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Abstract

We investigate three-dimensional problems in solid mechanics with stochastic loading or material properties. To solve these problems,
we use a spectral expansion of the solution and random inputs based on Askey-type orthogonal polynomials in terms of independent,
identically distributed (i.i.d) random variables. A Galerkin procedure using these types of expansions, the generalized Polynomial Chaos
(gPC) method, is employed to solve linear elasticity problems. An analagous spectral collocation formulation is used to study problems in
nonlinear elasticity. These methods both cast the stochastic problem as a coupled or decoupled high-dimensional system of deterministic
PDEs, which is then solved numerically using a deterministic p-finite element solver. We present algorithms for solving certain coupled
systems arising from the stochastic Galerkin projection without modifying the original deterministic solver. Three-dimensional riser-sec-
tions undergoing elastic deformations due to random pressure loads are considered. We also model a riser-section with stochastic
Young’s modulus undergoing deterministic loads. It is demonstrated that the gPC method provides accurate and efficient results at a
speed-up factor of two and three orders of magnitude compared to traditional Monte-Carlo simulations. For nonlinear problems,
the stochastic collocation method is also shown to be much faster than Monte-Carlo simulation, while still rivaling this method in sim-
plicity of implementation.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The study of the mechanical response of structures with
stochastic loading or material properties has many applica-
tions in engineering. The stochastic nature of physical
quantities may come from an uncertainty in measurements
or insufficient information. For example, modeling the
Young’s modulus of a material as a random variable can
account for ignorance of its true value. Alternatively, the
parameters in a problem may possess an intrinsic random-
ness. External loading on structures from environmental
sources such as fluid flow is often modeled as a temporal
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or spatio-temporal stochastic process. For example, in
[1], noisy ocean wave-induced forces on offshore structures
are modeled as a Gaussian random process in time. In
addition, material properties of a structure may vary from
point to point in the material; thus they can be represented
as spatial random processes. Much of the work in this field
(e.g. [2]) has been based on the assumption that the
Young’s modulus is random and the Poisson ratio is deter-
ministic. There has, however, been some work such as [3]
where both quantities are considered as spatial random
processes. In [4], the generalized Polynomial Chaos (gPC)
method using Hermite polynomials was applied to study
3-D elasto-plastic bodies with uncertain material proper-
ties. Although only four terms in the K–L expansion are
used in [4] with low-order finite elements, the authors dem-
onstrate the accuracy and efficiency when computing the
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mean and standard deviation by PC compared to Monte-
Carlo (MC) simulation.

In both situations with inherent stochasticity as well as
uncertainty in measurements, modeling these systems with
their deterministic means may lead to unrealistically con-
servative solutions. The moment statistics of a solution
carry important information regarding the presence and
probability of extreme events that might lead to cata-
strophic failures. However, Monte-Carlo simulations for
the stochastic analysis of such complex systems are often
computationally prohibitive. In this paper we apply alter-
native numerical methods to approximate stochastic solu-
tions to these types of problems. Our primary motivation
is to apply and evaluate the viability of the stochastic
Galerkin and collocation methods in three-dimensional
elasticity problems with non-trivial geometries and stochas-
tic loading or material properties. These model problems
are inspired from the physical scenario of marine risers
with uncertain material properties undergoing a noisy
ocean cross-flow. Various riser-section structures are con-
sidered with mean pressure loading profiles based upon
experimental data of fluid flow past a circular cylinder.
The stochastic quantities include the magnitude of the pres-
sures (modeled as a spatial random process) and the mate-
rial properties (modeled as a random variable). In order to
evaluate the viability of these methods we consider mainly
the computational costs, accuracy of the solution and the
ease of implementation. In addition, we formulate an algo-
rithm to easily implement the stochastic Galerkin method
in certain cases, which acts as a wrapper code around the
deterministic solver. Various types of problems are tested,
including those that are linear/nonlinear in physical space
and linear/nonlinear in random space. It is, thus, our aim
to provide the reader with some experimental analysis of
the suitability of these methods to various types of three-
dimensional problems, with regard to the accuracy and
computational costs involved. In addition, we would like
to provide sufficiently general algorithms and formulations
for easily implementing these techniques.

The stochastic spectral methods used herein employ
spectral expansions of the solution and random inputs
based on Askey-type orthogonal polynomials in terms of
independent, identically distributed random variables.
These types of expansions are called generalized Polyno-
mial Chaos (gPC) expansions and were first introduced in
[5] as a generalization of the Hermite Chaos expansions
originally proposed by Wiener [6]. Once equipped with
these spectral expansions in random space, one can formu-
late stochastic Galerkin and collocation spectral methods
using the usual projections. The stochastic Galerkin
method, usually called the generalized Polynomial Chaos
(gPC) method, transforms the original problem into a set
of coupled deterministic problems to be solved by standard
finite element methods (FEMs) [5,7–10]. In some cases,
when the problem is linear in random space (e.g., stochastic
loading for linear elasticity), the resulting deterministic sys-
tem of equations is decoupled and, thus, much less compu-
tationally intensive. In these cases, rewriting of the
deterministic solver is not necessary. However, in the case
of nonlinearities in random space (e.g., stochastic material
properties), this method usually requires extensive rewrit-
ing of the deterministic solver, a distinction that makes
the gPC method less attractive than the collocation
method. The stochastic collocation method [11] is ‘‘blind’’
to nonlinearities in random space and hence easier to
implement than gPC in problems with random nonlineari-
ties. As in deterministic spectral methods, the stochastic
collocation procedure involves specifying a set of colloca-
tion points, usually chosen to coincide with a specific cuba-
ture rule. In this paper we briefly address the issue of sparse
grid quadrature, where a sparse rather than full set of
quadrature points is used, with a corresponding modifica-
tion to the cubature weights and rule. This technique signif-
icantly reduces computational costs, which compound with
increasing dimensionality in random space.

Both the gPC and stochastic collocation methods can
lead to considerable speed-up in computational time as
compared to MC simulation. It should be noted, however,
that in problems with a large number of random dimen-
sions, the computational cost of MC scales better than
these methods. In this work we consider problems with rel-
atively low random dimensionality, thus restricting our-
selves to the realm in which the stochastic spectral
methods are competitive with MC. The random inputs
are either random variables or processes represented by a
truncated Karhunen–Loève (K–L) expansion, which is a
representation of a random process in terms of a linear
sum of uncorrelated random variables [7].

The paper is structured as follows. In Section 2, we pres-
ent the notation and two model structures representing ris-
ers: a thin-walled elastic tube with and without a spherical
reinforcement. We also provide there a description of the
experimental fluid loads and material properties upon
which random inputs are modeled in the paper. In Section
3, the basics of the generalized Polynomial Chaos are pre-
sented, along with the general formulation for the stochas-
tic Galerkin and collocation methods. In Section 4, the
Karhunen–Loève expansion for second-order random pro-
cess inputs is described. The stochastic Galerkin and collo-
cation schemes for linear and nonlinear elasticity systems
are presented in Section 5. There we address various cases
of stochastic inputs for both methods, including the cou-
pled gPC scheme for the linear elasticity system with sto-
chastic material properties. A solution algorithm by the
iterative Gauss–Seidel method is provided for the special
case of stochastic Young’s modulus and deterministic Pois-
son ratio. In Section 6, we provide a description of the spe-
cific random process loading, which will be used in the
numerical examples (Section 7). We also investigate several
cases, including linear elasticity problems using the gPC
method and linear/nonlinear elasticity problems using the
stochastic collocation method for both stochastic loading
and material properties. We perform numerical experi-
ments to investigate the influence of the finite element
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space-discretization errors on the results, as well as the
effect of using sparse grid collocation. We conclude in Sec-
tion 8 with a brief summary.

