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Abstract

The solution to elasticity problems in three-dimensional (3-D) polyhedral domains in the vicinity of an edge is represented by a family
of eigen-functions (similar to 2-D domains) complemented by shadow-functions and their associated edge stress intensity functions
(ESIFs), which are functions along the edge. These are of major engineering importance because failure theories directly or indirectly
involve them.

In isotropic materials one may compute analytically the eigen-functions and their shadows [Z. Yosibash, N. Omer, M. Costabel, M.
Dauge, Edge stress intensity functions in polyhedral domains and their extraction by a quasi-dual function method, Int. J. Fract. 136
(2005) 37–73], used in conjunction with the quasi-dual function method [M. Costabel, M. Dauge, Z. Yosibash, A quasi-dual function
method for extracting edge stress intensity functions, SIAM J. Math. Anal. 35 (5) (2004) 1177–1202] for extracting ESIFs from finite
element solutions. However, in anisotropic materials and multi-material interfaces the analytical derivation becomes intractable and
numerical methods are mandatory. Herein we use p-finite element methods (p-FEM) for the computation of the eigen-pairs and shadow
functions (together with their duals). Having computed these, the p-FEM is used again to obtain a FE solution from which we extract
approximations of the ESIFs based on a family of adaptive hierarchical Jacobi polynomials of increasing order.

Numerical examples for 3-D isotropic and anisotropic materials are provided for which the eigen-pairs and shadow functions are
numerically computed and ESIFs extracted. These examples show the efficiency and high accuracy of the numerical approximations.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Mechanical failures in anisotropic laminated composites and electronic devices are usually observed along edges. There-
fore, an increasing interest in predicting and eventually preventing these failures leads to renewed interest in the solutions of
three-dimensional linear elastic problems at edges. Due to the complex treatment of the elasticity system in the vicinity of a
three-dimensional edge, most of the research in the past has focused on two-dimensional (2-D) domains under the assump-
tion of plane stress or plane strain. The 2-D elastic solution in polygonal domains in the vicinity of reentrant corners, and
especially crack tips, has been studied for over 50 years and known to be expressed as an asymptotic series. It is described in
terms of special singular functions (eigen-functions) depending on the geometry and the boundary conditions in the vicinity
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of the corner on one hand, and of unknown coefficients (stress intensity factors) depending on the given body forces and
tractions on the other hand. The eigen-pairs (eigen-values and eigen-functions) may be obtained by several techniques. An
analytical method for computing eigen-pairs in isotropic domains is provided in many prior publications [21,12,9,2]. A
semi-analytic approach for the eigen-pairs computations was presented in [6], applicable to anisotropic domains. Many
numerical methods were developed, as for example in [13,20,23] which are applicable also to anisotropic and multi-material
interfaces.

In daily basis applications of fracture mechanics, configurations which are inherently three-dimensional (3-D) are quite
frequently encountered. In 3-D polyhedral domains, the solution is represented by three different asymptotic expansions
based on its vicinity to either an edge, a vertex or a vertex-edge [8]. In the vicinity of edges the solution may be represented
by a series expansion characterized by exponents ai which belongs to a discrete set of eigen-values and that each eigen-
value has an associated eigen-function u

ðaÞ
0 ðhÞ. These eigen-pairs depend only on the geometry, material properties and

boundary conditions in the vicinity of the edge and may be computed by solving a set of 2-D problems. The coefficients
of the series expansion are functions along the edge, denoted by Aiðx3Þ (x3 is a coordinate along the edge). Aiðx3Þ is asso-
ciated with the ith eigen-value and called ‘‘edge stress intensity function’’ (ESIF) which determines the ‘‘amount of energy’’
residing in each singularity. From the engineering perspective Aiðx3Þ associated with ai < 1 are of major importance
because these are correlated to failure initiation. In addition to the eigen-pairs, ‘‘new functions’’ appear in the series expan-

sion in 3-D domains, called ‘‘shadows’’, that have no counterparts in 2-D domains, see [7]. The edge eigen-pairs and their
shadows in cracked or notched domains were first addressed by Hartranft and Sih in [10]. At the time however, these were
not presented explicitly and the general structure of the asymptotic expansion not observed. Based on the abstract formu-
lation in [7] we have expressed explicitly in [22] the series solution in the vicinity of an edge as a combination of eigen-
functions and their shadows for isotropic materials. We provided the mathematical algorithm for the construction of
the asymptotic elastic solution in the vicinity of an edge (which is an extension of the two-dimensional case), and a
new extraction method named quasi-dual function method, was applied to obtain the polynomial approximation of the
ESIFs. This method can be viewed as an extension of the dual function extraction method in 2-D [3,18] and its theoretical
details were firstly introduced in [7]. Application of the quasi-dual function method for the extraction of EFIFs from finite
element (FE) solution requires the dual eigen-functions and their dual shadows which may be computed analytically for
isotropic domains.

In anisotropic and multi-material interfaces, the eigen-functions, their shadows and the dual eigen-functions cannot be
computed analytically, and numerical methods are required. Because these functions are analytic and depend on one var-
iable, the use of p-FEMs for their computation possess the advantage of exponential convergence rates. Using the numer-
ically computed eigen-functions, their duals and shadows, the functional J[R] is used [7,22] which is a surface integral along
a cylindrical surface in order to compute the ESIF explicitly as a function of x3 (the coordinate along the edge). The J[R]
computation is a post-processing step in a p-version finite element code. To demonstrate the accuracy and efficiency of
ESIFs extraction two example problems are considered – a crack in an isotropic domain for which an analytical solution
exists, and a crack in an anisotropic domain. This method provides the functional representation of the ESIFs along x3, as
opposed to other methods providing point-wise values of the ESIFs along the edge as the J-integral [11] and the H-integral
[15]. Most importantly, the method is adaptive, providing a better polynomial representation of each of the ESIFs as the
special hierarchical family of extraction polynomials is increased.

