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Abstract

The recently introduced Finite Cell Method (FCM) combines the fictitious
domain idea with the benefits of high-order Finite Elements. While previ-
ous publications concentrated on single-field applications, this paper demon-
strates that the advantages of the method carry over to the multi-physical
context of linear thermoelasticity. The ability of the method to converge with
exponential rates is illustrated in detail with a benchmark problem. A second
example shows that the Finite Cell Method correctly captures the thermoe-
lastic state of a complex problem from engineering practice. Both examples
additionally verify that, also for two-field problems, Dirichlet boundary con-
ditions can be weakly imposed on non-conforming meshes by the proposed
extension of Nitsche’s Method.

Keywords: Finite Cell Method (FCM), Fictitious Domain Methods, linear
thermoelasticity, multi-physical problems, weak boundary conditions,
Nitsche’s Method

1. Introduction

Since the early years of computational engineering, the Finite Element
Method has been established as the state-of-the-art approach to solve bound-
ary value problems numerically. Over time, major enhancements to the
method allowed for more sophisticated simulations. What remained un-
changed was the idea to geometrically resolve the physical domain by the
Finite Element mesh. This method’s intrinsic need for a conform discretiza-
tion is a limiting factor in today’s engineering practice.
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New numerical concepts drop the idea of conforming meshes to circumvent
this drawback. Prominent examples are Fictitious and Embedding Domain
Methods as well as Immersed Boundary Methods [39, 21, 19, 22, 27]. Also
Element-Free Methods [4] and certain variants of the Extended Finite Ele-
ment Method together with Level Set approaches are part of this category
[16, 18, 17, 23]. A comprehensive survey of the different strategies is given
in [23]. The common idea of these methods is to reduce the complexity of
the mesh generation process by embedding the physical domain Ωphy in a
fictitious domain Ωfict such that their union Ω∪ yields a simple geometry.

This strategy is followed by the Finite Cell Method (FCM) introduced
in [26] and [11]. In contrast to most other methods mentioned, the FCM
combines the fictitious domain idea with the benefits of high-order Finite
Elements (p-FEM) [38]. Latest research results show that this new approach
yields good results in the fields of linear elasticity [26, 11], topology opti-
mization [12], geometrically nonlinear continuum mechanics [36], adaptive
mesh-refinement [33, 34, 35], computational steering [41, 29], biomedical en-
gineering [30, 40, 31] and convection diffusion problems [8, 6, 7].

Two major challenges arise following the idea of non-conforming dis-
cretizations: the correct numerical integration of the weak form and the
appropriate enforcement of Dirichlet boundary conditions. For the first prob-
lem, an adaptive quadrature scheme is employed which captures the original
domain during the integration process and has proven to work very well in
the FCM context [11, 1]. For the second challenge, the concept of weak
boundary conditions is utilized that was introduced in [24] for Laplace prob-
lems and in [3] for convection-diffusion and Navier-Stokes problems and has
proven to yield good results in the framework of the FCM [36].

This paper aims to analyse the method’s potential for multi-physical prob-
lems in the field of thermoelasticity. The presented research further addresses
the weak enforcement of Dirichlet boundary conditions on non-conforming
meshes in the thermoelastic context.

For this purpose, the governing equations of linear thermoelasticity and
the essential ideas of the Finite Cell Method are recapitulated in the first
half of this paper. Nitsche’s Method is introduced to weakly impose Dirich-
let boundary conditions on non-conforming meshes. Then, the concept of
weak boundary conditions is outlined. The second part of the paper assesses
demonstratesthe quality of the numerical approximation with the help of an
analytical benchmark and a practice-oriented example.
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2. Theory of Linear Thermoelasticity

The objective of a thermoelastic analysis is to compute the deformation
of an elastic body subjected to mechanical and thermal loadings. In a first
step, this requires the computation of the temperature distribution. The
resulting deformation can then be computed in a second step. The back-
coupling effect of the displacement onto the temperature is neglected in the
linearized formulation of thermoelasticity. Detailed information about this
topic and the derivation of the governing equations are presented in [25].
This section recapitulates the final equations.

The elastic continuum is described by the physical domain Ωphy. Its
domain boundary ∂Ωphy is composed of a Dirichlet and a Neumann boundary.
Note that this boundary segmentation is not required to coincide for the
thermal and the elastic computation. In the thermal case, the two boundary
parts are denoted as Γth

D and Γth
N , respectively. In the elastic case, Γel

D and
Γel
N are used as the respective label. In both cases, the two segments have to,

however, recover the original boundary:

ΓD ∪ ΓN = ∂Ωphy and ΓD ∩ ΓN = {0}.