2. Preliminaries

2.1. Deterministic linear and nonlinear elasticity

Consider three-dimensional domains D � R3, in which
every point is represented by Cartesian coordinates
x = (x1,x2,x3)T. We denote the displacement vector at
point x by u(x) = (u1(x),u2(x), u3(x))T, and the body forces
by f(x). The second-order strain tensor under the assump-
tion of small strains is defined to be

eij ¼def 1

2

oui

oxj
þ ouj

oxi

� �
; i; j ¼ 1; 2; 3; ð1Þ

whereas the second-order Almansi strain tensor is used for
nonlinear elasticity when geometric nonlinearity (large dis-
placements) is addressed

eij ¼
def 1

2

oui

oxj
þ ouj

oxi
�
X3

k¼1

ouk

oxi

ouk

oxj

 !
; i; j ¼ 1; 2; 3: ð2Þ

We restrict our attention to isotropic materials, for which
the constitutive relation between strains and stresses is lin-
ear (i.e. Hooke’s law [12]), determined by two material
parameters k and l (known as the Lamé constants). In
the engineering community the Young’s modulus E and
the Poisson ratio m are used, and these are related to Lamé
constants

E ¼ lð3kþ 2lÞ
kþ l

; m ¼ k
2ðkþ lÞ : ð3Þ

Therefore, if either E or m are random processes, then both
k and l are also random processes.

When geometric nonlinearities are considered the Cau-
chy stress tensor and the Almansi strain tensor are associ-
ated via Hooke’s law

rij ¼
X3

k;l¼1

Cijklekl; i; j; k; l ¼ 1; 2; 3;

Cijkl ¼ kdijdkl þ lðdikdjl þ dildjkÞ; ð4Þ

where dij is the Kronecker symbol. In the case of linear elas-
ticity (small displacements), Eq. (4) still holds with ekl in-
stead of ekl.

Under the assumption of small displacements, one may
substitute the kinematic condition into Hooke’s law, and
by satisfying the equilibrium equations a second-order lin-
ear elliptic system of PDEs, named the Navier–Lamé equa-
tions, is obtained (see e.g. [12]):

�lr2uðxÞ � ðkþ lÞrðr � uðxÞÞ ¼ f ðxÞ in D: ð5Þ

This system is presented here in terms of the Lamé con-
stants for mathematical simplicity. However, from now
on we will switch to the more commonly used E and m.
The Navier–Lamé system is complemented by the bound-
ary conditions:

T j ¼
def

rijnj ¼ T̂ j; j ¼ 1; 2; 3 on oCT ; ð6Þ
uj ¼ ûj; j ¼ 1; 2; 3 on oCu; ð7Þ

where �̂ are prescribed functions on the boundary of the
domain. If either the body forces f or the tractions T are
uncertain, then additive uncertainty arises. If the material
properties E or m are uncertain, then multiplicative uncer-
tainty arises.

The weak formulation associated with (5) is (see [13]):

Find u 2 E
o

ðDÞ so that

Bðu; vÞ ¼FBFðvÞ þFTðvÞ 8v 2 E
o

ðDÞ; ð8Þ

where E
o

ðDÞ is the space of statically admissible displace-
ment functions, Bðu; vÞ is the elasticity bilinear form de-
fined as

Bðu; vÞ ¼def 1

4

Z
D

X3

ijkl¼1

Cijkl
oui

oxj
þ ouj

oxi

� �
ovk

oxl
þ ovl

oxk

� �
dD ð9Þ

and FBFðvÞ, FTðvÞ are the linear forms associated with the
body forces and tractions

FBFðvÞ ¼def
Z
D

f � vdD;

FTðvÞ ¼def
Z

oDT

T � vdS:

In the case of large-deformations (nonlinear elasticity), the
weak formulation is stated in the deformed configuration
so that D ¼ DðuÞ, and (8) remains the same, but the bivar-
iate form is defined as follows:

Bðu;vÞ¼def 1

4

Z
DðuÞ

X3

ijkl¼1

Cijkl
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dD:

ð10Þ
Furthermore, when pressure boundary conditions are ap-
plied, i.e. T = �pn, where n is the outward normal to the
surface and is, of course, solution dependent, then the lin-
ear form FTðvÞ becomes nonlinear also:

FTðvÞ ¼def
Z

oDT ðuÞ
�pnðuÞ � vdS: ð11Þ

Due to the nonlinearities presented in the formulation, the
solution for u must be obtained by iterations, see for exam-
ple [14].

2.2. Geometric models and experimental data

In this work we study two thin-walled riser-sections with
and without spherical masses attached to their centers.
These models are shown in Fig. 1, where the x3 � z direc-
tion is along the cylinder’s lengthwise axis. The length of
the risers is 10 m, and outer diameter is 0.5 m. The inner
diameter of the cylinders used in the numerical examples



Fig. 1. Geometry and finite element meshes of risers used in the numerical
experiments.
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vary between 0.4 and 0.48 m. The attached spherical mass
has a radius of 0.35 m. In the problems discussed in this
paper, the structure is clamped at one end, i.e. u = 0 at
z = 10. Since the intersection of the clamped surface and
the inner and outer cylindrical surfaces at z = 10 causes
stress singularities, the p-finite element mesh contains a
refinement in the vicinity of the clamped surface. To inves-
tigate the influence of the mesh refinement on the results we
also consider for the riser with the sphere reinforcement a
coarse mesh. The finite element (FE) meshes A and C in
Fig. 1 contain a total of 16 p-FE hexahedral elements,
and mesh B contains 12 hexahedral elements.

In an effort to consider a somewhat realistic fluid load-
ing profile, the traction boundary conditions are extracted
from experiments performed on a stationary cylinder in a
flow field reported in [15]. In this experiment, the mean
pressure forces were measured on a circular cylinder in
cross-flow, at Reynolds numbers 102–105, as shown in the
right of Fig. 2. In our numerical study of the structural
response to a stochastic traction field, we consider the risers
to be immersed in water (kinematic viscosity of 10�6 m2/s)
flowing at a velocity of 0.5 m/s, thus the flow Re number is
Re = 0.5 m/s · 0.5 m/10�6 m2/s = 2.5 · 105. The highest
experimental Cp profile is at Re = 2.1 · 105, considered as
Fig. 2. Pressure boundary conditions from [15] and their application on the rise
the arrows represent the experimental loading profile (a continuous function
number of points). Right: reproduction of data from [15], plotting the press
represent data at different Reynolds numbers.
a good approximation to the mean, and we add a corre-
lated random noise component (to be discussed in more
detail in Section 6). The mean value of the Cp profile
(according to the lowest curve shown in the right graph
of Fig. 2) is approximated with the following seventh-order
polynomial:

ðCpÞexp ¼ 1:05746� 0:08684jhj � 12:44481jhj2

þ 19:07245jhj3 � 11:92860jhj4 þ 3:56530jhj5

� 0:47547jhj6 þ 0:01896jhj7; �p 6 h < p

ð12Þ

which, in turn, produces the following normal traction
(pressure) on the surface of the riser, Tn = 0.5qv2Cp:

ðT nÞexp ¼ �125� ð1:05746� 0:08684jhj � 12:44481jhj2

þ 19:07245jhj3 � 11:92860jhj4 þ 3:56530jhj5

� 0:47547jhj6 þ 0:01896jhj7Þ ½N=m2�; �p 6 h < p:

ð13Þ

Thus, the mean pressure on the riser’s surface is described
by (13) on the FE model. A view of the x1–x2 plane show-
ing the pressure at several distinct points are shown as ar-
rows on the left plot of Fig. 2.

In the numerical examples with uncertain material prop-
erties, we use the pressure in (13) to obtain a deterministic
traction boundary condition.

The characterization of a random Young’s modulus is
extracted from experimental data in [16]. In the cited work,
the Young’s modulus of 4140 steel is measured by four dif-
ferent experimental techniques, namely, impulse excitation,
nanoindentation, four-point bending and resonant ultra-
sound spectroscopy. Note that there, each measurement
on a sample yielded a different Young’s modulus measure-
ment. This may be thought of as uncertainty in measure-
ment; the true value of the Young’s modulus is unknown.
Thus, we model this quantity as a random variable. We
perform a statistical analysis on the experimental data,
assuming a prior uniform distribution before parameter
r. Left: cross-sectional view of x1–x2 plane. The magnitude and direction of
is prescribed whereas the arrows represent only its magnitude at a small
ure coefficient as a function of the angle around the cylinder. The lines
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estimation. Note that there was insufficient data to conclu-
sively confirm a distribution for this analysis. The choice of
a uniform distribution is justified as it is the maximum

entropy distribution for any continuous random variable
on an interval of compact support (taken to be the interval
between the extreme data points in experimental results).
In other words, an assumption of any other prior distribu-
tion satisfying the constraints will have smaller entropy,
thus containing more information and less uncertainty
than the uniform distribution [17,18]. Hence, we model
the Young’s modulus as a uniformly distributed random
variable with mean of 212.74 GPa and standard deviation
of 7.26 GPa. The Poisson ratio is taken to be m = 0.3 in
all numerical examples.
3. Stochastic spectral methods

Here a brief overview of the generalized polynomial
chaos (gPC) and its properties is provided. Many more
details can be found in [7,5]. In addition, we discuss the
general model problem and assumptions for which meth-
ods in this paper are applicable. Some notations are estab-
lished and will be used throughout.
3.1. gPC basis

Let us first define a complete probability space
ðX;A; P Þ, where X is the sample space, P is the probability
measure, and A is the r-algebra of P-measurable sets.
Once again D � R3 represents the physical domain.