This paper is organized as follows:

• We start with notations, the linear anisotropic elastic problem and asymptotic expansion of the solution in the neigh-
borhood of an edge in Section 2.

• The weak formulation for the computation of the primal eigen-pairs and their duals, followed by the p-FEM formula-
tion are provided in Section 3.

• Using the primal eigen-pairs, we proceed to the weak formulation required for the computation of the shadow functions
and their duals in Section 4.

• To demonstrate the accuracy and efficiency of the proposed numerical method for the computation of eigen-pairs, dual
and shadow functions, we consider an isotropic domain for which the analytical solution is available. In Section 5 a
cracked isotropic domain with traction free boundary conditions is considered. Comparison of the eigen-pairs, dual
and shadow functions computed by p-FEMs with the analytical values show an exponential convergence rate. For this
problem we provide in Appendix A the explicit analytic formulas for the eigen-functions, duals and shadows.

• The J[R] integral is then recalled and briefly explained in Section 6. It is being used in conjunction with the numerically
computed dual functions and their shadows to extract ESIFs from p-FE solutions. Two examples are provided – a crack
in an isotropic domain for which the analytical solution is known, and a crack in an anisotropic domain. The extracted
ESIFs are shown to be accurate and methods are efficient.

• We conclude by a summary in Section 7.
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2. Elastic solution in the vicinity of an edge

2.1. Notations and the differential equations

Consider a domain X in which one straight edge E of interest is present. For simplicity of presentation let the domain be
generated as the product X ¼ G� I where I is the interval ½�1; 1�, and G is a plane bounded sector of opening x 2 ð0; 2p�
with a radius 1 (the case of a crack, x ¼ 2p, is included), as shown in Fig. 1. Of course any G or I can be chosen and these
simplified ones have been chosen for simplicity of presentation.

The variables in G and I are ðx1; x2Þ and x3 respectively, and the coordinates ðx1; x2; x3Þ are denoted by x. Let ðr; hÞ be the
polar coordinates centered at the vertex of G so that G coincides with fðx1; x2Þ 2 R2jr 2 ð0; 1Þ; h 2 ð0;xÞg. The edge E of
interest is the set fx 2 R3 j r ¼ 0; x3 2 Ig. The two flat planes that intersect at the edge E are denoted by C1 and C2. For any
R, 0 < R < 1, the cylindrical surface CR is defined as follows:

CR :¼ fx 2 R3jr ¼ R; h 2 ð0;xÞ; x3 2 Ig: ð1Þ
Remark 1. The methods presented in the paper are restricted to geometries where the edges are straight lines and the angle
x is fixed along x3. For a non-fixed x along x3, the eigen-values are also x3 dependent and therefore the theorem presented
herein (see Theorem 1 in the sequel) is not applicable.
Remark 2. In general the eigen-pairs associated with the elasticity operator may be complex which add another level of
technical complexity. Herein, for simplicity of presentation, we concentrate our attention on cases for which the eigen-val-
ues smaller than 1 are real. Nevertheless, the application of the method for complex eigen-values is conceptually the same
and will be addressed in a future publication.

To distinguish between the displacement vector in Cartesian or Polar coordinates, we denote these by
u ¼ fu1; u2; u3gT

; ~u ¼ fur; uh; ux3
gT, respectively and use either of them when convenient. The strains and stresses are

denoted by e ¼ fe11; e22; e33; c23; c13; c12g
T
;~e ¼ ferr; ehh; e33; ch3; cr3; crhg

T and r ¼ fr11; r22; r33; r23; r13; r12gT, ~r ¼ frrr; rhh;
r33; rh3; rr3; rrhgT.

For a general anisotropic domain Hooke’s law is given by

~r ¼ C~e; C ¼

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66

0
BBBBBBBB@

1
CCCCCCCCA
; ð2Þ

where Cij are the material properties of the anisotropic domain. The Navier–Lamé (N–L) equations for an elastic aniso-
tropic domain without body forces in cylindrical coordinates are
Fig. 1. Domain of interest X.
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The system (3)–(5) can be split into three operators, each being a function of r; h alone (see [14,8,4]):

Lð~uÞ ¼ ½M0ðor; ohÞ�~uþ ½M1ðor; ohÞ�o3~uþ ½M2ðor; ohÞ�o2
3~u ¼ 0: ð6Þ
2.2. The series expansion of the primal and dual solutions

The splitting (6) allows an expression of the solution ~u as a series:

~u ¼
X
iP1

X
jP0

o
j
3Aiðx3ÞUðaiÞ

j ðr; hÞ; UðaiÞ
j ðr; hÞ ¼ raiþju

ðaiÞ
j ðhÞ; ð7Þ

where Aiðx3Þ is the edge stress intensity function (ESIF) associated with the ith eigen-pair, the primal singular function

UðaiÞ
0 ¼ raiu

ðaiÞ
0 ðhÞ being the well known two-dimensional eigen-function, whereas UðaiÞ

j ; j P 1 are the shadow functions

of the primal singular function and are determined by the following recursive relations (see [7,22]):

½M0�UðaiÞ
0 ¼ 0

½M0�UðaiÞ
1 þ ½M1�UðaiÞ

0 ¼ 0

½M0�UðaiÞ
jþ2 þ ½M1�UðaiÞ

jþ1 þ ½M2�UðaiÞ
j ¼ 0; j P 0

8>><
>>: ðr; hÞ 2 G ð8Þ

accompanied by homogeneous boundary conditions on the two surfaces C1 and C2.
For an isotropic domain, the material matrix C is determined by two material properties E; m, and system (3)–(5) is con-

siderably simplified. For this case the eigen-values ai, eigen-functions U0 and their shadows U1;U2; . . . can be computed
analytically as provided in [22]. However, in general these have to be computed by numerical methods discussed herein.