The temperature distribution φ(x) follows from the stationary heat equa-
tion:

∇ · (κ∇φ)− s = 0 in Ωphy (1a)

φ = φ̂ on Γth
D (1b)

∇φ · n = q̂ on Γth
N , (1c)

with κ, s, and n being the thermal heat conduction coefficient, the heat
source, and the outward pointing normal vector of the boundary, respectively.
Furthermore, φ̂ and q̂ denote the prescribed temperature on the Dirichlet
boundary and the prescribed normal heat flux on the Neumann boundary,
respectively.

The Duhamel-Neumann thermoelastic constitutive law (eq. (2b), cf. [32])
captures the influence of the temperature onto the mechanical continuum.
The displacement u(x) then follows from the governing equations of linear
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thermoelasticity:

∇ · σ + b = 0 in Ωphy (2a)

σ = C :
(

ε− εth
)

in Ωphy (2b)

ε =
1

2
·
(

∇u+ (∇u)⊤
)

in Ωphy (2c)

εth = γ · (φ− φ0) · I in Ωphy (2d)

u = û on Γel
D (2e)

σ · n = t̂ on Γel
N , (2f)

with σ, b, C, ε, εth, γ, φ0, û and t̂ denoting the stress tensor, the applied
mechanical volume load, the constitutive tensor, the strain tensor, the ther-
mal strain tensor, the thermal expansion coefficient, the stress-free reference
temperature, the prescribed displacements on the Dirichlet boundary, and
the prescribed tractions on the Neumann boundary, respectively.

The later use of the Finite Element or the Finite Cell Method requires
the transformation of the above equations into the weak form [44, 20]. The
thermoelastic problem then reads

Find φ ∈ X th and u ∈ Xel such that

Bth(φ, δφ) = F th(δφ) ∀ δφ ∈ Y th (3a)

and Bel(u, δu) = F el(δu, φ) ∀ δu ∈ Y el, (3b)

with X th and Xel denoting the space of admissible temperature and dis-
placement functions, respectively. Y th and Y el label the spaces of admissible
virtual temperature and displacement functions [38]. The individual terms

4



of the weak form read

Bth(φ, δφ) =

∫

Ωphy

∇δφ · κ · ∇φ dΩ (4a)

F th(δφ) =

∫

Ωphy

δφ · s dΩ+

∫

Γth
N

δφ · q̂ dΓ (4b)

Bel(u, δu) =

∫

Ωphy

ε(δu) : C : ε(u) dΩ (4c)

F el(δu, φ) =

∫

Ωphy

δu · b dΩ+

∫

Γel
N

δu · t̂ dΓ

+

∫

Ωphy

ε(δu) : C : εth(φ) dΩ. (4d)

Note that the third term on the right-hand side of (4d) expresses the influence
of the thermal field onto the elastic field. Therefore, it yields the coupling
term that connects both physical fields on the domain Ωphy.

Although (3) naturally covers the Neumann boundary conditions (1c)
and (2f), it does not include the Dirichlet boundary conditions (1b) and
(2e). Instead, these constraints are met by an appropriate selection of the
admissible functions spaces X th, Xel, Y th, and Y el.

For a standard Finite Element analysis, the formulation of such func-
tion spaces poses no problem because the Finite Element mesh resolves the
domain boundary. In contrast, Fictitious Domain Methods employ non-
conforming meshes. Since the function spaces are then no longer defined on
the physical domain, their formulation is no longer straightforward. This
demands for a relaxation of the restriction on the admissible function spaces
and an incorporation of the Dirichlet boundary conditions in the weak form.

Various approaches follow this weak enforcement strategy such as the
Lagrange Multiplier and the Penalty Method [44, 43]. Another possibility is
Nitsche’s Method, originally proposed for Laplace problems . A comparison
naming the advantages and shortcomings of the three approaches is given
in [17]. In this paper, Nitsche’s Method is employed. Another possibility is
to adopt a method originally proposed for Laplace problems by Nitsche [24]
and for convection-diffusion problems by Bazilevs and Hughes [3]. The major
advantage of this approach is its inherent consistency, which ensures that
the analytical solution of the strong problem (2) also solves the adopted
weak problem ([13], [15], [2]). However, the method gives rise to a scalar
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penalty parameter whose value has to be above a certain threshold to ensure
the coercivity of the weak form. As described in [3, 13, 15, 24], this lower
threshold depends on the mesh size, the polynomial degree and the material
properties. Hence, the penalty parameter is problem dependent and [13,
15] suggest to solve a generalized eigenvalue problem to capture the lower
threshold. However, their studies show that, due to the consistency of the
method, choosing any other penalty value above this threshold has almost no
influence on the numerical result. These findings are confirmed in the context
of the FCM by Ruess et al. [31] and Schillinger et al. [36], who showed that
also with an empirical choice of the parameter value, good results can be
achieved. Therefore, this Nitsche-like approach is followed in this paper.