Let fnig1i¼1 be independent, identically distributed con-
tinuous random variables mapping ðX;FÞ ! ðR;BÞ where
B is the Borel r-algebra on the reals. The generalized poly-
nomial chaos (gPC) basis is a set of polynomial functionals
in terms of the random variables ni. The original polyno-
mial chaos basis was first proposed by Wiener [6] and
employed Hermite polynomials in terms of Gaussian ran-
dom variables. The idea was then generalized to the Askey
polynomial scheme and non-Gaussian variables by Xiu
and Karniadakis in [5]. Any second-order random process
X ðxÞ 2 L2ðX;A; P Þ can be written as a series expansion of
gPC basis functions:

X ðxÞ ¼ a0U0 þ
X1
i1¼1

ai1U1ðni1ðxÞÞ

þ
X1
i1¼1

Xi1

i2¼1

ai1i2U2ðni1ðxÞ; ni2ðxÞÞ þ � � � ; ð14Þ

where Unðni1 ; . . . ; ninÞ denotes the polynomial chaos basis
function of order n in terms of the random vector
n ¼ ðni1 ; . . . ; ninÞ. The first basis function, U0, has a con-
stant value of 1. According to the theorem of Cameron
and Martin [19], such expansions converge under the L2

norm. For notational convenience, (14) is often rewritten
as
X ðxÞ ¼
X1
j¼0

âjWjðnÞ; ð15Þ

where there is a one-to-one correspondence between the
functions Unðni1 ; . . . ; ninÞ and Wj(n). The {Wj} satisfy the
orthogonality condition:

E½WiWj� ¼ E½W2
i �dij: ð16Þ

According to relation (16), {Wj} is determined by the PDF
of n. The correspondence between classical PDFs and poly-
nomials can be found in [5]. We note that the gPC basis can
also be constructed numerically such that the above prop-
erties hold with the PDF of n as the weight function of
orthogonal polynomials. Information on construction of
such bases for arbitrary PDFs can be found in [20].

3.2. Model problem and assumptions

We consider the model problem

Lðx;x; uÞ ¼ f ðx;xÞ; ð17Þ

where x 2 D, x 2 X and we seek a solution u(x,x) which
holds P-a.e. in X. The random inputs may come from the
operator L, right-hand side f, and even the domain D
(in the case of geometrically nonlinear elasticity, D is not
a random input but nonetheless indirectly acquires a ran-
dom dependence due to the nonlinearity in the problem).
In order to solve problems such as (17) using the techniques
discussed in this paper, an assumption of finite dimensional

noise must be made for each random input R(x):

RðxÞ ¼ RðY 1ðxÞ; Y 2ðxÞ; . . . ; Y drðxÞÞ; ð18Þ

where the fY ngdr
n¼1 are a finite set of real-valued random

variables with mean zero and unit variance. Note that
any stationary random process may be decomposed with
a Karhunen–Loève expansion [21], whose truncated form
satisfies the above assumptions (see Section 4 for more de-
tails). The case of non-independent or non-identically dis-
tributed {Yi} has been addressed in other papers such as
[22], and can also be accommodated by the techniques in
this paper. However, here we assume they are i.i.d. for sim-
plicity in notation. The number of random variables will be
denoted dr, or the ‘number of random dimensions’,
throughout the paper. We denote the range space of each
variable Cn � Yn(X) and the product range space C �Qdr

n¼1Cn (C � C1 � � � � � Cdr
). Since we have assumed the

fY ngdr
n¼1 are independent and continuous, they have a joint

density function q : C! R, and

qðyÞ ¼ q1ðy1Þq2ðy2Þ � � � qdr
ðydr
Þ; ð19Þ

where the qi are the corresponding density functions of the
Yi, yi 2 Ci and y ¼ ðy1; y2; . . . ; ydr

Þ.
With this assumption, by the Doob–Dynkin lemma [23]

we have that the solution u of (17) can also be described by
a finite number of random variables:

uðx;xÞ ¼ uðx; Y 1ðxÞ; Y 2ðxÞ; . . . ; Y drðxÞÞ: ð20Þ
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Let Y ¼ ðY 1; Y 2; . . . ; Y drÞ. Then, the goal of the numerical
methods herein is to seek the solution u(x,Y) to the
problem:

Lðx;YðxÞ; uÞ ¼ f ðx;YðxÞÞ; ð21Þ

where ðx;xÞ 2 ðD� XÞ.

3.3. Galerkin projection

Under these assumptions, all random quantities in the
problem can be described by a finite number dr of random
variables as in (20). In addition, we assume that all the ran-
dom processes involved reside in L2ðX;F; P Þ. The stochas-
tic Galerkin method involves first expressing these random
quantities as truncated gPC expansions in terms of the ran-
dom vector Y. For example, if the solution u is a spatial
random process, we write

uðx;xÞ ¼
XNgpc

j¼0

ûjðxÞWjðYÞ; ð22Þ

where Ngpc is the number of terms in the truncated expan-
sion, and is related to the number of random dimensions
and the maximum polynomial order p by

N gpcðpÞ ¼
ðdr þ pÞ!

dr!p!
� 1: ð23Þ

It is not necessary to use the same number of terms for
every random quantity, but for simplicity we will assume
this. We can then substitute these gPC expansions into
Eq. (17) and perform a Galerkin projection E½�;Wi� onto
each basis function. Through the orthogonality relation
(16), we obtain a system of Ngpc + 1 deterministic equa-
tions for the unknown gPC coefficients ûi. Unless the prob-
lem is linear in random space, this system is coupled. Any
standard numerical method can be used to solve this deter-
ministic problem.

Once the coefficients of the expansion for u are found,
the moments can be calculated easily due to the orthogo-
nality condition. For example, the expected value of u is

E½uðx;YÞ� ¼
Z XNgpc

i¼0

ûiðxÞWiðYÞ
 !

qðYÞdY ¼ û0 ð24Þ

and likewise the second moment is

E½uðx;YÞ2� ¼
XNgpc

i¼0

û2
i E½W2

i �: ð25Þ

Many variations of the stochastic Galerkin method are
found in the literature, including a multi-element formula-
tion [24] and a multi-resolution formulation [25] based on
multi-wavelet bases. However, as in deterministic Galerkin
methods, the formulation of the deterministic coupled sys-
tem can be quite difficult for complicated nonlinear prob-
lems. A numerical solver must be written for each specific
system, and because of the coupling, these solvers are often
computationally costly.
3.4. Collocation projection

The stochastic collocation method was first introduced
by Tatang in [26] and has more recently been addressed
in [11,27]. In this method, a set of collocation points
fyig

Nc
i¼1 is defined on the space C. Collocation projections

h�; dyi
ðyÞi are then performed on both sides of the model

problem (21), obtaining:

Lðx; yi; uÞ ¼ f ðx; yiÞ; i ¼ 1; . . . ;Nc: ð26Þ

The resulting set of deterministic equations is always
uncoupled and each solution u(x,yi) may be found using
a suitable numerical solver. The solution u as a function
of y can then be approximated by interpolation on the
{yi}. Solution moments can be found through numerical
cubature. If the cubature weight function is chosen to coin-
cide with the joint density q, then the expected value of u is
simply

E½uðx; tÞ� ¼
XNc

i¼1

uðx; t; yiÞwcðyiÞ; ð27Þ

where the wc are the summation weights associated with the
cubature rule. If they do not coincide, q(yi) can be incorpo-
rated into the right-hand side of (27). Higher moments are
calculated similarly.

