×D1(ρ

∗, φ, θ)]

+Ψ[A2 × (
√
S)α2 × (D2(ρ

∗, φ, θ) + V̂2(ρ
∗, φ, θ)), A2 × (

√
S)α2 ×D2(ρ

∗, φ, θ)]

+Ψ[A2 × (
√
S)α2 × (D2(ρ

∗, φ, θ) + V̂2(ρ
∗, φ, θ)), A3 × (

√
S)α3 ×D3(ρ

∗, φ, θ)]

+Ψ[A3 × (
√
S)α3 × (D3(ρ

∗, φ, θ) + V̂3(ρ
∗, φ, θ)), u0(0, 0, 0)]

+Ψ[A3 × (
√
S)α3 × (D3(ρ

∗, φ, θ) + V̂3(ρ
∗, φ, θ)), A1 × (

√
S)α1 ×D1(ρ

∗, φ, θ)]

+Ψ[A3 × (
√
S)α3 × (D3(ρ

∗, φ, θ) + V̂3(ρ
∗, φ, θ)), A2 × (

√
S)α2 ×D2(ρ

∗, φ, θ)]

+Ψ[A3 × (
√
S)α3 × (D3(ρ

∗, φ, θ) + V̂3(ρ
∗, φ, θ)), A3 × (

√
S)α3 ×D3(ρ

∗, φ, θ)] +H.O.T. (B.4)

By definition, Ψ(g, g) ≡ 0 . In the 3D case, as opposed to the 2D case, the eigenfunctions sij(θ) are not bi-orthogonal
for any chosen plane crack.

δΠ = Ψ[u0(0, 0, 0), A1 × (
√
S)α1 ×D1(ρ

∗, φ, θ)]

+Ψ[u0(0, 0, 0), A2 × (
√
S)α2 ×D2(ρ

∗, φ, θ)] + Ψ[u0(0, 0, 0), A3 × (
√
S)α3 ×D3(ρ

∗, φ, θ)]

+Ψ[A1 × (
√
S)α1 × (D1(ρ

∗, φ, θ) + V̂1(ρ
∗, φ, θ)),u0(0, 0, 0)]

+Ψ[A1 × (
√
S)α1 × V̂1(ρ

∗, φ, θ), A1 × (
√
S)α1 ×D1(ρ

∗, φ, θ)]

+Ψ[A1 × (
√
S)α1 × (D1(ρ

∗, φ, θ) + V̂1(ρ
∗, φ, θ)), A2 × (

√
S)α2 ×D2(ρ

∗, φ, θ)]

+Ψ[A1 × (
√
S)α1 × (D1(ρ

∗, φ, θ) + V̂1(ρ
∗, φ, θ)), A3 × (

√
S)α3 ×D3(ρ

∗, φ, θ)]

+Ψ[A2 × (
√
S)α2 × (D2(ρ

∗, φ, θ) + V̂2(ρ
∗, φ, θ)),u0(0, 0, 0)]

+Ψ[A2 × (
√
S)α2 × (D2(ρ

∗, φ, θ) + V̂2(ρ
∗, φ, θ)), A1 × (

√
S)α1 ×D1(ρ

∗, φ, θ)]

+Ψ[A2 × (
√
S)α2 × V̂2(ρ

∗, φ, θ), A2 × (
√
S)α2 ×D2(ρ

∗, φ, θ)]

+Ψ[A2 × (
√
S)α2 × (D2(ρ

∗, φ, θ) + V̂2(ρ
∗, φ, θ)), A3 × (

√
S)α3 ×D3(ρ

∗, φ, θ)]

+Ψ[A3 × (
√
S)α3 × (D3(ρ

∗, φ, θ) + V̂3(ρ
∗, φ, θ)),u0(0, 0, 0)]

+Ψ[A3 × (
√
S)α3 × (D3(ρ

∗, φ, θ) + V̂3(ρ
∗, φ, θ)), A1 × (

√
S)α1 ×D1(ρ

∗, φ, θ)]