The Nitscheexpressions constraining the temperature φ on the Dirichlet
boundary read

Gth(φ, δφ) =

∫

Γth
D

δφ · βth · φ dΓ

−

∫

Γth
D

δ (∇φ) · n · κ · φ dΓ

−

∫

Γth
D

δφ · κ · n · (∇φ) dΓ (5a)

and g
th(δφ) =

∫

Γth
D

δφ · βth · φ̂ dΓ

−

∫

Γth
D

δ (∇φ) · n · κ · φ̂ dΓ, (5b)

with βth being the non-negative penalty parameter described above. The
weak enforcement of the boundary conditions of the elastic problem follow
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in analogy:

Gel(u, δu) =

∫

Γel
D

δu · βel · u dΓ

−

∫

Γel
D

(σ(δu) · n) · u dΓ

−

∫

Γel
D

δu · (σ(u) · n) dΓ

and g
el(δu) =

∫

Γel
D

δu · βel · û dΓ

−

∫

Γel
D

(σ(δu) · n) · û dΓ.

The constitutive equation (2b) allows for a reformulation in terms of the
primary variables u and φ:

Gel(u, δu) =

∫

Γel
D

δu · βel · u dΓ

−

∫

Γel
D

(ε(δu) : C · n) · u dΓ

−

∫

Γel
D

δu · (n ·C : ε(u)) dΓ (6a)

and g
el(δu, φ) =

∫

Γel
D

δu · βel · û dΓ

−

∫

Γel
D

(ε(δu) : C · n) · û dΓ

−

∫

Γel
D

δu ·
(

n ·C : εth(φ)
)

dΓ. (6b)

Note that the last summand in (6b) yields a new coupling term, which addi-
tionally connects the thermal and the elastic field on the Dirichlet boundary.
Due to Nitsche’s Method the weak boundary conditions, the two physical
fields are, therefore, not only coupled on the domain Ωphy but also on the
Dirichlet boundary ΓD [42].

Taking the Nitsche constrainingextensions into account, the weak formu-
lation of the linear thermoelastic problem changes to:
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replacemen

Ωphy

t
t = 0on ∂Ω∪

ΓN

ΓD

Ωfict

Ω∪=Ωphy ∪ Ωfict α = 1.0

α = 0.0

Figure 1: The Finite Cell idea: The physical domain Ωphy is embedded into
the fictitious domain Ωfict. The resulting Ω∪ can be discretized easily which
prevents complex mesh generation for Ωphy. The original problem is recovered
by the localization factor α [36].

Find φ, u ∈ H1 such that

Bth(φ, δφ) + Gth(φ, δφ) = F th(δφ) + g
th(δφ) (7a)

and

Bel(u, δu) + Gel(u, δu) = F el(δu) + g
el(δu, φ) (7b)

∀ δφ, δu ∈ H1,

where H1 denotes the Sobolev space.
Based on this formulation, the Finite Cell Method can be employed. The

following chapter outlines the essential ideas of this approach.

3. The Finite Cell Method

As indicated in the introduction, the Finite Cell Method combines the
ideas of Fictitious Domain Methods with those of high-order Finite Elements
(p-FEM) [38]. The method aims to reduce the effort required for mesh gener-
ation while yielding high-order convergence rates on non-conforming meshes.
It was first introduced for 2D problems in [26] and extended to 3D in [11].
Following these publications, this section recapitulates the essential ideas of
the method.

3.1. Basic Concept

The Finite Cell Method inherits the FEM idea to find the “best ap-
proximation” of an analytical solution in a finite dimensional ansatz space
V h ⊂ H1(Ωphy) [20]. This is achieved by representing the numerical solution
as a linear combination of shape functions that span V h. The p-version of
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the Finite Element Method uses integrated Legendre polynomials as shape
functions [38]. With this representation of the numerical solution, the task
of finding the best approximation yields a system of linear equations

Ka = f

that has to be solved for a aggregating the coefficients of the linear combi-
nation. How the system matrix K and the right-hand side vector f follow
from the weak form is, for example, illustrated in [44, 20, 38].