While there are many options for obtaining a set of col-
location points, in this paper we have chosen to use both
full tensor product grids based of Chebyshev–Gauss–Lob-
atto points and sparse grids from the algorithm of Smolyak
[28]. This approach was pioneered in [27] and also used in
[11]. It has been extensively investigated in [29] for high-
dimensional integration over cubes.
4. Representing random inputs: the Karhunen–Loève

expansion

Consider a problem input, for example, the magnitude
of normal fluid tractions, that we want to characterize as
a spatially varying random process T(x,x), where x 2 X
and x 2 D. The covariance kernel of this process, RTT(x,y),
relates the random field between two points in space as a
function of the distance between them

RTT ðx; yÞ ¼ E½ðT ðxÞ � E½T ðxÞ�ÞðT ðyÞ � E½T ðyÞ�Þ�: ð28Þ

The covariance kernel RTT(x,y) is defined for all x and y
in D, the domain of our interest (for example, the surface
on which pressure is uncertain, or the volume in which
material properties are uncertain). By construction, the
covariance kernel is real, symmetric, and positive-definite;
thus it has an orthogonal set of eigenfunctions which forms
a complete basis [7,21].

The Karhunen–Loève expansion is a representation of a
random process in terms of a denumerable set of orthogo-
nal random variables. For details regarding the error-min-
imizing property of this expansion, consult [7]. To find the
correct expansion, we first find the eigenfunctions gi and
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eigen-values ki of the covariance function by solving the
integral equationZ
D

RTT ðx; yÞgiðxÞdx ¼ kigiðyÞ: ð29Þ

This integral may be solved explicitly in simple cases, such
as a one-dimensional process with an exponential covari-
ance kernel. However, in multi-dimensions with other
covariance kernels (29) is solved numerically. A set of spa-
tial covariance kernels, more appropriate for elliptic prob-
lems was formulated in [30]. Herein, we solve (29)
numerically on a finite set of points.

Equipped with gi(x) and ki, we can write the following
Karhunen–Loève expansion of T:

T ðx;xÞ ¼ E½T ðxÞ� þ
X1
i¼1

ffiffiffiffi
ki

p
giðxÞniðxÞ; ð30Þ

where the ni are a set of uncorrelated random variables
with zero mean and variance one determined by

niðxÞ ¼
Z
D

T ðx; xÞgiðxÞdx: ð31Þ

For example, if T(x,x) is a Gaussian random process, then
the ni form a Gaussian vector. If T(x,x) is a general sec-
ond-order random process (not necessarily Gaussian), the
joint probability density function of the fng1i¼1 is difficult
to obtain. However, it is possible to estimate the marginal
probability density functions using Eq. (31) and a density
estimation technique. In this manner, one can approximate
the PDF of the random variables in a finite-term K–L
expansion; this has been addressed in [31]. Thus, the Karh-
unen–Loève decomposition separates the spatially varying
components of the process from the random components.
In practice, we take a truncated finite-term K–L expansion
to represent our processes. To determine the number of
terms to keep, we study the decay of the eigen-values ki,
and truncate the series after their values decrease below
0.1% of the first eigenvalue.

Note that an expansion such as (30) can easily be written
in the form of a gPC expansion, where a truncated K–L
expansion with dr terms fits into the zero and first-order
terms of a dr-dimensional gPC expansion. Thus, if the sys-
tem of equations to be solved is decoupled, such as in the
case of linear elasticity with stochastic loading, it is unnec-
essary to perform the computation with a polynomial order
p any higher than 1 since the coefficients of higher order
terms will always be zero.

5. Methodology for elasticity systems

In this section we formulate the methods described
above in Sections 3.3 and 3.4 for the elasticity problems
addressed in this paper. The first three sections present
the gPC method for linear elasticity with stochastic mate-
rial properties and traction boundary conditions. We pres-
ent an algorithm for the stochastic material properties
problem, which is nonlinear in random space and circum-
vents rewriting the original deterministic solver. The fourth
and fifth sections consider the much simpler collocation
formulation for linear and nonlinear elasticity with sto-
chastic material properties and loading.
5.1. Case I: gPC formulation for linear elasticity system with

E, m deterministic, f random

We first formulate the stochastic Galerkin scheme for
solving the linear elasticity with stochastic loading, which
results in additive uncertainty. As we shall see, this is the
simplest case of parametric uncertainty since the equations
are linear in random space. We label this case of additive
uncertainty for linear elasticity as Case I. In the numerical
examples in Section 7 later, we will adopt the same labeling
convention.

First, we expand the stochastic loading f and the solu-
tion u into their gPC representations. "x 2 X,

uðx;xÞ ¼
XNgpc

i¼0

ûiðxÞWiðnðxÞÞ;

f ðx;xÞ ¼
XNgpc

i¼0

f̂ iðxÞWiðnðxÞÞ:
ð32Þ

As noted in Section 4, if the loading input is represented by
a Karhunen–Loève expansion with dr + 1 terms, this can
easily be written as an equivalent gPC expansion as in
Eq. (32) with the coefficients f̂ i ¼ 0 for all i = dr + 1,
dr + 2, . . . ,Ngpc. In this and future sections, we consider
the general form of the gPC expansion for the random in-
put. Next we substitute the above into Eq. (5) (expressed in
terms of E and m) and take the Galerkin projection hÆ,Wki:

� EðxÞ
2ð1þ mðxÞÞr

2ûkðxÞ�
EðxÞ

2ð1þ mðxÞÞð1� 2mðxÞÞrðr � ûkðxÞÞ

¼ f̂ kðxÞ ð33Þ

for k = 0,1, . . . ,Ngpc. In this case the equations are decou-
pled. If the random input has only first-order terms in its
expansion, as in the case of a truncated K–L expansion,
then there is no gain in using a gPC expansion with poly-
nomial order greater than one. In that case we only need
to solve (Ngpc + 1) = n + 1 deterministic equations using
a standard FEM solver, where n is the index of the last
term in the K–L expansion.
5.2. Case II: gPC formulation for linear elasticity system

with E, m random, f deterministic

In the case of stochastic material properties, we obtain
multiplicative uncertainty and therefore a nonlinearity in
random space. We now formulate the gPC scheme for sto-
chastic material properties and label this Case II.



J. Foo et al. / Comput. Methods Appl. Mech. Engrg. 196 (2007) 4250–4271 4257
5.2.1. Formulating the coupled system

First, we expand E, m and the solution u into their gPC
representations. "x 2 X,

uðx;xÞ ¼
XNgpc

i¼0

ûiðxÞWiðnðxÞÞ;

Eðx;xÞ ¼
XNgpc

i¼0

bEiðxÞWiðnðxÞÞ;

mðx; xÞ ¼
XNgpc

i¼0

m̂iðxÞWiðnðxÞÞ:

ð34Þ

Next we substitute these into Eq. (5):

�
XNgpc

i¼0

XNgpc

j¼0

bEiðxÞ
2ð1þ m̂iðxÞÞ

r2ûjðxÞWiWj

�
XNgpc

i¼0

XNgpc

j¼0

bEiðxÞ
2ð1þ m̂iðxÞÞð1� 2m̂iðxÞÞ

rðr � ûjðxÞÞWiWj

¼ f ðxÞ; ð35Þ

and take the Galerkin projection hÆ,Wki:

�
XNgpc

i¼0

XNgpc

j¼0

hWiWjWki
bEiðxÞ

2ð1þ m̂iðxÞÞ
r2ûjðxÞ

�
XNgpc

i¼0

XNgpc

j¼0

hWiWjWki
bEiðxÞ

2ð1þ m̂iðxÞÞð1� 2m̂iðxÞÞ
rðr � ûjðxÞÞ

¼ f̂ kðxÞ ð36Þ

for k = 0,1, . . . ,Ngpc where f̂ kðxÞ ¼ f ðxÞ if k = 0, and zero
otherwise.
5.2.2. Solving the coupled system

As mentioned previously, we assume that the body
forces are deterministic, i.e.

hf Wki ¼def
f k ¼

f ; k ¼ 0;

0; k 6¼ 0:

�
Likewise, if any tractions T are prescribed on oCT, we as-
sume they are deterministic, so that

hTWki ¼def
Tk ¼

T; k ¼ 0;

0; k 6¼ 0:

�
We define

bjk ¼
XNgpc

i¼0

hWjWiWki
bEiðxÞ

2ð1þ m̂iðxÞÞ
; ð37Þ

djk ¼
XNgpc

i¼0

hWjWiWki
bEiðxÞ

2ð1þ m̂iðxÞÞð1� 2m̂iðxÞÞ
ð38Þ

and the Navier–Lamé (N–L) elasticity operator associated
with the material properties above by

LjkðxÞ ¼def bjkðxÞr2 þ djkðxÞrðr�Þ; ð39Þ
where any two N–L operators having different subscripts
differ simply by the material properties.