+Ψ[A3 × (
√
S)α3 × (D3(ρ

∗, φ, θ) + V̂3(ρ
∗, φ, θ)), A2 × (

√
S)α2 ×D2(ρ

∗, φ, θ)]

+Ψ[A3 × (
√
S)α3 × V̂3(ρ

∗, φ, θ), A3 × (
√
S)α3 ×D3(ρ

∗, φ, θ)] +H.O.T. (B.5)

u0(0, 0, 0) is a constant vector, therefore T (u0(0, 0, 0)) = 0 and the first three terms in (B.5) are:

Ψ[u0(0, 0, 0) , Ai × (
√
S)αi × (Di(ρ

∗, φ, θ) + V̂i(ρ
∗, φ, θ))]

= − 1
2
[
´
Γ

(T (u0(0, 0, 0))Ai × (
√
S)αi × (Di(ρ

∗, φ, θ) + V̂i(ρ
∗, φ, θ))

−T (Ai × (
√
S)αi × (Di(ρ

∗, φ, θ) + V̂i(ρ
∗, φ, θ)))× u0(0, 0, 0))] dΓ

=
u0(0,0,0)

2

´
Γ

T (Ai × (
√
S)αi × (Di(ρ

∗, φ, θ) + V̂i(ρ
∗, φ, θ)))dΓ

According to Gauss’ theorem:
ˆ ˆ ˆ

V

(∇ · u)dV =

‹

Γ

u · dΓ (B.6)

where the right hand side is the surface integral over the boundary of the volume V (denoted here by Γ ), and
dΓ = n̂ · dΓ where n̂ is the outward unit normal vector of the boundary Γ . Using (B.6) the area integral can be
transformed into a volume integral in which the elasticity operator acts on the eigenpair, obtaining:
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u0(0,0,0)
2

´
Γ

T
{
Ai × (

√
S)αi × [Di(ρ

∗, φ, θ) + V̂i(ρ
∗, φ, θ)]

}
dΓ

= u0(0,0,0)
2

´
V

L
{
Ai × (

√
S)αi × [Di(ρ

∗, φ, θ) + V̂i(ρ
∗, φ, θ)]

}
dV = 0 ,

(B.7)

because L{ } = 0 . Thus Ψ
[
u0(0, 0, 0), Ai × (

√
S)αi × [Di(ρ

∗, φ, θ) + V̂i(ρ
∗, φ, θ)]

]
= 0 , and (B.5) is simpli-

fied to:

δΠ = Ψ[A1 × (
√
S)α1 × V̂1(ρ

∗, φ, θ), A1 × (
√
S)α1 ×D1(ρ

∗, φ, θ)]

+Ψ[A1 × (
√
S)α1 ×D1(ρ

∗, φ, θ), A2 × (
√
S)α2 ×D2(ρ

∗, φ, θ)]

+Ψ[A1 × (
√
S)α1 × V̂1(ρ

∗, φ, θ), A2 × (
√
S)α2 ×D2(ρ

∗, φ, θ)]

+Ψ[A1 × (
√
S)α1 ×D1(ρ

∗, φ, θ), A3 × (
√
S)α3 ×D3(ρ

∗, φ, θ)]

+Ψ[A1 × (
√
S)α1 × V̂1(ρ

∗, φ, θ), A3 × (
√
S)α3 ×D3(ρ

∗, φ, θ)]

+Ψ[A2 × (
√
S)α2 ×D2(ρ

∗, φ, θ), A1 × (
√
S)α1 ×D1(ρ

∗, φ, θ)]

+Ψ[A2 × (
√
S)α2 × V̂2(ρ

∗, φ, θ), A1 × (
√
S)α1 ×D1(ρ

∗, φ, θ)]

+Ψ[A2 × (
√
S)α2 × V̂2(ρ

∗, φ, θ), A2 × (
√
S)α2 ×D2(ρ

∗, φ, θ)]

+Ψ[A2 × (
√
S)α2 ×D2(ρ

∗, φ, θ), A3 × (
√
S)α3 ×D3(ρ

∗, φ, θ)]