In contrast to the standard FE-approach, the Finite Cell Method utilizes
the fictitious domain concept. This embeds the possibly complex physical
domain Ωphy in a fictitious domain Ωfict. The FCM then solves the boundary
value problem on their simply shaped union Ω∪ (cf. Figure 1) while recovering
the original domain on the integration level by the localization factor

α (x) =

{

1 if x ∈ Ωphy

0 if x ∈ Ωfict.
(8)

This additional scalar field allows to reformulate the bilinear form (4a) in
terms of Ω∪:

Bth(φ, δφ)
(4a)
=

∫

Ωphy

∇δφ · κ · ∇φ dΩ

=

∫

Ωphy

∇δφ · κ · ∇φ dΩ

+

∫

Ωfict

0 · ∇δφ · κ · ∇φ dΩ

(8)
=

∫

Ω∪

α · ∇δφ · κ · ∇φ dΩ. (9a)

The remaining expressions of (4) follow in analogy:

F th(δφ) =

∫

Ω∪

α · δφ · s dΩ+

∫

Γth
N

δφ · q̂ dΓ (9b)

Bel(u, δu) =

∫

Ω∪

α · ε(δu) : C : ε(u) dΩ (9c)

F el(δu, φ) =

∫

Ω∪

α · δu · b dΩ+

∫

Γel
N

δu · t dΓ

+

∫

Ω∪

α · δε : C : εth(φ) dΩ. (9d)
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Finite cell mesh

k=0 k=1 k=2

k=3 k=4 k=5

with geometric
boundary

Figure 2: Domain integration scheme: The physical domain is captured on
a k-times recursively refined integration mesh [36]

This idea circumvents the discretization of the possibly complex original
geometry and allows for meshing the simply shaped domain Ω∪ instead. The
resulting non-conforming high-order elements are denoted as cells giving the
method its name (cf. Figure 1).

Although the Finite Cell idea is rather simple, its implementation faces
some challenges. In particular, the domain integration and the boundary
conditions require special care. These two aspects shall be discussed in more
detail.

Remark: Since the finite cell mesh is rather coarse and not aligned with
the physical domain, a certain smoothness of the solution has to be assumed.
In particular, singularities caused by the domain geometry and/or boundary
conditions could not be captured correctly by the coarse discretization. As
described in [37], a successive h-refinement towards the point of singularity
is required to better capture the solution and to shield the rest of the do-
main sufficiently from the influence of the singularity. Following this idea,
Schillinger and co-workers [33, 34, 35] recently extended the Finite Cell idea
by a hierarchical hp-d refinement strategy, where, in analogy to the integra-
tion scheme, also the actual mesh is adaptively refined. This extension allows
to capture non-smooth solutions, as well.
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3.1.1. Domain Integration Scheme

As shown in the previous section, the parameter α allows to identify the
physical domain Ωphy within the embedding fictitious domain Ωfict during
integration. Unfortunately, this yields discontinuous integrands in (9) which
inhibits the straightforward use of the Gaussian quadrature rule [28, 20].
Instead, the FCM requires special integration schemes to resolve the discon-
tinuous integrand. A detailed discussion on different approaches is presented
in [1]. The general ideas are outlined here.

One possibility to capture the discontinuity is to adjust the weighting
factors of the individual Gaussian integration points. This approach can be
elaborated by an additional modification of the Gauss-point positions.

A different idea is to resolve the discontinuity via a triangulation of Ωphy.
XFEM and Level Set approaches commonly employ this strategy since it
is rather simple to implement when using linear shape functions [23, 10].
Also high order triangulations are possible, and optimal convergence up to
order three can be obtained as shown in [9]. However, for higher polynomial
degrees, the complexity of the approach increases. It also contradicts the aim
of the FCM to avoid complex meshing, which is why it is not employed here.

Instead, the FCM applies a recursive refinement strategy to resolve the
physical domain on a locally adapted integration mesh (cf. Figure 2). In
addition to the simple quad- or oct-tree data structure, this approach offers
the advantage that it does not require an explicit formulation of the bound-
ary. Only an inside/outside test has to be performed for the corner points
of each integration cell. This can, for example, be done using a STL1-based
domain description in conjunction with a k-d-tree library [5]. Note that the
integration approach does not introduce additional degrees of freedom (dofs)
since the Finite Cell discretization remains unchanged. Therefore, the size
of the final system of equations does not increase.

3.1.2. Imposing Boundary Conditions on Non-conforming Meshes

Since the Finite Cell mesh does not resolve the physical domain, also the
boundary conditions require special consideration.

Non-homogeneous Neumann conditions require the integration of the re-
spective surface integrals in (4b) and (4d) over the boundary ΓN . This de-
mands for a surface discretization. A simple possibility to generate these

1stereolithography

11



boundary meshes is an export of the surface description from a CAD2program
into a STL-file. As for the domain discretization, this additional mesh has no
effect on the Finite Cell discretization and does not introduce any additional
degrees of freedom.

Dirichlet boundary conditions are treated in analogy to the Neumann
conditions by the integration of the Nitsche extension terms (5) and (6) on
the basis of the described surface discretization.