Because the N–L operator is self-adjoint, for any real eigen-value ai also �ai is an eigen-value with an associated eigen-
function Uð�aiÞ

0 and its shadows Uð�aiÞ
j . Solutions of (8) for the negative eigen-values �ai are called the dual singular solutions,

and are denoted by WðaiÞ
j . For normalization purpose a real coefficient cðaiÞ

0 is chosen, linking UðaiÞ
j with WðaiÞ

j :

WðaiÞ
0 ¼ r�aiw

ðaiÞ
0 ðhÞ ¼ cðaiÞ

0 r�aiu
ð�aiÞ
0 ðhÞ ð9Þ



3628 Z. Yosibash, N. Omer / Comput. Methods Appl. Mech. Engrg. 196 (2007) 3624–3649
and

WðaiÞ
j ¼ r�aiþjw

ðaiÞ
j ðhÞ ¼ r�aiþju

ð�aiÞ
j ðhÞ: ð10Þ

Theoretical details and rigorous mathematical formulation are provided in [7]. Detailed explanation about the shadow
functions for isotropic domains is presented in [22].
2.3. Boundary conditions for the primal and dual shadow functions

Either traction free or clamped boundary conditions are considered on C1 and C2.
2.3.1. Traction free boundary conditions

Traction free boundary conditions on C1;C2 are

½T �ð~uÞjC1;C2
¼ ð½T 0ðor; ohÞ�~uþ ½T 1ðor; ohÞ�o3~uÞjC1;C2

¼ 0: ð11Þ

Inserting (7) in (11) one obtains the following conditions for the eigen-functions:

½T 0�U0 ¼ 0

½T 0�Ujþ1 þ ½T 1�Uj ¼ 0; j P 0

�
on C1;C2: ð12Þ

Explicit expressions for ½T 0� and ½T 1� for an anisotropic material are

frrhgjh¼0;x ¼ fðC26 þ C56ro3 þ C66oh þ C16rorÞur þ ð�C66 þ C46ro3 þ C26oh þ C66rorÞuh

þ ðC36ro3 þ C46oh þ C56rorÞu3gjh¼0;x ¼ 0;

frhhgjh¼0;x ¼ fðC22 þ C25ro3 þ C26oh þ C12rorÞur þ ð�C26 þ C24ro3 þ C22oh þ C26rorÞuh

þ ðC23ro3 þ C24oh þ C25rorÞu3gjh¼0;x ¼ 0;

frh3gjh¼0;x ¼ fðC24 þ C45ro3 þ C46oh þ C14rorÞur þ �C46 þ C44ro3 þ C24oh þ C46rorð Þuh

þ ðC34ro3 þ C44oh þ C45rorÞu3gjh¼0;x ¼ 0: ð13Þ
2.3.2. Clamped boundary conditions

Clamped boundary conditions on C1;C2 are

Ujðr; hÞ ¼ 0 on C1;C2: ð14Þ

For anisotropic materials, analytical expressions for the eigen-pairs (which are smooth functions in h) are unavailable due
to the untractable mathematical problem, therefore numerical methods are sought. The p-version of the finite element
method (FEM) is applied because of the proven exponential convergence rates for smooth solutions [19].
3. Computation of eigen-pairs

3.1. Weak formulation for computing the primal eigen-pair a and U0

Any eigen-value a and primal eigen-functions rau
ðaÞ
0 (and dual eigen-functions r�aw

ðaÞ
0 ) are the solution of the first equa-

tion in (8). One may notice that after substituting rau
ðaÞ
0 for U0 the dependency on r disappears, and an ODE in h has to be

solved:

½A0
1�u000 þ ða½A0

2� þ ½A0
3�Þu00 þ ða2½A0

4� þ a½A0
5� þ ½A0

6�Þu0 ¼ 0; h 2 ð0;xÞ; ð15Þ

which is a quadratic eigen-value problem. The matrices ½A0
i � are generated by the material properties:
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½A0
1� ¼

C66 C26 C46

C26 C22 C24

C46 C24 C44

0
BB@

1
CCA; ½A0

2� ¼

2C16 C12 þ C66 C14 þ C56

C12 þ C66 2C26 C25 þ C46

C14 þ C56 C25 þ C46 2C45

0
BB@

1
CCA;

½A0
3� ¼

0 �C22 � C66 �C24

C22 þ C66 0 C46

C24 �C46 0

0
BB@

1
CCA; ½A0

4� ¼

C11 C16 C15

C16 C66 C56

C15 C56 C55

0
BB@

1
CCA;

½A0
5� ¼

0 �C16 � C26 �C25

C16 þ C26 0 C56

C25 �C56 0

0
BB@

1
CCA; ½A0

6� ¼

�C22 C26 0

C26 �C66 0

0 0 0

0
BB@

1
CCA: ð16Þ
For traction free boundary conditions, the first equation in (12) is
f½B0
1�u00 þ ða½B0

2� þ ½B0
3�Þu0gh¼0;x ¼ 0; ð17Þ
where
½B0
1� ¼ ½A0

1�; ½B0
2� ¼

C16 C66 C56

C12 C26 C25

C14 C46 C45

0
B@

1
CA; ½B0

3� ¼
C26 �C66 0

C22 �C26 0

C24 �C46 0

0
B@

1
CA: ð18Þ
For homogeneous Dirichlet boundary conditions one has
fu0gjh¼0;x ¼ 0: ð19Þ
To obtain the weak form we multiply (15) by a test function v, integrate over a circular path CR, and using an integration
by parts for the second derivative term one obtains:
f½A0
1�u00g