+Ψ[A2 × (
√
S)α2 × V̂2(ρ

∗, φ, θ), A3 × (
√
S)α3 ×D3(ρ

∗, φ, θ)]

+Ψ[A3 × (
√
S)α3 ×D3(ρ

∗, φ, θ), A1 × (
√
S)α1 ×D1(ρ

∗, φ, θ)]

+Ψ[A3 × (
√
S)α3 × V̂3(ρ

∗, φ, θ), A1 × (
√
S)α1 ×D1(ρ

∗, φ, θ)]

+Ψ[A3 × (
√
S)α3 ×D3(ρ

∗, φ, θ), A2 × (
√
S)α2 ×D2(ρ

∗, φ, θ)]

+Ψ[A3 × (
√
S)α3 × V̂3(ρ

∗, φ, θ), A2 × (
√
S)α2 ×D2(ρ

∗, φ, θ)]

+Ψ[A3 × (
√
S)α3 × V̂3(ρ

∗, φ, θ), A3 × (
√
S)α3 ×D3(ρ

∗, φ, θ)] +H.O.T.

= A2
1 × (

√
S)2α1 ×Ψ[V̂1(ρ

∗, φ, θ),D1(ρ
∗, φ, θ)]

+A1 A2 × (
√
S)α1+α2 ×Ψ[D1(ρ

∗, φ, θ),D2(ρ
∗, φ, θ)]

+A1 A2 × (
√
S)α1+α2 ×Ψ[V̂1(ρ

∗, φ, θ),D2(ρ
∗, φ, θ)]

+A1 A3 × (
√
S)α1+α3 ×Ψ[D1(ρ

∗, φ, θ),D3(ρ
∗, φ, θ)]

+A1 A3 × (
√
S)α1+α3 ×Ψ[V̂1(ρ

∗, φ, θ),D3(ρ
∗, φ, θ)]

+A1 A2 × (
√
S)α1+α2 ×Ψ[D2(ρ

∗, φ, θ),D1(ρ
∗, φ, θ)]

+A1 A2 × (
√
S)α1+α2 ×Ψ[V̂2(ρ

∗, φ, θ),D1(ρ
∗, φ, θ)]

+A2
2 × (

√
S)2α2 ×Ψ[V̂2(ρ

∗, φ, θ),D2(ρ
∗, φ, θ)]

+A2 A3 × (
√
S))α2+α3 ×Ψ[D2(ρ

∗, φ, θ),D3(ρ
∗, φ, θ)]

+A2 A3 × (
√
S))α2+α3 ×Ψ[V̂2(ρ

∗, φ, θ),D3(ρ
∗, φ, θ)]

+A1 A3 × (
√
S)α1+α3 ×Ψ[D3(ρ

∗, φ, θ),D1(ρ
∗, φ, θ)]

+A1 A3 × (
√
S)α1+α3 ×Ψ[V̂3(ρ

∗, φ, θ),D1(ρ
∗, φ, θ)]

+A2 A3 × (
√
S))α2+α3 ×Ψ[D3(ρ

∗, φ, θ),D2(ρ
∗, φ, θ)]

+A2 A3 × (
√
S))α2+α3 ×Ψ[V̂3(ρ

∗, φ, θ),D2(ρ
∗, φ, θ)]

+A2
3 × (

√
S)2α3 ×Ψ[V̂3(ρ

∗, φ, θ),D3(ρ
∗, φ, θ)] +H.O.T. (B.8)

We define Iij :

Iij , −Ψ [Di(ρ
∗, φ, θ),Dj(ρ

∗, φ, θ)] = −Ψ [(ρ∗ sinφ)αi × si0(θ), (ρ
∗ sinφ)αj × sj0(θ)] (B.9)

where si 0(θ) are given in (5).
Iij in the δΠ expressions (eq. B.8) appears in pairs: Iij + Iji for i ̸= j . By definition, Iij + Iji = 0 since

Iij + Iji =
1
2

´
Γ

(T (Di)Dj − T (Dj)Di) dΓ + 1
2

´
Γ

(T (Dj)Di − T (Di)Dj) dΓ ≡ 0 .
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Therefore (B.8) simplifies to:

δΠ = A2
1 × (

√
S)2α1 ×Ψ[V̂1(ρ

∗, φ, θ),D1(ρ
∗, φ, θ)]

+A1 A2 × (
√
S)α1+α2 ×Ψ[V̂1(ρ

∗, φ, θ),D2(ρ
∗, φ, θ)]

+A1 A3 × (
√
S)α1+α3 ×Ψ[V̂1(ρ

∗, φ, θ),D3(ρ
∗, φ, θ)]

+A1 A2 × (
√
S)α1+α2 ×Ψ[V̂2(ρ

∗, φ, θ),D1(ρ
∗, φ, θ)]

+A2
2 × (

√
S)2α2 ×Ψ[V̂2(ρ

∗, φ, θ),D2(ρ
∗, φ, θ)]

+A2 A3 × (
√
S))α2+α3 ×Ψ[V̂2(ρ

∗, φ, θ),D3(ρ
∗, φ, θ)]

+A1 A3 × (
√
S)α1+α3 ×Ψ[V̂3(ρ

∗, φ, θ),D1(ρ
∗, φ, θ)]

+A2 A3 × (
√
S))α2+α3 ×Ψ[V̂3(ρ

∗, φ, θ),D2(ρ
∗, φ, θ)]

+A2
3 × (

√
S)2α3 ×Ψ[V̂3(ρ

∗, φ, θ),D3(ρ
∗, φ, θ)] +H.O.T. (B.10)

or in general:

δΠ =
3∑

i=1

3∑
j=1

Ai Aj × (
√
S)αi+αj ×Ψ[V̂i,Dj ] +H.O.T. (B.11)

Substituting (B.3) into (B.11) one obtains:

δΠ =
3∑

i=1

3∑
j=1

Ai Aj × (
√
S)αi+αj ×Ψ[V̂i , (ρ

∗ × sinφ)αj × sj0(θ)] +H.O.T. (B.12)

Using the definition of Hij in (26) we finally have:

−δΠ =
3∑

i=1

3∑
j=1

Ai Aj × (
√
S)αi+αj+1 Hij (B.13)

Appendix C. Computing Hii by an alternative method

We have found an alternative method for calculating Hii functions. This method uses the observation that the
potential energy of the spherical domain itself (denoted by ΠΩ∗sph

c ) is actually δΠ , for a special case of a unit area
crack and unit GESIFs Ai(z) , which is by (28):

ΠΩ∗sph
c = δΠ = −

∑
i,j

Hij (C.1)

We have shown in Appendix A that δΠ is confined to the spherical volumes with and without a crack Ωsph and
Ωsph

c , so δΠ = ΠΩsph
c − ΠΩsph

. The displacements solution is ufar (9) within Ωsph , and unear (13) within
Ωsph

c . From matching the far and near fields as ρ∗ → ∞ we have obtained a representation of unear as:

unear(ρ∗
√
S, φ, θ) = u0(0, 0, 0) +A1 × (

√
S)α1 × [(ρ∗ × sinφ)α1 × s10(θ) + V̂1(ρ

∗, φ, θ)]

+A2 × (
√
S)α2 × [(ρ∗ × sinφ)α2 × s20(θ) + V̂2(ρ

∗, φ, θ)]

+A3 × (
√
S)α3 × [(ρ∗ × sinφ)α3 × s30(θ) + V̂3(ρ

∗, φ, θ)] + ...

= ufar(ρ∗
√
S, φ, θ) +

3∑
i=1

Ai × (
√
S)αi V̂i(ρ

∗, φ, θ) (C.2)
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so that:

δΠ = ΠΩsph
c −ΠΩsph

= Π

(
ufar +

3∑
i=1

Ai × (
√
S)αi V̂i

)
−Π

(
ufar

)
= Π

(
3∑

i=1

Ai × (
√
S)αi V̂i

)
(C.3)

Eq. (C.3) can be regarded as superposition. Since outside Ωsph and Ωsph
c , the displacements, strains and

stresses are identical (V̂i ∼ 0) then also δΠ = ΠΩD
c −ΠΩD

. This is illustrated in Fig. C.17.