3.2. The Finite Cell Method for Linear Thermoelasticity

As discussed in Section 2, a thermoelastic analysis addresses the interac-
tion between a thermal and an elastic field. This two-field coupling carries
over to the discretization:

[

Kth Cth

Cel Kel

] [

φ

u

]

=

[

f th

f el

]

,

with Kth and Kel being the thermal and elastic system matrices, respec-
tively. The solution vectors φ and u denote the coefficients of the respective
linear combinations. The vectors f th and f el follow form the discretization
of the right-hand side of the weak form (7). Cth and Cel are the coupling
matrices, which describe the field interaction.

Since this paper presents a first solution step of this general problem
by focusing on linear thermoelasticity, the back-coupling influence of the
displacement u onto the temperature φ can be neglected. The coupling
matrix Cth can, therefore, be taken out of consideration. This simplifies the
system as follows:

[

Kth 0

Cel Kel

] [

φ

u

]

=

[

bth

bu

]

. (10)

In literature, monolithic and partitioned solution strategies are discussed
for such problems [14]. The first approach solves the above system as a whole.
A partitioned scheme, which is chosen here, transfers the problem into an
explicit form and solves it in two steps:

First solve Kthφ = bth. (11a)

Then solve Kelu = bel −Celφ. (11b)

2Computer Aided Design
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Following this approach, the coupling between the two fields reduces to
exchange data between the two solution steps. As discussed in Section 2, the
two fields are coupled on the physical domain by (4d) and on the Dirichlet
boundary by (6b). Therefore, the algorithm for the solution of the linear
thermoelasticity problem includes the following steps:

1. Pre-pocessing steps

(a) Export of the geometric model from the CAD program into a
STL-File.

(b) Decision about a fictitious domain. Typically, a bounding box is
chosen.

(c) Discretization of Ω∪ with a simple Cartesian mesh.
(d) Setup of surface meshes for the boundary conditions.

2. Solution steps

(a) Solve (11a) for φ
(b) Extract coupling data on Ωphy and ΓD from solution
(c) Solve (11b) for u

3. Post-processing

4. Numerical Examples

The two previous sections introduced the governing equations of linear
thermoelasticity and the essential ideas of the Finite Cell Method. This part
of the paper asses the applicability This part of the paper is concerned with
the assessment of the applicability of the FCM for linear thermoelastic prob-
lems with the help of two 2D, plane stress examples. The first problem is an
academic benchmark which allows to study the convergence properties of the
method. The second example is practice-oriented and asses demonstratesthe
approximation qualities of the FCM on a complex physical domain.

4.1. Analytical Benchmark

The following example aims to study the convergence properties of the
Finite Cell Method in the context of linear thermoelasticity. For this purpose,
the method is employed to simulate the thermoelastic state of the 2D ring
plate shown in Figure 3.
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φ0 = 0.0
E = 1.0
ν = 0.0
κ = 1.0
γ = 1.0

r
1 = 0.25r

2
=
1.0

r θ

30◦φ = 3◦

φ = 1◦

ur = 0.25

ur = 0.0
Ωfict

Ωphy

1
.1

1.1

x

y

Figure 3: Geometrical and constitutive setup of the ring benchmark

(a) 4× 4 Finite Cell discretization of Ω∪ (b) Integration mesh with 5 recursive re-
finements

Figure 4: Domain discretization

4.1.1. Example Setup

As depicted, the temperature on the in- and outside of the ring is set to 3◦

and 1◦, respectively. With the help of the given thermal material properties
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(a) Analytical temperature
distribution

(b) Analytical displacement
distribution

(c) Analytical stress distri-
bution

Figure 5: Analytical solutions

(cf. Figure 3), the analytical temperature distribution reads

φ(r) = 1−
ln(r)

ln(2)
, (12)

with r denoting the radial distance. The energy norm [20] of the temperature
distribution yields

‖φ‖2E =
1

2
Bth(φ, φ)

(4a)
=

1

2

∫

Ωphy

∇φ · κ · ∇φ dΩ

(12)
= π ·

4

ln(4)
≈ 9.064720284. (13)

In addition to the thermal loading (12), the ring is displaced by 0.25
units3in radial direction on the inside boundary whereas the outer boundary
is fixed. With the mechanical material properties given in Figure 3, the
displacement of the ring reads

ur(r) = −
r

2

ln(r)

ln(2)
(14a)

uθ(r) = 0, (14b)

3Although this large deformation of the ring violates the assumption of small displace-
ments for linear elasticity, the boundary conditions are still valid for this academic bench-
mark example since it aims to asses demonstratethe method’s potential in the context of
linear thermoelasticity.
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(a) Numerical temperature
approximation

(b) Numerical displacement
approximation

(c) Numerical stress approx.

(d) Relative approximation
error of the temperature

(e) Relative approximation
error of the displacement

(f) Relative approximation
error of the von Mises
stress

Figure 6: Numerical results computed with shape functions of polynomial
degree p = 3 (105 and 210 dofs for the temperature and displacement, re-
spectively) (Remark: The error on the outer boundary in Figure 6e is not
depicted since any deviation form the analytical value zero would result in a
infinite relative error)

with r and θ denoting the radial and angular coordinates, respectively. The
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(a) Numerical temperature
approximation

(b) Numerical displacement
approximation

(c) Numerical stress approx.