T
v

n o
h¼0;x

�
Z x

0

f½A0
1�u00g

T
v0 dhþ

Z x

0

fða½A0
2� þ ½A0

3�Þu00g
T
vdhþ

Z x

0

fða2½A0
4� þ a½A0

5� þ ½A0
6�Þu0g

T
v dh ¼ 0:
If traction free boundary conditions are prescribed then
f½A0
1�u00g

T
v

n o
h¼0;x

¼ f½B0
1�u00g

T
v

n o
h¼0;x

¼ � fða½B0
2� þ ½B0

3�Þu0g
T
v

n o
h¼0;x

; ð20Þ
otherwise, if homogeneous Dirichlet boundary conditions are applied then
fu0gh¼0;x ¼ vf gh¼0;x ¼ 0) f½A0
1�u00g

T
v

n o
h¼0;x

¼ 0 ð21Þ
and we restrict the space in which the solution is sought. Therefore the weak eigen-formulation for the primal and dual
eigen-pairs is
Seek a 2 C; 0 6¼ u0 2 H 1ð0;xÞ; s:t: 8v 2 H 1ð0;xÞ
ðB0

0ðu0; vÞ þB
0ðBCÞ
0 ðu0; vÞÞ þ aðB0

1ðu0; vÞ þB
0ðBCÞ
1 ðu0; vÞÞ þ a2B0

2ðu0; vÞ ¼ 0; ð22Þ
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where H1 is the Sobolev space and

B0
0ðu0; vÞ ¼ �

Z x

0

f½A0
1�u00g

T
v0 dhþ

Z x

0

f½A0
3�u00g

T
vdhþ

Z x

0

f½A0
6�u0g

T
v dh;

B0
1ðu0; vÞ ¼

Z x

0

f½A0
2�u00g

T
vdhþ

Z x

0

f½A0
5�u0g

T
vdh;

B0
2ðu0; vÞ ¼

Z x

0

f½A0
4�u0g

T
vdh;

B
0ðBCÞ
0 ðu0; vÞ ¼

� f½B0
3�u0g

T
v

n o
jh¼0;x Traction free B:C:;

0 Clamped B:C:;

8<
:

B
0ðBCÞ
1 ðu0; vÞ ¼

� f½B0
2�u0g

T
v

n o
jh¼0;x Traction free B:C:;

0 Clamped B:C:

8<
:

ð23Þ

For clamped boundary conditions the Sobolev space H1 is replaced by H
�

1 ¼ fvjv 2 H 1; vðh ¼ 0;xÞ ¼~0g.
3.2. p-FEMs for the solution of the weak eigen-formulation

We apply p-FEMs for the solution of (22). To this end u0 ¼ u0 v0 w0ð ÞT is expressed in terms of the basis functions
NkðnÞ (integrals of Legendre polynomials) in the standard element:

u0ðnÞ ¼
Xpþ1

k¼1

akN kðnÞ; v0ðnÞ ¼
Xpþ1

k¼1

apþ1þkN kðnÞ; w0ðnÞ ¼
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a2pþ2þkNkðnÞ ð24Þ
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0
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Similarly v ¼def ½N �b0, and dh ¼ x
2

dn. Substituting (25) in (22) one obtains the FE formulation of the weak eigen-form:
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� �

¼~0; ð26Þ
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½N 0�T½A0
1�

T½N 0�dnþ
Z 1

�1

½N 0�T½A0
3�

T½N �dn

þ x
2

Z 1

�1

½N �T½A0
6�

T½N �dn:

ð27Þ

For clamped boundary conditions ½B0
2� ¼ ½B0

3� ¼ ½0�. The quadratic matrix eigen-problem (26) is solved by a proper linear-
ization process, see [1]. Setting d0 ¼ aa0 the ð3p þ 3Þ � ð3p þ 3Þ quadratic eigen-problem is transformed into a linear
ð6p þ 6Þ � ð6p þ 6Þ ‘‘standard matrix eigen-problem’’:

a0

d0

� �T
0 ½K0

0�
I ½K0

1�

 !
¼ a

a0

d0

� �T I 0

0 �½K0
2�

� �
: ð28Þ
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3.3. The normalization factor c0

The dual eigen-functions w0 are obtained by solving (28) – these are associated with the negative eigen-values. The nor-
malization factor cðaÞ0 is determined so that the primal and dual eigen-functions satisfy an orthonormal condition (see [7,22])
under the integration along a circular curve with the edge being its center:Z x

0

fTCRUðaÞ0 �W
ðaÞ
0 �UðaÞ0 � TCRWðaÞ0 gRdh ¼ 1; ð29Þ

where TCR is Neumann trace operator (related with L) on a circular surface around the edge:

TCR ~u ¼def

rrr

rrh

rr3

0
BB@

1
CCA¼

1
r C12þC15o3þ 1

r C16ohþC11or � 1
r C16þC14o3þ 1

r C12ohþC16or C13o3þ 1
r C14ohþC15or

1
r C26þC56o3þ 1

r C66ohþC16or � 1
r C66þC46o3þ 1

r C26ohþC66or C36o3þ 1
r C46ohþC56or

1
r C25þC55o3þ 1

r C56ohþC15or � 1
r C56þC45o3þ 1

r C25ohþC56or C35o3þ 1
r C45ohþC55or

0
BB@

1
CCA

ur

uh

u3

0
BB@

1
CCA:
ð30Þ

We split the operator TCR :