Then, (36) can also be written as

XNgpc

j¼0

LjkðxÞðujðxÞÞ ¼ �f kðxÞ; k ¼ 0; 1; 2 . . . ;N gpc; ð40Þ

where this system can be seen as (j + 1) · (k + 1) coupled
N–L systems.

Multiplying each of the (Ngpc + 1) equations in (40) by a
test function vk, and in view of (9), we obtain the weak for-
mulation corresponding to (40):

Find uj 2 ½E
o

ðDÞ�Ngpcþ1 so thatXP

j¼0

Bjkðuj; vkÞ ¼FBF
k ðvkÞ þFT

k ðvkÞ 8vk 2 ½E
o

ðDÞ�Ngpcþ1
;

k ¼ 0; 1; . . . ;N gpc; ð41Þ

where to simplify notation we have dropped the (x) denot-
ing spatially varying functions and operators, and Bjk is
the elasticity bilinear form (9) with material properties
according to bjk(x) and djk(x) in (37), (38). This equation
(41) is assumed to be well-posed, although not proven here-
in. Indications on the well-posedness are evident in the
numerical examples in later sections, where we solve (41)
iteratively with very fast convergence (within 5–6 itera-
tions). The reader is referred to [10] for more discussion
on the well-posedness of gPC formulations of stochastic
elliptic problems.

Discretizing the weak formulation by the finite element
method and taking uj = aj[N] (where [N] is the shape func-
tion matrix) a matrix representation is obtained, which can
be written as

XNgpc

j¼0

½Kjk�aj ¼ FBF
k þ FT

k ¼
def

Fk; k ¼ 0; 1; . . . ;N gpc: ð42Þ

Here [Kjk] is the stiffness matrix associated with the entire
domain D with spatially varying material properties bjk(x)
and djk(x), and the Fk are the load vectors. A high-dimen-
sional coupled linear system of algebraic equations is ob-
tained. For example, if the dimension of the stiffness
matrix (number of degrees of freedom) is DOF, then the
overall dimension of the coupled system is
(Ngpc + 1) · DOF. Instead of inverting directly such a large
system, we use an iterative scheme, such that it is first trans-
formed into a ‘‘decoupled’’ form. We leave the kth term in
the sum to remain in the LHS of the equation, and move all
other terms to the RHS to obtain:

½Kkk�ak ¼ Fk �
XNgpc

j¼0; j 6¼k

½Kjk�aj; k ¼ 0; 1; . . . ;N gpc: ð43Þ

The decoupling is achieved by choosing in the RHS, in-
stead of the unknown solution vectors aj, the solution
vectors in the previous iteration to compute a better
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approximation; we obtain the following iterative scheme
for the solution of the coupled system:

a
ðnþ1Þ
k ¼ ½Kkk��1

Fk �
XNgpc

j¼0; j 6¼k

½Kkk��1½Kjk�aðnÞj ;

k ¼ 0; 1; . . . ;N gpc: ð44Þ

For deterministic body forces and tractions, (44) reduces to

a
ðnþ1Þ
0 ¼ ½K00��1

F0 �
XNgpc

j¼1

½K00��1½Kj0�aðnÞj ; ð45Þ

a
ðnþ1Þ
k ¼ �

XNgpc

j¼0; j 6¼k

½Kkk��1½Kjk�aðnÞj ; k ¼ 1; . . . ;N gpc ð46Þ

and the iterative procedure uses the initial guess

a
ð0Þ
0 ¼ ½K00��1

F0; ð47Þ
a
ð0Þ
k ¼ 0; k ¼ 1; . . . ;N gpc: ð48Þ

To accelerate the convergence rate of (45), (46), the Gauss–
Seidel algorithm is employed (we use in the (n + 1)th itera-
tion of the kth coefficient the n previously computed values
of the k � 1 coefficients). In other words,

a
ðnþ1Þ
0 ¼ ½K00��1

F0 �
XNgpc

j¼1

½K00��1½Kj0�aðnÞj ; ð49Þ

a
ðnþ1Þ
k ¼ �

Xk�1

j¼0

½Kkk��1½Kjk�aðnþ1Þ
j �

XNgpc

j¼kþ1

½Kkk��1½Kjk�aðnÞj ;

k ¼ 1; . . . ;N gpc: ð50Þ
5.2.3. An efficient algorithm for the case of stochastic

Young’s modulus

For the special case in which only E, the Young’s mod-
ulus, is random:

bjkðxÞ ¼
1

2ð1þ mÞ
XNgpc

i¼0

hWjWiWkiEiðxÞ; ð51Þ

djkðxÞ ¼
1

2ð1þ mÞð1� 2mÞ
XNgpc

i¼0

hWjWiWkiEiðxÞ: ð52Þ

Now, let

EjkðxÞ ¼
def
XNgpc

i¼0

hWjWiWkiEiðxÞ: ð53Þ

In view of the large dimension of the system obtained, the
computational time required to solve (49), (50) may be very
high, especially for high PFEM levels where the stiffness
matrices are large and one needs to perform multiple ma-
trix multiplications.

For linear elasticity problems it is possible to shorten the
computational time considerably, by the following proce-
dure. Since the stiffness matrices [Kjk] are all for same
domain D and differ only by the Young’s modulus (Ejk),
then only one stiffness matrix needs to be computed. For
example, compute [K00] so that any [Kjk] can be obtained
by a simple multiplication

½Kjk� ¼
Ejk

E00

½K00�: ð54Þ

It follows immediately from (54) that:

½K�1
jk � ¼

E00

Ejk
½K�1

00 �: ð55Þ

Substituting (54), (55) into (49), (50), one obtains the fol-
lowing system:

a
ðnþ1Þ
0 ¼ ½K00��1

F0 �
XNgpc

j¼1

Ej0

E00

a
ðnÞ
j ; ð56Þ

a
ðnþ1Þ
k ¼ �

Xk�1

j¼0

Ejk

Ekk
a
ðnþ1Þ
j �

XNgpc

j¼kþ1

Ejk

Ekk
a
ðnÞ
j ; k ¼ 1; . . . ;N gpc:

ð57Þ

Thus, it is clear that in the case of linear elasticity, one
needs to generate the stiffness matrix only once, and then
use the Gauss–Seidel algorithm with a fraction of the oper-
ations needed as compared to the previous section.

The algorithm for a standard FE code is

• Compute the matrix Ejk.
• Generate the FE model for the domain of interest,

including the deterministic boundary conditions.
• Read from a file the upper triangular E matrix (as

Ejk = Ekj) for i, j = 0, . . . ,Ngpc, and start a loop on the
FE solver.

• Update the material property E (being a parameter) in
the FE solver.

• Compute the global constrained stiffness matrix and
load vector and output them into a file.

• Read the upper triangular part of stiffness matrix and
load vector and store them into arrays.

• Perform the iterative procedure according to (49), (50).
• Check convergence by the relative difference of two con-

secutive solutions of aj.
• Read the set of points at which output is required.
• Start a loop where j = 0,1, . . ., ,Ngpc to upload the solu-

tion vector aj to the FE solver, and using the solution vec-
tor compute the displacements at the points of interest.

Note that in the case where both E and m are random, a
similar algorithm can be used. However, in this case the
stiffness matrix cannot be obtained by a single multiplica-
tion anymore. In the numerical examples following, we
take only the Young’s modulus to be stochastic. However,
we will continue to address the more general case through
the formulation sections.