Figure C.17: Illustration of the superposition principle. (a) The bar-shaped model with a V-notch and a crack, (b) same model without a crack,
and (c) the spherical domain with BCs on its faces that “elliminate” its presence.

In subsections 3.1- 3.2 we have shown that the spherical model represents the V̂i solution domain ( Ω∗sph
c ). The

V̂i solution is defined for unit GESIFs Ai(z) and in “stretched” coordinates, so the crack has unit area (S∗ = 1) ,
and the spherical model was constructed accordingly. Using (28) and (C.3) we obtain (C.1).

The boundary conditions of the Ω∗sph
c domain are obtained from the asymptotic expasion, eq. (14)-(16). The

V-notch faces remain traction-free. The tractions on the crack faces are minus those present on the chosen plane for
a V-notch without a crack (16), and can be therefore regarded as “compensating” for its presence. The outer surface
of the spherical domain is clamped (since V̂i ∼

ρ∗→∞
0 ), this was not shown in Fig. C.17 (c).

If one applies modes 1,2 and 3 boundary conditions separately on the crack surfaces, then by (C.1) one obtains
|ΠΩ∗sph

c | = |H11| for mode 1 boundary conditions, |ΠΩ∗sph
c | = |H22| for mode 2, and |ΠΩ∗sph

c | = |H33| for
mode 3. The potential energy of the FE model ΠΩ∗sph

c is computed by the FE analysis. This way we may compute
Hii for i = 1, 2 or 3 by an alternative method and compare to the results computed by (30). The comparison
was performed both for 2D cases [6] - in Table C.6, and for 3D cases - in Tables C.7, C.8 and C.9. The results
obtained by the described method are denoted by H2D

ii in 2D, and the crack angle θ was measured from the x
axis. The parameters are: a V-notch angle ω = 315o , outer domain radius of R = 200 , material properties of
PMMA ( E = 3900MPa, ν = 0.332 ), polynomial degree of p = 8 and 90 Gauss integration points. The relative
difference between the values obtained by both methods is also presented in the tables. In 3D the results obtained
by the aforementioned method are denoted by HΩ∗

ii , and the results obtained by (30) are denoted by Hii . The
numerical results presented in Table C.7 and C.8 were for V-notch solid angle of 315o , outer domain radius of
R = 100 , material properties of PMMA, polynomial degree of p = 6 and 54 Gauss points (the difference in Hii

compared with p = 7 and 90 Gauss points was less than 1% and is significantly more computationally expensive).
The results presented in Table C.7 are for half a circle crack and crack orientation of (100), (−110), (−

√
310) .
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Simplified illustrations of models with the examined orientations are presented in Fig. 7, see also Fig. 8. The results
presented in Table C.8 are for circular cracks orientations in (−101) , (111) , (212) and (51(−3)) (see Fig. 9).
The results presented in Table C.9 are for half an ellipse crack with orientations (100), (−110), (−

√
310) . The

major (longer) axis of the ellipse a coincides with the V-notch edge ( z axis) and is twice longer than the minor
axis b ( a/b = 2 , see Fig. 13).

loading conditions
on crack surface

mode I mode II

calculation method
H11 H2D

11 % difference H22 H2D
22 % difference

crack angle θ

155 1.28 · 10−3 1.268 · 10−3 1 9.421 · 10−4 9.339 · 10−4 0.87
160 1.324 · 10−3 1.311 · 10−3 1 9.035 · 10−4 8.957 · 10−4 0.87
165 1.358 · 10−3 1.345 · 10−3 1 8.715 · 10−4 8.64 · 10−4 0.87
170 1.383 · 10−3 1.37 · 10−3 1 8.476 · 10−4 8.402 · 10−4 0.86
175 1.399 · 10−3 1.385 · 10−3 1 8.327 · 10−4 8.255 · 10−4 0.86
180 1.4 · 10−3 1.39 · 10−3 1 8.277 · 10−4 8.206 · 10−4 0.86
185 1.399 · 10−3 1.385 · 10−3 1 8.327 · 10−4 8.255 · 10−4 0.86
190 1.383 · 10−3 1.37 · 10−3 1 8.476 · 10−4 8.402 · 10−4 0.86
195 1.358 · 10−3 1.345 · 10−3 1 8.715 · 10−4 8.64 · 10−4 0.87
200 1.324 · 10−3 1.306 · 10−3 1.3 9.035 · 10−4 8.957 · 10−4 0.87
205 1.28 · 10−3 1.267 · 10−3 1 9.421 · 10−4 9.339 · 10−4 0.87