TCR ¼ TCR
0 ðor; ohÞ þ TCR

1 ðor; ohÞo3 ð31Þ

such that

TCR
0 ðor; ohÞUj ¼ ½T a�

1

r
oh þ ½T b�or þ ð½T c� þ j½T b�Þ

1

r

� �
Uj;

TCR
1 ðor; ohÞUj ¼ ½T d �Uj;

ð32Þ

½T a� ¼

C16 C12 C14

C66 C26 C46

C56 C25 C45

0
BB@

1
CCA; ½T b� ¼

C11 C16 C15

C16 C66 C56

C15 C56 C55

0
BB@

1
CCA; ½T c� ¼

C12 �C16 0

C26 �C66 0

C25 �C56 0

0
BB@

1
CCA; ½T d � ¼

C15 C14 C13

C56 C46 C36

C55 C45 C35

0
BB@

1
CCA:
ð33Þ

Because the eigen-pairs and their duals are independent of x3 one obtains:

TCRUðaÞ0 ¼ TCR
0 UðaÞ0 ¼ Ra�1f½T a�u00 þ a½T b�u0 þ ½T c�u0g;

TCRWðaÞ0 ¼ TCR
0 WðaÞ0 ¼ R�a�1f½T a�w00 � a½T b�w0 þ ½T c�w0g: ð34Þ

Inserting (9) into (29), and using (34) one obtain the expression for the normalization factor c0:

cðaÞ0 ¼
Z x

0

fð½T a�u00 þ a½T b�u0 þ ½T c�u0Þ � w0 � u0 � ð½T a�w00 � a½T b�w0 þ ½T c�w0Þgdh

� ��1

: ð35Þ
4. Computation of the primal and dual shadow functions

4.1. Weak formulation for computing the primal and dual first shadow functions, U1 and W1

The primal shadow functions u1, presented in (7), as well as the dual shadow function w1 are the solution of the second
differential equation in (8).
Remark 3. The method presented herein addresses u1. The method is applicable to w1 by replacing u1, u0 and a with w1, w0

and �a. Notice that the eigen-value a is known, obtained by solving the eigen-value problem in the previous chapter. The
unknown functions u1 and w1 are obtained by solving the second differential equation in (8).

After substituting rau
ðaÞ
0 for U0 and raþ1u

ðaÞ
1 for U1 in the second equation of (8), the dependency on r disappears, and an

ODE in h has to be solved:

½A0
1�u001 þ ða½A0

2� þ ½A1
3�Þu01 þ ða2½A0

4� þ a½A1
5� þ ½A1

6�Þu1 þ ½A1
7�u00 þ ða½A1

8� þ ½A1
9�u0Þ ¼~0: ð36Þ
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The matrices ½A1
i � depend on the material constants:

½A1
3� ¼

2C16 ðC12 � C22Þ ðC14 � C24 þ C56Þ
ðC12 þ C22 þ 2C66Þ 2C26 ðC25 þ 2C46Þ
ðC14 þ C24 þ C56Þ C25 2C45

0
B@

1
CA;

½A1
5� ¼

2C11 ðC16 � C26Þ ð2C15 � C25Þ
ð3C16 þ C26Þ 2C66 3C56

ð2C15 þ C25Þ C56 2C55

0
B@

1
CA; ½A1

6� ¼
ðC11 � C22Þ 0 ðC15 � C25Þ

32ðC16 þ C26Þ 0 2C56

ðC15 þ C25Þ 0 C55

0
B@

1
CA;

½A1
7� ¼

2C56 ðC25 þ C46Þ ðC36 þ C45Þ
ðC25 þ C46Þ 2C24 ðC23 þ C44Þ
ðC36 þ C45Þ ðC23 þ C44Þ 2C34

0
B@

1
CA; ½A1

8� ¼
2C15 ðC14 þ C56Þ ðC13 þ C55Þ

ðC14 þ C56Þ 2C46 ðC36 þ C45Þ
ðC13 þ C55Þ ðC36 þ C45Þ 2C35

0
B@

1
CA;

½A1
9� ¼

C15 ðC14 � C24 � C56Þ ðC13 � C23Þ
ðC24 þ 2C56Þ C46 2C36

ðC23 þ C55Þ �ðC36 � C45Þ C35

0
B@

1
CA: ð37Þ

The boundary conditions applied on the two surfaces C1 and C2 may be either traction free on homogeneous Dirichlet.
In the case of traction free boundary conditions, the second equation in (12) results in

f½B0
1�u01 þ ða½B0

2� þ ½B1
3�Þu1 þ ½B1

4�u00gjh¼0;x ¼~0 ð38Þ

with

½B1
3� ¼

ðC16 þ C26Þ 0 C56

ðC12 þ C22Þ 0 C25

ðC14 þ C24Þ 0 C45

0
B@

1
CA; ½B1

4� ¼
C56 C46 C36

C25 C24 C23

C45 C44 C34

0
B@

1
CA: ð39Þ

If homogeneous Dirichlet boundary conditions are applied on the two surfaces C1 and C2, then the condition on u1 is

fu1gjh¼0;x ¼~0: ð40Þ

To obtain the weak form associated with the second differential equation in (8) we multiply (36) by a test function v and
integrate over a circular path CR, and using an integration by parts for the second derivative term one obtains:

fð½A0
1�u01Þ

T
vgjh¼0;x �

Z x

0

ð½A0
1�u01Þ

T
v0 dhþ

Z x

0

½ða½A0
2� þ ½A1

3�Þu01�
T
v dhþ

Z x

0

½ða2½A0
4� þ a½A1

5� þ ½A6�Þu1�
T
vdh

þ
Z x

0

ð½A1
7�u00Þ

T
vdhþ

Z x

0

½ða½A1
8� þ ½A1

9�Þu0�
T
vdh ¼ 0: ð41Þ

If traction free boundary conditions are prescribed then the first term in (41) is

fð½A0
1�u01Þ

T
vgjh¼0;x ¼ fð½B0

1�u01Þ
T
vgjh¼0;x ¼ �f½ða½B0

2� þ ½B1
3�Þu1�

T
vgjh¼0;x � fð½B1

4�u0Þ
T
vgjh¼0;x; ð42Þ

otherwise, if homogeneous Dirichlet boundary conditions are applied then

fu1gh¼0;x ¼ fvgh¼0;x ¼ 0) fð½A0
1�u01Þ

T
vgh¼0;x ¼ 0 ð43Þ

and we restrict the space in which the solution is sought. Therefore the weak formulation for the computation of u1 is

Seek u1 2 H 1ð0;xÞ; s:t: B1ðu1; vÞ þB1ðBCÞðu1; vÞ ¼F1ðvÞ þF1ðBCÞðvÞ; 8v 2 H 1ð0;xÞ; ð44Þ
where H1 is the Sobolev space,

B1ðu1; vÞ ¼ �
Z x

0

ð½A0
1�u01Þ

T
v0 dhþ

Z x

0

½ða½A0
2� þ ½A1

3�Þu01�
T
vdhþ

Z x

0

½ða2½A0
4� þ a½A1

5� þ ½A1
6�Þu1�

T
vdh;

B1ðBCÞðu1; vÞ ¼
�f½ða½B0

2� þ ½B1
3�Þu1�

T
vgjh¼0;x Traction free B:C:;

0 Clamped B:C:

(
ð45Þ
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and

F1ðvÞ ¼ �
Z x

0

ð½A1
7�u00Þ

T
vdh�

Z x

0

½ða½A1
8� þ ½A1

9�Þu0�
T
vdh;

F1ðBCÞðvÞ ¼ fð½B1
4�u0Þ

T
vgjh¼0;x Traction free B:C:;

0 Clamped B:C:

( ð46Þ

For clamped boundary conditions the Sobolev space H1 is replaced by H
�

1 ¼ fvjv 2 H 1; vðh ¼ 0;xÞ ¼~0g.

4.2. p-FEMs for the solution of the weak formulation (44)

We apply p-FEMs for the solution of (44) similarly to Section 3.2. To this end u1 ¼ u1 v1 w1ð ÞT ¼ ½N �a1 and
v ¼def ½N �b1. The resulting FE formulation is

aT
1 ½K1� ¼ F1; ð47Þ

where

½K1� ¼ �f½N �Tða½B0
2�

T þ ½B1
3�

TÞ½N �gjh¼0;x �
2

x

Z 1

�1

½N 0�T½A0
1�

T½N 0�dnþ
Z 1

�1

½N 0�Tða½A0
2�

T þ ½A1
3�

TÞ½N �dn

þ x
2

Z 1

�1

½N �Tða2½A0
4�

T þ a½A1
5�

T þ ½A1
6�

TÞ½N �dn;

F1 ¼ faT
0 ½N �

T½B1
4�

T½N �gjh¼0;x �
Z 1

�1

aT
0 ½N 0�

T½A1
7�

T½N �dn� x
2

Z 1

�1

aT
0 ½N �

Tða½A1
8�

T þ ½A1
9�

TÞ½N �dn: ð48Þ

For clamped boundary conditions ½B0
2� ¼ ½B1

3� ¼ ½B1
4� ¼ ½0�.

4.3. The non-uniqueness of u1;w1 and the H1 condition

The differential equation for u1 and the differential equation for w1 are both non-homogeneous equations, so the solu-
tion is a combination of a particular solution and homogeneous solution, i.e.:

u1ðhÞ ¼ u
ðPÞ
1 ðhÞ þ u

ðHÞ
1 ðhÞ; w1ðhÞ ¼ w

ðP Þ
1 ðhÞ þ w

ðHÞ
1 ðhÞ: ð49Þ

The homogeneous solution u
ðHÞ
1 ðr; hÞ and w

ðHÞ
1 ðr; hÞ are of the form:

u
ðHÞ
1 ðhÞ ¼ Cu1u0ðhÞ; w

ðHÞ
1 ðhÞ ¼ Cw1w0ðhÞ; ð50Þ

where Cu1 ;Cw1 2 R. Because Cu1 and Cw1 are undefined, we may choose any value of Cu1 and Cw1 , including Cu1 ¼ Cw1 ¼ 0,
and therefore there are an infinite number of u1 and w1 functions for which the differential equation hold. However, the
shadow function u1 and w1 have to satisfy another condition, denoted by H1 (for further details see [7]):

H1 ¼
Z x

0

fTCR
0 U0 �W1 �U0 � TCR

0 W1gdh�
Z x

0

fTCR
0 U1 �W0 �U1 � TCR

0 W0gdh�
Z x

0

fTCR
1 U0 �W0 �U0 � TCR

0 W0gdh ¼ 0;

ð51Þ
where TCR

0 and TCR
1 are given in (32).

Once the functions u1 and w1 are computed, H1 can be evaluated. In case H1 6¼ 0, H1 is recomputed using

wNEW
1 ¼ w1 þ Cw1w0: ð52Þ

The constant Cw1 is chosen such that H1 ¼ 0.