(d) Relative approximation
error of the temperature

(e) Relative approximation
error of the displacement

(f) Relative approximation
error of the von Mises
stress

Figure 7: Numerical results computed with shape functions of polynomial
degree p = 5 (233 and 466 dofs for the temperature and displacement, re-
spectively) (Remark: The error on the outer boundary in Figure 7e is not
depicted since any deviation form the analytical value zero would result in a
infinite relative error)

corresponding strains in polar coordinates read [32]

εr(r) =
∂ur

∂r
= −

1

2

ln(r) + 1

ln(2)
(15a)

εθ(r) =
1

r

∂uθ

∂θ
+

ur

r
= −

1

2

ln(r)

ln(2)
(15b)

εrθ(r) =
1

2

(

1

r

∂ur

∂θ
+

∂uθ

∂r
−

uθ

r

)

= 0. (15c)

17



According to Hooke’s law of plane stress in polar formulation [32], the fol-
lowing mechanical stress distribution results:

σr(r) =
E

1− ν2
[εr + νεθ − (1 + ν)γ(φ− φ0)]

= εr(r)− φ(r) (16a)

σθ(r) =
E

1− ν2
[εθ + νεr − (1 + ν)γ(φ− φ0)]

= εθ(r)− φ(r) (16b)

σrθ(r) =
E

1 + ν
εrθ = 0. (16c)

The energy norm of the given displacement distribution yields

‖u‖2E =
1

2
Bel(u,u)

(4c)
=

1

2

∫

Ωphy

ε : C : ε dΩ

(14)
= −

π

128

(

8−
15

ln(2)2

)

≈ 5.699176662 · 10−1. (17)

To numerically approximate these analytical distributions, the physical
domain Ωphy is embedded in a square domain Ω∪ = [−1.1, 1.1]2 (cf. Figure 3),
which is then discretized by a 4×4 Finite Cell mesh (cf. Figure 4a). Based on
an analytical description of the ring geometry, a recursive refinement strategy
recovers the physical domain on the integration level (Figure 4b). In addition
to these domain discretizations, the Dirichlet boundary conditions require a
separate surface mesh. For this purpose, 1000 line segments approximate the
curved boundaries by a fine polygon. The value of the penalty parameter is
chosen empirically. βth is set to 104, and for βel a value of 103 is chosen.

4.1.2. Results and Discussion

The Finite Cell approximations resulting from the described numerical
setup are depicted in Figure 6. The comparison to the analytic solutions
(Figure 5) shows that, even with low order polynomials of degree 3, the
FCM captures the temperature and displacement correctly. In particular,
the results show no deviation on the boundary. The numerical solution also
represents the stress state without major faults. Figure 7 shows that an
increase of the polynomial degree leads to a significant reduction of the ap-
proximation error. Especially, mesh artifacts vanish as the comparison of

18



Figure 6b and 7b shows. The depicted relative errors of about 1− 3% verify
the quality of the numerical results.

The distribution of the relative error reveals that the deviations of all
three results concentrate in the four inner cells. Especially for the stress
approximation, the error in the outer cells is significantly lower than in the
inner cells. The reason for this characteristic is the mutual influence of
the four inner cells that constrain the extension of the numerical solution
into the internal void. In contrast, the ansatz of the outer cells can extend
freely, which allows for a better approximation of the analytical solution.
Comparing Figure 6f and 7f shows that an increase of the polynomial degree
yields a lower and more equally distributed approximation error in the four
inner cells.
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Figure 8: Comparison of the numerical approximations and the analytical
solutions along the 30◦ cut-line for different polynomial degrees
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For a detailed assessment of the approximation, Figure 8 depicts the nu-
merical results along a 30◦ cut-line. The comparison to the exact solution
verifies a good compliance of the approximation inside the physical domain
r ∈ [0.25, 1]. On the boundary, the approximations meet the Dirichlet con-
ditions and smoothly extend into the fictitious domain without oscillations.
Note that the graphs reveal an error concentration inside the physical domain
in conjunction with a high compliance of the boundary values. This discrep-
ancy is especially pronounced for lower polynomial degrees and results from
the high values chosen for β that penalize any deviation on the boundary.

The comparison also shows that the numerical approximations converge
against the analytical solutions when increasing the polynomial degree p.
Especially, the jumps in the stress distribution at the element crossings de-
crease. For p = 5, no major deviations in the stress results can be observed.