5.3. Combined additive and multiplicative uncertainty – E,

m and f random

Here we formulate the problem for the linear elasticity
case when both material properties and loadings are ran-
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dom. Although we do not show a numerical example of
this case, the methods presented in this work are easily gen-
eralized to accommodate additive and multiplicative uncer-
tainty. If we follow the same steps as above, we obtain the
coupled set of deterministic equations:

�
XNgpc

i¼0

XNgpc

j¼0

hWiWjWki
hW2

ki
bEiðxÞ

2ð1þ m̂iðxÞÞ
r2ûjðxÞ

�
XN gpc

i¼0

XNgpc

j¼0

hWiWjWki
hW2

ki
bEiðxÞ

2ð1þ m̂iðxÞÞð1� 2m̂iðxÞÞ
rðr � ûjðxÞÞ

¼ f̂ kðxÞ ð58Þ

for k = 0,1, . . . ,Ngpc.

5.3.1. Solving the coupled system

Here the forcing on the RHS of (58) is random so we
will have non-zero fk for k 5 0. Define

bjk ¼def
XNgpc

i¼0

hWjWiWki
hW2

ki
bEiðxÞ

2ð1þ m̂iðxÞÞ
;

djk ¼
def
XNgpc

i¼0

hWjWiWki
hW2

ki
bEiðxÞ

2ð1þ m̂iðxÞÞð1� 2m̂iðxÞÞ
:

The resulting FEM formulation is identical to (44), except
for the factor of hW2

ki in the denominator. The initial guess
for the iterative algorithm is

a
ð0Þ
k ¼ ½Kkk��1

Fk; k ¼ 0; 1; . . . ;N gpc ð59Þ

and the iterative scheme to be solved becomes

a
ðnþ1Þ
k ¼ ½Kkk ��1

Fk �
Xk�1

j¼0

½Kkk ��1½Kjk �aðnþ1Þ
j �

XNgpc

j¼kþ1

½Kkk ��1½Kjk�aðnÞj ;

k ¼ 1; . . . ;N gpc: ð60Þ

Numerical examples using the gPC method for Cases I and
II are provided in Section 7, after we first introduce the sto-
chastic collocation formulation for linear and nonlinear
elasticity problems.

5.4. Case III: Collocation scheme for linear/nonlinear

elasticity systems with E, m random, f deterministic

As seen in the previous sections the gPC method for
problems with nonlinearities in random space (such as
those with stochastic Young’s modulus) require the solving
of a coupled problem using an iterative solver. To add
another level of complexity and solve the geometrically
nonlinear elasticity formulation using the gPC method
would require an extremely complicated formulation for
the scheme as well as a time-consuming computation.
Thus, in this section we apply the stochastic collocation
method to linear and geometrically nonlinear elasticity
problems with random Young’s modulus. Suppose we have
a stochastic E, characterized by a finite number of random
variables, fY ngdr

n¼1, and a set of cubature points fyig
Nc
i¼1 in

the corresponding range space of the random variables, C.
In the case of linear elasticity, we would like to solve the

following problem for u(x,yi):

� Eðx; yiÞ
2ð1þ mðx; yiÞÞ

r2uðx; yiÞ

� Eðx; yiÞ
2ð1þ mðx; yiÞÞð1� 2mðx; yiÞÞ

rðr � uðx; yiÞÞ

¼ f ðxÞ in D ð61Þ

for each i 2 {1,2, . . . ,Nc} with the usual boundary condi-
tions given in (7).

Note that here E and m have both a spatial and random
dependence. In the numerical examples following, we
assume these properties to be constant throughout the
material for each random realization (see Section 2 for
more discussion).

Similarly, for the case of nonlinear elasticity we solve (8)
and (10) for each Ci

lmno associated with the Young’s modu-
lus value specified by each collocation point. After solving
for the solution u(x,yi) at each collocation point, we may
then interpolate over random space or take statistical
moments of the solution through relations such as (27).

5.5. Case IV: Collocation scheme for linear/nonlinear

elasticity systems with E, m deterministic, f random

In this section we formulate the stochastic collocation
method for linear and geometrically nonlinear elasticity
problems with random traction loadings. Supposed we
would like the mean loading (Cp)exp(h) to be as defined in
(13). Then define two-dimensional random loadings to be
(Cp)exp(h)(1 + an1) + bn2 where n1 and n2 are independent
random variables uniformly distributed on [�1,1], and a
and b are constants specifying the amplitude of the noise.
In this example we have a low number of random dimen-
sions (dr = 2). As will be seen later, this is chosen in order
to investigate the effect of the ‘sparseness’ of the collocation
grid in the numerical examples. In other words, we consider
the cost associated with using fewer collocation points in a
Smolyak sparse grid versus a full tensor product colloca-
tion grid. However, this method is obviously valid for more
general random inputs with more dimensions.

Suppose we have a full or sparse set of Nc cubature
points for the two-dimensional random input specified
above: fðqi; piÞg

Nc
i¼1 in [�1,1] · [�1,1]. In the case of linear

elasticity, we solve (5)–(7) for u, with traction boundary
conditions given by (Cp)exp(h)(1 + aqi) + bpi for each
i 2 {1,2, . . . ,M}.

Similarly, for the case of nonlinear elasticity we solve (8)
and (10) with follower-load traction boundary conditions
(11) given by (Cp)exp(h)(1 + aqi) + bpi for each i 2
{1,2, . . . ,Nc}.

It is easy to see that if both the material properties and
loading are random this method works in the same way.
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6. Prescribing a random loading

In Case I we prescribe a stochastic process for the trac-
tion boundary conditions, using the K–L expansion to
express it in terms of a gPC basis. We begin with the model
of fluid flow past the circular cylinder with attached mass
(see Fig. 2(right)). The mean flow pressure profile Texp(x)
is taken from experimental data [15]. We impose a stochas-
tic perturbation characterized as a Gaussian random pro-
cess with a covariance kernel of the form

RTT ðx; yÞ ¼ e�
jjx�yjj2

A ; ð62Þ
where A is the correlation length of the process and x; y 2 D.
This process varies spatially on the outer surface of the ob-
ject, corresponding to a situation in which the fluid velocity
outside the cylinder undergoes random fluctuations.

In the present case, A = 6 and the standard deviation of
the process, r = 1. The mean tractions range from approxi-
mately �102 to 102 N/m2, so the standard deviation is
approximately 1% of the loading at its maximum (see
(13)). However, at angles around the cylinder where the
loading is below its maximum, this noise level constitutes a
much higher percentages of the mean loading. For the com-
putation of Askey polynomials and the corresponding eigen-
values, the structure is meshed with twelve finite elements
and 616 degrees of freedom (N), obtained by Gauss–Jacobi
quadrature on the mapped standard element (see Fig. 3).
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Now, our Karhunen–Loéve expansion is written as

T ðxn; xÞ ¼ T expðxnÞ þ r
X19

i¼1

ffiffiffiffi
ki

p
giðxnÞniðxÞ; ð63Þ

where n = 1,2, . . . ,N and the ni are independent, identically
distributed Gaussian random variables with mean zero and
variance one.

7. Numerical examples

7.1. Case I

We consider the tube with attached mass, shown in
Fig. 1A and B, with deterministic Young’s modulus given
by the mean value for 4140 steel (E = 212.74 GPa) [16].
For the stochastic loading we use the K–L eigenfunctions
gi computed in Section 6. Because we use a finite element
solver as a ‘‘black box’’, we need to approximate each of
the numerically computed functions gk by a least mean
square (LMS) approximation to be applied as traction
boundary conditions. Thus, each gk is approximated by

ðPgÞk ¼
Xph;pz

i¼0;j¼0

ak
ijhiðhÞzj; ð64Þ

where

hiðhÞ ¼
cosðih=2Þ; i ¼ 0; 2; 4; 6; . . . ;

sinððiþ 1Þ=2Þ; i ¼ 1; 3; 5; 7; . . .

�
ð65Þ

such that ak
ij are determined by minimizingPN

i¼1½ðPgÞkðxiÞ � gkðxiÞ�2, where N is the number of de-
grees of freedom in the domain.