4.4. Weak formulation for computing the primal and dual second shadow functions, U2 and W2

The primal shadow functions u2 and the dual shadow function w2 are the solutions of the third differential equation in
(8).

Remark 4. The method presented herein addresses the computation of u2. The method is applicable to w2 computation by
replacing u2;u1;u0 and a with w2;w1;w0 and �a.
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After substituting raþ2u
ðaÞ
2 for U2, the dependency on r disappears, and an ODE in h has to be solved:

½A0
1�u002 þ ða½A0

2� þ ½A2
3�Þu02 þ ða2½A0

4� þ a½A2
5� þ ½A2

6�Þu2 þ ½A1
7�u01 þ ða½A1

8� þ ½A2
9�Þu1 þ ½A2

10�u0 ¼ 0: ð53Þ

The matrices ½A2
i � generated by the material properties are

½A2
3� ¼

4C16 ð2C12 � C22 þ C66Þ ð2C14 � C24 þ 2C56Þ
ð2C12 þ C22 þ 3C66Þ 4C26 ð2C25 þ 3C46Þ
ð2C14 þ C24 þ 2C56Þ ð2C25 þ C46Þ 4C45

0
B@

1
CA;

½A2
5� ¼

4C11 ð3C16 � C26Þ ð4C15 � C25Þ
ð5C16 þ C26Þ 4C66 5C56

ð4C15 þ C25Þ 3C56 4C55

0
B@

1
CA; ½A2

6� ¼
ð4C11 � C22Þ ð2C16 � C26Þ 2ð2C15 � C25Þ

3ð2C16 þ C26Þ 3C66 6C56

2ð2C15 þ C25Þ 2C56 4C55

0
B@

1
CA;

½A2
9� ¼

3C15 ð2C14 � C24Þ ð2C13 � C23 þ C55Þ
ðC14 þ C24 þ 3C56Þ 3C46 ð3C36 þ C45Þ
ðC13 þ C23 þ 2C55Þ 2C45 3C35

0
B@

1
CA; ½A2

10� ¼
C55 C45 C35

C45 C44 C34

C35 C34 C33

0
B@

1
CA: ð54Þ

In the case where traction free boundary conditions are applied, the second equation in (12) provides the conditions for
u
ðaÞ
2 :

f½B0
1�u02 þ ða½B0

2� þ ½B2
3�Þu2 þ ½B1

4�u01gjh¼0;x ¼~0 ð55Þ

with

½B2
3� ¼

ð2C16 þ C26Þ C66 2C56

ð2C12 þ C22Þ C26 2C25

ð2C14 þ C24Þ C46 2C45

0
B@

1
CA: ð56Þ

Thus

fð½A0
1�u02Þ

T
vgjh¼0;x ¼ fð½B0

1�u02Þ
T
vgjh¼0;x

¼ �f½ða½B0
2� þ ½B2

3�Þu2�
T
vgjh¼0;x � fð½B2

4�u1Þ
T
vgjh¼0;x: ð57Þ

If homogeneous Dirichlet boundary conditions are applied on the two surfaces C1 and C2, then the condition on u2 is

u2f gjh¼0;x ¼~0: ð58Þ

Thus

fu2gh¼0;x ¼ fvgh¼0;x ¼~0 ) fð½A0
1�u02Þ

T
vgh¼0;x ¼ 0: ð59Þ

Following the steps in Section 4.1, and using (57) or (59) we obtain the weak form for the function u2:

Seek u2 2 H 1ð0;xÞ; s:t: B2ðu2; vÞ þB2ðBCÞðu2; vÞ ¼F2ðvÞ þF2ðBCÞðvÞ 8v 2 H 1ð0;xÞ; ð60Þ
where

B2ðu2; vÞ ¼ �
Z x

0

ð½A0
1�u02Þ

T
v0 dhþ

Z x

0

½ða½A0
2� þ ½A2

3�
0Þu2�

T
vdhþ

Z x

0

½ða2½A0
4� þ a½A2

5� þ ½A2
6�Þu2�

T
vdh:

B2ðBCÞðu2; vÞ ¼
�f½ða½B0

2� þ ½B2
3�Þu2�

T
vgjh¼0;x Traction free B:C:;

0 Clamped B:C:

(
ð61Þ

and

F2ðvÞ ¼ �
Z x

0

ð½A1
7�u01Þ

T
vdh�

Z x

0

½ða½A1
8� þ ½A2

9�Þu1�
T
vdh�

Z x

0

ð½A2
10�u0Þ

T
vdh:

F2ðBCÞðvÞ ¼ fð½B1
4�u1Þ

T
vgjh¼0;x Traction free B:C:;

0 Clamped B:C:

(
ð62Þ

For clamped boundary conditions the Sobolev space H1 is replaced by H
�

1 ¼ fvjv 2 H 1; vðh ¼ 0;xÞ ¼~0g.
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4.5. p-FEMs for the solution of the weak eigen-formulation

We apply p-FEMs for the solution of (60), similar to Section 3.2, where u2 ¼ u2 v2 w2ð ÞT ¼ ½N �a2 and v ¼def ½N �b2. The
resulting FE formulation is

aT
2 ½K2� ¼ F2; ð63Þ

where

½K2� ¼ �f½N �Tða½B0
2�

T þ ½B2
3�Þ½N �gjh¼0;x �

2

x

Z 1

�1

½N 0�T½A0
1�

T½N 0�dnþ
Z 1

�1

½N 0�Tða½A0
2�

T þ ½A2
3�

TÞ½N �dn

þ x
2

Z 1

�1

½N �Tða2½A0
4�

T þ a½A2
5�

T þ ½A2
6�

TÞ½N �dn;

F2 ¼ faT
1 ½N �

T½B1
4�

T½N �gjh¼0;x �
Z 1

�1

aT
1 ½N 0�

T½A1
7�

T½N �dn� x
2

Z 1

�1

aT
1 ½N �

Tða½A1
8� þ ½A2

9�
TÞ½N �dn

� x
2

Z 1

�1

aT
0 ½N �

T½A2
10�

T½N �dn: ð64Þ

For clamped boundary conditions ½B0
2� ¼ ½B2

3� ¼ ½B1
4� ¼ ½0�.