The influence of the polynomial degree p is assessed in more detail by a
p-convergence of the error in the energy norm [11]:

‖eφ‖E=

√

|‖φ‖2E − ‖φnum‖2E|

‖φ‖2E
· 100%

and ‖eu‖E=

√

|‖u‖2E − ‖unum‖2E|

‖u‖2E
· 100%.

Figure 9 depicts the evolution of this error measure against the degrees of
freedom. Different numbers of recursive mesh refinements are compared to
investigate the influence of integration accuracy.

The convergence curves show that 3 recursive refinements do not resolve
the physical domain with sufficient precision. The integration error dom-
inates the numerical accuracy which results in low convergence rates. An
increase of refinements reduces this influence and allows for higher accu-
racy. Nevertheless, the convergence flattens off at an accuracy level of about
0.1−1%. The mismatch between the numerical representation of the domain
and its boundary is assumed to cause this behaviour and will be addressed
in upcoming research. However, at an error of this level, the energy norm
differs at the third or fourth decimal place, only. Typically, this accuracy is
more than sufficient for engineering practice.

A study of the convergence rates shall conclude the result analysis.For
this purpose, To analyse the convergence characteristic in more detail, the
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Figure 9: p-convergence study in the energy error norm for p = 2, 3, . . . , 12

convergence rates are computed [37]:

qi = −
log

(

‖e‖i+1

E

‖e‖i
E

)

log
(

ni+1

ni

) ,

with ‖e‖iE denoting the energy error and ni denoting the number of unknowns
in the ith refinement step. Figure 9c depicts the improvement rates of the
first seven steps.

The graph reveals that, at the beginning, the increase of p yields conver-
gence rates of up to 2.7. In a traditional h-refinement, these improvements
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Figure 10: Influence of the penalty parameter β on the error in the energy
norm on a 10 times recursively refined integration mesh with p = 5.

correspond to convergence rates of order 5 since, in two dimensions, n scales
quadratically with the element size h. Therefore, the p-refinement achieves
super-algebraic convergence. Above that, the graph shows an increase of the
convergence rates. This indicates a pre-asymptotic exponential convergence
for both fields. To visualize this convergence characteristic, an exponential
interpolation between two empirically chosen points is depicted as a trend
line in Figure 9a and 9b. This comparison verifies that the head and tail of
the convergence curves meet the exponential rates. However, the convergence
drops, in between. The empirical choice of the penalty value β causes this
non-monotonic behaviour.
The large influence of this parameter is depicted in Figure 10 In a certain
range, a minor adjustment of β has significant effects on the error in the en-
ergy norm whereas, in other ranges, the influence is negligible. The β-study
shows that the penalty values for this benchmark were chosen from the latter
part of the spectrum. For low order methods, the value of β can be approxi-
mated to achieve optimal convergence rates . The influence of this numerical
parameter in the framework of the FCM is subject to current research.
Nevertheless, the partially exponential characteristic shows that this main
quality assessment of high-order methods can be achieved in context of lin-
ear thermoelasticity on non-conforming meshes when combining the FCM
with Nitsche’s Method.
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Concluding this section, the influence of the penalty parameter value is
analysed in Figure 10. As described in Section 2, the value of β has to be
chosen above a lower threshold that ensures coercivity of the weak form. The
depicted β-study shows that these critical values are 4·102 for the thermal and
4 · 101 for the elastic problem. The penalty values chosen for this benchmark
example are therefore above the lower threshold and thus the coercivity of
the weak form is ensured.

4.2. Heat Exchanging Device

In contrast to the simply shaped ring benchmark, the following example
aims to approximate the thermoelastic state of the heat exchanging device
depicted in Figure 11. The results of the Finite Cell Method are compared
to a Finite Element solution.

4.2.1. Example Setup

35◦ 60◦ simple supportcut-line

E = 7 · 1010 ν = 0.35 κ = 237 γ = 23 · 10−6

Figure 11: Setup of heat exchanging device

Inside the boreholes, a hot medium heats the device to 60◦. A surrounding
medium establishes a temperature of 35◦ on the outside.

To simulate the resulting temperature distribution, the Finite Element
Method requires a conform meshing of the actual physical domain (cf. Fig-
ure 12a). In case of the Finite Cell Method, this complex discretization is
avoided by embedding the physical domain in a simply shaped bounding box
(cf. Figure 12b).

Since the conforming discretization resolves geometric features on mesh
level, quadratic shape functions are sufficient to capture the solution char-
acteristics. This discretization yields about 57,000 dofs for the temperature
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simulation and almost 130,000 dofs for the displacement approximation, re-
spectively. On the coarse Finite Cell mesh, 8 recursive refinements capture
geometric details during integration using a STL-based domain description.