7.1.1. PLMS error

We investigate the error in approximating the Karh-
unen–Loève eigenfunctions using the least mean squares
(LMS) method. Here we study the convergence in ph and
pz as the order of LMS approximation functions increases.
These results reflect the LMS convergence for the linear
elasticity case. We define and evaluate a pointwise relative
error �k on the domain, where k represents the kth
eigenfunction:

�k ¼
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðgkðxiÞ �PgkðxiÞÞ2PN

i¼1gkðxiÞ2

s
: ð66Þ

Fig. 6 shows this error for each of the (Ngpc + 1) = 20 load-
ing functions, at 6 levels of PLMS.

These results reflect the good LMS convergence for the
approximation of the K–L loading functions, and in the
sequel we use ph = 18 and pz = 6 in all subsequent analyses.

7.1.2. gPC analysis

As seen in (33), we need to solve (Ngpc + 1) deterministic
decoupled problems for the stochastic loading system. In
this case, Ngpc = 19 since we have dr = 19 eigenpairs in
our truncated K–L expansion and p = 1 for the reasons
detailed in Section 4. The zeroth mode corresponds to
the deterministic problem with mean loading. For each of
the (Ngpc + 1) problems, we prescribe ðPgÞk as the pressure
on the outer surface of the cylinder. A few examples of the
various ðPgÞk for ph = 18 and pz = 6 are shown in Fig. 5.
We solve each of these 20 problems separately, and then
find the mean and variance of our stochastic solution using
Eqs. (24) and (25).

We perform linear elastic analyses using a finite element
spatial discretization of orders PFEM = 5,6,7 on the coarse
mesh (Fig. 1B) and PFEM = 7, 8 on the mesh refined in the
vicinity of the singular edges (Fig. 1A) to investigate the
influence of the spatial discretization on the mean and var-
iance of the displacements. Fig. 7 shows the mean and var-
iance of the displacement in x1 direction (i.e., u1) on surface
slices of the cylinder for the refined mesh with PFEM = 8.
The angle h = 0 represents the mean stagnation point of
the flow. In Fig. 8 we plot the pointwise relative difference
of the mean and variance of u1 for PFEM = 5,6,7 on the
coarse mesh and PFEM = 7 on the fine mesh as compared
to PFEM = 8 on the fine mesh. Here we define the error
between two functions u(xi) and v(xi) where xi are the
points in the domain

� ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðuðxiÞ � vðxiÞÞ2PN

i¼1vðxiÞ2

s
: ð67Þ

This error definition is identical to the one used in (66)
but we restate it here in more general notation, where the
function v is taken to be the reference result. One may
observe that a good convergence in spatial discretization
is obtained, and the results on the fine mesh at PFEM = 8
are considered to be converged.
7.1.3. Comparison with Monte-Carlo simulations

Monte-Carlo simulation performed after Karhunen–
Loéve expansion is the process in which the random vari-
ables ni in the K–L expansion are simulated instead of
the actual random process. In other words, we draw one
instance of each of the 19 random variables in the K–L
expansion, construct the loading and solve the elasticity
problem for each Monte-Carlo run. Since the uncertainty
is linear in random space as well as physical space, solving
this problem is equivalent to solving the elasticity system
for each input separately and taking the linear combination
of solutions. It is easy to see then that the gPC solution the-
oretically gives the solution to which Monte-Carlo after K–L
converges. Thus, there is no need to perform Monte-Carlo
simulations to verify the accuracy of the numerical results.
Nevertheless, to obtain an estimate of the number of sam-
ples it would take to simulate the result, a post-processing
MC simulation was run at PFEM = 8 on the refined mesh.
The solution was found to converge in variance to the
gPC result at the same spatial discretization level after
approximately 1000 iterations. We note that this simple



Fig. 5. Case I: Typical ðPgÞk for ph = 18, pz = 6.
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example illustrates the benefits of using the Karhunen–
Loéve expansion for random processes, where in this case
only 20 deterministic problems had to be solved, instead
of the large number of samples that Monte-Carlo before
K–L would require (using Markov Chain Monte-Carlo,
for example).
7.2. Case II: Random Young’s modulus for 4140 steel

Consider the straight pipe (now without the spherical
added mass, shown in Fig. 1C) in the flow field, and assume
it is made of a 4140 steel cold finished according to ASTM
A331 described in [16]. Here the cylinder with an inner
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diameter of 0.4 m is used. As previously stated, we model
the Young’s modulus as a uniformly distributed random
variable with mean of 212.74 GPa and standard deviation
7.26 GPa. We note that the method can be used for any
arbitrary PDF with an appropriate choice of orthogonal
polynomial basis with the correct weighting function.
Thus, with a sufficient number of samples of experimental
data, this example could be repeated using a statistical esti-
mation of the PDF and corresponding polynomial basis. If
we take n to be the standard uniform random variable on
[�1,1] with mean 0 and variance 1/3, we may write
E ¼ 212:74þ 7:26

ffiffiffi
3
p

n [GPa]. Legendre-chaos was used in
the stochastic analysis since the orthogonality weight
corresponds to the PDF. We note that the formulation
and algorithms in Section 5.2 accommodates a general
form of E as a spatially varying random process, but here
we have chosen a simplistic case in order to verify the
method.

The pipe is loaded by the realistic mean pressure field as
reported in the experiment on the cylinder in flow [15],
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according to (13). We perform a gPC analysis with gPC
orders Ngpc = 2,4,6,8 and finite element order PFEM = 8.
Figs. 9 and 10 show the mean and variance of the displace-
ment u1 at three different x3 locations obtained for a linear
elastic analysis.
7.2.1. Convergence

We investigate the behavior of the numerical scheme by
evaluating the relative convergence of results as the gPC
order Ngpc is increased. The errors in variance of u1 dis-
placement between results from runs at Ngpc = 8 and
Ngpc = 1,2,4,6 are calculated according to (67) and plotted
in Fig. 11. The solution at Ngpc = 8 is taken to be the
reference solution in the error definition. The conver-
gence observed is exponential. Numerical experiments were
also performed at Ngpc > 8, but yielded results virtually
identical to those at Ngpc = 8. As we can see, with a realis-
tic level of uncertainty in the Young’s modulus we
achieve very good results even with low-order polynomial
chaos.
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7.2.2. Comparison with Monte-Carlo simulations
A standard Monte-Carlo simulation is performed and

the mean and variance of displacements is compared with
the gPC results. For the noise level in this problem the
computational cost of a Monte-Carlo simulation accurate
enough to obtain a ‘reference’ solution is extremely high.
Thus, we once again use the gPC solution of order 8 as
the reference solution. In Fig. 11 the relative error level
in variance for MC with 5000 and 10,000 samples is plotted
over the error plot for gPC convergence. Using the same
error definition in (67), we find that after 10,000 iterations,
the integrated relative error (for u1 displacement) between
Monte-Carlo and the reference solution is 9.1 · (10)�4 in
the mean and 9.2 · (10)�3 in the variance. From Fig. 11
we note that using gPC order Ngpc = 2 in this case would
be sufficient to achieve the same or better accuracy. Since
the Gauss–Seidel procedure takes an average of 3 iterations
to converge, for this error tolerance we achieve a speed-up
ratio of the order 103 from MC to gPC. In Fig. 12 we plot
the variance in u1 obtained from MC with 10,000 samples.
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Note that this figure should be compared to Fig. 10 to see
the difference between the reference gPC solution and the
MC solution with 10,000 samples. However, because of
the scale of the solution and the difference in values they
cannot be put on the same plot.
7.3. Case III