Table C.6: Comparison of Hii values obtained in 2D by the two methods (30) and (C.1).

loading
conditions
on crack
surface

mode I mode II mode III

calculation
method

H11 HΩ∗
11

%
difference

H22 HΩ∗
22

%
difference

H33 HΩ∗
33

%
difference

crack
orientation
(100) 8.42 · 10−4 8.47 · 10−4 0.6 5.28 · 10−4 5.28 · 10−4 -0.01 7.94 · 10−4 7.97 · 10−4 0.44

(−
√
310) 7.45 · 10−4 7.38 · 10−4 -1 5.68 · 10−4 5.67 · 10−4 -0.09 7.38 · 10−4 7.34 · 10−4 -0.59

(−110) 6.26 · 10−4 6.25 · 10−4 -0.12 5.95 · 10−4 5.85 · 10−4 -1.7 6.65 · 10−4 6.52 · 10−4 -1.96

Table C.7: Comparison of Hii values for half − circular cracks, obtained in 3D by two methods - (30) and (C.1).
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loading
conditions
on crack
surface

mode I mode II mode III

calculation
method

H11 HΩ∗
11

%
difference

H22 HΩ∗
22

%
difference

H33 HΩ∗
33

%
difference

crack
orientation
(−101) 2.73 · 10−4 2.76 · 10−4 0.95 1.23 · 10−4 1.25 · 10−4 1.18 3.15 · 10−4 3.16 · 10−4 0.3
(111) 2.28 · 10−4 2.3 · 10−4 0.84 1.76 · 10−4 1.77 · 10−4 0.43 2.43 · 10−4 2.44 · 10−4 0.31
(212) 2.59 · 10−4 2.62 · 10−4 0.95 1.18 · 10−4 1.15 · 10−4 2.1 2.96 · 10−4 2.97 · 10−4 0.3

(51(−3)) 3.82 · 10−4 3.85 · 10−4 0.76 1.92 · 10−4 1.93 · 10−4 0.2 3.37 · 10−4 3.37 · 10−4 0.23

Table C.8: Comparison of Hii values for circular cracks, obtained in 3D by two methods - (30) and (C.1).

loading
conditions
on crack
surface

mode I mode II mode III

calculation
method

H11 HΩ∗
11

%
difference

H22 HΩ∗
22

%
difference

H33 HΩ∗
33

%
difference

crack
orientation
(100) 1.04 · 10−3 1.03 · 10−3 -1.2 5.53 · 10−4 5.51 · 10−4 -0.27 1.02 · 10−3 1.01 · 10−3 -0.88

(−
√
310) 9.13 · 10−4 9.01 · 10−4 -1.44 6.19 · 10−4 6.17 · 10−4 -0.26 9.49 · 10−4 9.4 · 10−4 -0.94

(−110) 7.64 · 10−4 7.66 · 10−4 0.23 6.57 · 10−4 6.68 · 10−4 1.64 8.38 · 10−4 8.56 · 10−4 2.08

Table C.9: Comparison of Hii values for half − elliptical cracks ( a/b = 2 ), obtained in 3D by two methods - (30) and (C.1).

The two different methods to compute Hii yield very close results. The relative difference between them can be
further reduced by using a larger number of Gauss points. The method based on the potential energy of the
spherical (or circular) models is straightforward for pure loading modes and therefore easy to implement for
verification purposes of the Hii ’s obtained by (30).
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