(a) Conform Finite Element mesh: 7,604
elements with shape functions of order
p = 2; 57,497 and 129,001 dofs for the
temperature and displacement compu-
tation, respectively

(b) Non-conform Finite Cell mesh: 128 el-
ements with shape functions of order
p = 10; 6,257 and 12,513 dofs for the
temperature and displacement compu-
tation, respectively

Figure 12: Domain discretization

(a) Temperature approximation with the
FEM

(b) Temperature approximation with the
FCM

(c) Stress approximation with the FEM (d) Stress approximation with the FCM

Figure 13: Comparison of the temperature and stress approximation with
the FEM and the FCM
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To represent the solution correctly, high order polynomials of degree p = 10
are used as shape functions in the Finite Cell computations. Nevertheless,
due to the coarse mesh, the number of unknowns in the Finite Cell simulation
is significantly lower than in the Finite Element case. To avoid numerical
problems while solving the system of equations, the value of the localization
factor α is not set to zero but to 10−15.

As for the ring benchmark, a fine polygon discretizes the boundary. For
the temperature approximation, a penalty value of 105 is chosen empirically.
In the displacement case, βel is set to 103. Fixing one node along the sym-
metrical axis in horizontal direction avoids rigid body motions.

4.2.2. Results and Discussion

Based on the outlined numerical setup, both methods can approximate
the temperature distribution. Figure 13 depicts the two results. The com-
parison shows that the range as well as the distribution of the both approx-
imations match. Figure 14a extracts the results along the vertical cut-line
depicted in Figure 11. The comparison proves that the results of the two nu-
merical methods match inside of the actual physical domain. On the bound-
ary, the Finite Cell solution meets the Dirichlet conditions and smoothly
extends into the fictitious domain without oscillations. This confirms the
findings of the previous example.
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Figure 14: Comparison of the temperature and stress approximation along
cut-lines

With the results of the temperature approximation at hand, the defor-
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mation of the device is computed. Figure 13c and 13d depict the mechanical
stress resulting form this thermal loading. As for the temperature, the re-
sults of both methods match in their range and distribution. In particular,
the position of stress concentrations correspond. Figure 14b extracts the
results along the diagonal cut line depicted in Figure 11. The comparison
proves that also the stress approximations of both methods coincide within
the physical domain. In particular, the Finite Cell Method even captures the
stress concentrations at both reentrant corners correctly.

Together, these findings verify the applicability of the FCM to solve com-
plex thermoelastic problems on non-conforming meshes.

5. Summary, Conclusion, and Outlook

This paper aims to solve linear thermoelastic problems in the high-order,
fictitious domain framework of the Finite Cell Method. For this purpose,
the first half of the article recapitulated the governing equations of linear
thermoelasticity and the essential ideas of the FCM. The explanation focused
on how Dirichlet boundary conditions of the coupled problem can be imposed
on non-conforming meshes. It was shown that this requires an integration
of the Dirichlet boundary conditions into the weak problem formulation and
Nitsche’s Method was introduced for this purpose. Applying this idea to the
multi-physical problem of linear thermoelasticity gave rise to a new coupling
term which connects the two fields additionally on the Dirichlet boundary.

The second half of this paper analysed the approximation quality of the
FCM with the help of two examples. The studies verified that, even on com-
plex physical domains, the temperature, the displacement as well as the stress
distributions can be approximated with high accuracy. Also the boundary
conditions could be imposed correctly on non-conforming meshes. For the
analytical benchmark example, super-algebraic convergence rates in the en-
ergy norm could be observed and, partially, even exponential characteristics
were achieved.

These findings prove that the FCM in conjunction with Nitsche’s ideas
can be applied for high order simulations of linear thermoelastic problems
on non-conforming meshes. This verifies the applicability of the FCM for
multi-physical problems.

In upcoming research, this aspect will be explored by addressing non-
linear thermoelastic coupling as well as transient problems. Furthermore,
three-dimensional examples will follow.
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The research presented in this paper focuses on smooth, stationary, lin-
ear thermoelastic problems in two dimensions. In upcoming research, it is
planned to study the method’s potential in the context of transient, non-
linear thermoelastic coupling and to also address three-dimensional exam-
ples. Furthermore, the research will be extended to non-smooth thermoe-
lastic problems utilizing the hierarchical hp-d refinement strategy, recently
introduced by Schillinger et al. [33, 34, 35].
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[21] R. Löhner, J. Cebral, F. Camelli, J. Baum, E. Mestreau, and O. Soto.
Adaptive embedded/immersed unstructured grid techniques. Archives
Of Computational Methods In Engineering, 14:279–301, 2007.

[22] R. Mittal and G. Iaccarino. Immersed Boundary Method. Annual Re-
view Fluid Mechanics, 37:239–260, 2005.

[23] M. Moumnassi, J. Belouettar, E. Béchet, S. Bordas, Q. D., and
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