We solve these problems on the model shown in Fig. 1C
with an inner diameter of 0.48 m. The deterministic bound-
ary conditions are given by (13) but multiplied by a factor
of 103 in order to amplify the difference between linear/
nonlinear elasticity analyses. In the present example we
aim to show that the stochastic collocation solution con-
verges to the Monte-Carlo solution. Since the computa-
tional cost of doing MC simulation for nonlinear
elasticity is high, we choose a low amplitude random input.
The Young’s modulus is defined E = 212.74 + n, where n is
a random variable distributed uniformly on [�1,1]. The
collocation points for this one-dimensional space are cho-
sen to be Chebyshev–Gauss–Lobatto nodes (also called
Chebyshev extrema). In Figs. 13 and 14 we present results
from the linear and nonlinear analyses, respectively. In
these figures we plot the collocation estimates of the first
and second moments as well as Monte-Carlo simulation
estimates from 2000 samples. These estimates are plotted
on the circumference of a slice of the cylinder taken from
its free end at x3 = 0.0001. The collocation grid points used
in these plots consist of 80 Chebyshev extrema. The agree-
ment between MC and stochastic collocation is very good
in the eyeball norm. We quantify the convergence in the
next plot, Fig. 15, where we show the convergence of collo-
cation second moment estimate to the MC solution with
increasing grid refinement in the random space, which cor-
responds to increasing the number of grid points on [�1,1].
The error between two solutions u and v on a particular
slice with N points is defined to be

�slice ¼
PN

i¼1juðxiÞ � vðxiÞj
N

: ð68Þ

In the present examples, the solution is calculated on
N = 32 points at each slice in the x3 direction. Monte-Carlo
with a very large number of samples is computationally
prohibitive in this case, since each nonlinear elasticity-solve
with the p-FEM code is costly. Thus, we compare our col-
location solutions with MC at 2000 samples. Note that the
error does not decay to zero as the stochastic collocation
grid refinement increases – this is due to the fact that other
errors from the MC estimates as well as the spatial FEM
error limit the accuracy, thus dominating the error at these
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lower levels. We can see that beyond a level of 80 colloca-
tion points, the error of MC at 2000 samples exceeds the
error of collocation.

In addition, note that performing stochastic collocation
with just 20 grid points we obtain an error of less than 0.1%
of the MC estimate.

The difference in PDFs of the solutions of linear and
nonlinear elastic analyses is highlighted in Figs. 13 and
14. Whenever the magnitudes of the mean and variance
are significantly large, their profiles differ significantly
between the linear and nonlinear cases. Note that the prob-
ability density functions of the input material properties
are identical. However, since the problem exhibits a nonlin-

earity in random space, the PDFs of the systems’ solutions
are markedly different, exhibiting differences in both mean
and variance.

In Fig. 16 we show the consistency of the method by
plotting the exponential convergence of the collocation
solution to the 160-pt collocation solution with increasing
grid refinement.
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Table 1
Number of deterministic solves required by gPC and stochastic collocation
to achieve different error tolerance levels

Error gPC Stochastic collocation

10�3 3 3
10�5 6 4
10�7 9 5
10�8 12 6
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7.3.1. A comparison between gPC and stochastic collocation

One may note that both Case II and Case III address a
linear elasticity problem with stochastic Young’s modulus.
In Case II an iterative algorithm to solve the coupled sys-
tem was used to speed-up the gPC method. Here in Case
III, the stochastic collocation method is performed on a
similar problem with a smaller noise level. (As mentioned
above, this choice was made so that accurate Monte-Carlo
simulations would be computationally feasible). An inter-
esting question arises: if gPC and stochastic collocation
are performed on the same problem, which will be more
efficient? In Table 1 we compare the computational work
required by each method in order to reach a desired level
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of accuracy in variance. The error is defined as in (67), and
the amount of work is measured in terms of the number of
‘deterministic solves’ needed. In the gPC method, the order
of the polynomial expansion is increased to achieve the
accuracy level. Analogously, for the stochastic collocation
method the number of collocation points is increased.

From the table, it can be seen that the two methods are
comparable in efficiency for this linear elasticity problem
with a one-dimensional random input.

7.4. Case IV

We solve these problems on the model shown in Fig. 1A
(inner diameter of 0.48 m) with deterministic Young’s mod-
ulus of 212.74 GPa. In these examples we take a = 0.05 and
b set at approximately 3% of the mean forcing (see Section
5.5). For the mean forcing, the expression in (13) is multi-
plied by a factor of 103 in order to highlight significant
differences between the linear and nonlinear elasticity solu-
tions. The computationally expensive MC validation is not
performed for this example, since the method was validated
in the simpler test problem of Case III. Instead, we investi-
gate the convergence of the collocation solution as the collo-
cation grid becomes more refined. In Fig. 17 we plot the
mean and variance of the linear and nonlinear solutions
on three slices of the cylinder, using the 65-pt collocation
grid shown in Fig. 18b. Once again we see that the PDF
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Fig. 17. First and second moments of u1 at several locations along the rise, us
elasticity.
of the solution changes due to a problem nonlinearity in ran-
dom space. The 13-pt collocation on the grid in Fig. 18a was
also performed for the same random input, and the error
between solutions at these two collocation levels is shown
in Table 2 for linear and nonlinear elasticity. The error
between two functions u and v for N data points on the cyl-
inder is defined as in (68).

Thus, we note that the difference between the 13 and 65-
pt collocation solutions is less than 0.01% of the estimate at
65-pts. The errors in the linear and nonlinear analyses are
comparable, showing that the stochastic collocation
method performs well for both types of problems. In
Fig. 18b we may see that the full collocation grid corre-
sponding to the 13-pt sparse grid is completely incorpo-
rated into the 65-pt grid. Thus, the difference between the
13-pt sparse grid and its associated full grid of the same
order is bounded above by the errors in Tables 1 and 2.
The accuracy we ‘lose’ by using the sparse grid is small.
Fig. 18c shows the 165-pt full grid with the same order as
the 65-pt sparse grid, and Fig. 18d shows the magnitude
of the nonlinear elasticity solution u1 at an example point
(�0.25, 0,0) for each of the 65 collocation points. The ver-
tical axis represents n1, the multiplicative noise dimension,
and the horizontal axis represents n2. We note that the var-
iation in the solution is almost negligible in the n2 direction
but noticeable in the n1 direction, reflecting the nature of
the random input.
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Table 2
Error between 13 and 65 point collocation results

Linear elasticity Nonlinear elasticity

Mean Variance Mean Variance

u1 9.5e�9 1.13e�9 2.25e�8 1.12e�9

u2 8.70e�9 1.05e�13 4.36e�8 8.05e�13

u3 6.48e�10 2.02e�12 2.42e�9 5.04e�12
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8. Summary

The gPC and stochastic collocation approaches for
reducing the 3-D elastic problems with stochastic inputs
to a high-dimensional deterministic system of PDEs were
formulated and investigated numerically using p-FEMs
for the spatial discretization. Three-dimensional riser-like
structures undergoing linear and geometrically nonlinear
elastic deformations due to stochastic pressure loading
were considered as well as a riser with stochastic Young’s
modulus (with uncertainty data taken from experimental
results documented in [16]) under deterministic fluid pres-
sure. We note that realistic risers may be much longer than
the models we have addressed, and also that the loads
encountered for cylinders undergoing vortex-induced
vibrations (VIV) may be very different than those for sta-
tionary cylinders. However, for such cases the data sets
analogous to the set in [15] are difficult to find. It has been
demonstrated that the gPC method for linear elasticity sys-
tems provide accurate and efficient results at a speed factor
of two and three orders of magnitude compared to tradi-
tional Monte-Carlo simulations. Furthermore, these meth-
ods can be implemented by using standard deterministic
FE codes as black boxes. Both uncertain traction loadings
and uncertain material properties were considered, leading
to additive and multiplicative uncertainties, and an efficient
algorithm for solving the gPC system for the multiplicative
uncertainty case was presented. The stochastic collocation
method was demonstrated for both linear and nonlinear
elasticity problems with multiplicative and additive uncer-
tainty. The simplicity of the method as compared to the
gPC method was exhibited, and although it was computa-
tionally difficult to perform accurate Monte-Carlo simula-
tions on these 3D elasticity problems, a large speed-up
ratio was observed in problems with nonlinearities in ran-
dom space and low random dimension. For the simple lin-
ear elasticity problem with stochastic pressure loading, the
stochastic collocation and gPC methods were shown to be
comparable in efficiency.

The present study can be generalized to additive and
multiplicative uncertainty for plasticity problems, in which
the constitutive equations have a much wider stochastic
variability as shown by [4]. This generalization will enable
stochastic analyses for problems that are computationally
prohibited if MC simulations are required.
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[13] B.A. Szabó, I. Babuška, Finite Element Analysis, John Wiley & Sons,
New York, 1991.
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