4.6. The non-uniqueness of u2;w2 and the H2 condition

Similar to the u1 solution, the differential equation describing u2 and the differential equation describing w2 are both
non-homogeneous. Thus

u2ðhÞ ¼ u
ðPÞ
2 ðhÞ þ u

ðHÞ
2 ðhÞ; w2ðhÞ ¼ w

ðP Þ
2 ðhÞ þ w

ðHÞ
2 ðhÞ ð65Þ
Table 1
Numerical results of first three eigen-values and their relative error (%) for an isotropic ðk ¼ 0:5769;l ¼ 0:3846Þ cracked domain with traction free
boundary conditions

p-level DOF aEx
1 ¼ 0:5 aEx

2 ¼ 0:5 aEx
3 ¼ 0:5

aFE
1 % Error aFE

2 % Error aFE
3 % Error

p ¼ 2 18 – – – – 0.551329 10.265780
p ¼ 3 24 – – – – 0.500139 0.027824
p ¼ 4 30 0.577106 15.421192 0.899122 79.824361 0.500139 0.027824
p ¼ 5 36 0.521094 4.218802 0.622920 24.584006 0.500000 0.000014
p ¼ 6 42 0.507963 1.592520 0.517027 3.405338 0.500000 0.000014
p ¼ 7 48 0.500843 0.168622 0.504260 0.851932 0.500000 0
p ¼ 8 54 0.500162 0.032352 0.500281 0.056244 – –
p ¼ 9 60 0.500008 0.001532 0.500041 0.008206 – –
p ¼ 10 66 0.500001 0.000178 0.500001 0.000292 – –
p ¼ 11 72 0.500000 0.000004 0.500000 0.000028 – –

10 20 30 40 50 60 70 80 90100
10

–3

10
–2

10
–1

10
0

10
1

10
2

DOF

R
el

at
iv

e 
E

rr
o

r 
(%

)

α
1

α
2

α
3

Fig. 2. Relative error of the eigen-values aFE
1 ; aFE

2 ; aFE
3 , for isotropic cracked domain with traction free boundary conditions ðk ¼ 0:5769;l ¼ 0:3846Þ.
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with

u
ðHÞ
2 ðhÞ ¼ Cu2u0ðhÞ; w

ðHÞ
2 ðhÞ ¼ Cw2w0ðhÞ: ð66Þ

Again Cu2 and Cw2 are undefined, so any value of Cu2 and Cw2 , including Cu2 ¼ Cw2 ¼ 0 can be chosen. However, the
shadow function u2 and w2 have to satisfy another condition, denoted by H2 (for further details see [7]):

H2 ¼
Z x

0

fTCR
0 U2 �W0 �U2 � TCR

0 W0gdhþ
Z x

0

TCR
0 U0 �W2 �U0 � TCR

0 W2

	 

dh�

Z x

0

fTCR
0 U1 �W1 �U1 � TCR

0 W1gdh

�
Z x

0

fTCR
1 U0 �W1 �U0 � TCR

1 W1gdhþ
Z x

0

fTCR
1 U1 �W0 �U1 � TCR

1 W0gdh ¼ 0; ð67Þ
0 90 180 270 360
0

0.05

0.1

0.15

0.2

0.25

Degrees

E
ig

en
–F

u
n

ct
io

n
  u

0(α
1)

p=5
p=7
p=9
p=11
exact

0 90 180 270 360

–0.4

–0.2

0

0.2

0.4

Degrees

E
ig

en
–F

u
n

ct
io

n
  v

0(α
1)

p=5
p=7
p=9
p=11
exact

0 90 180 270 360
–0.25

–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2

0.25

Degrees

E
ig

en
–F

u
n

ct
io

n
  u

0(α
2)

p=5
p=7
p=9
p=11
exact

0 90 180 270 360
–0.35

–0.3

–0.25

–0.2

–0.15

–0.1

–0.05

0

Degrees

E
ig

en
–F

u
n

ct
io

n
  v

0(α
2)

p=5
p=7
p=9
p=11
exact

0 90 180 270 360

–0.4

–0.2

0

0.2

0.4

0.6

Degrees

E
ig

en
–F

u
n

ct
io

n
  w

0(α
3)

p=5
p=7
p=9
p=11
exact

Fig. 3. Eigen-Functions uðaiÞ
0 and vðaiÞ

0 for i ¼ 1; 2 and wða3Þ
0 , for isotropic cracked domain with traction free boundary conditions ðk ¼ 0:5769;l ¼ 0:3846Þ.
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where TCR
0 and TCR

1 are given in (32). Once the functions u2 and w2 are computed, H2 condition is computed. In the case
H2 6¼ 0;H2 is recomputed using

wNEW
2 ¼ w2 þ Cw2w0: ð68Þ

The constant Cw2 is chosen such that H2 ¼ 0.

5. Numerical example: Eigen-pairs and shadow function computation for cracked domain ðx ¼ 2pÞ with traction free boundary
conditions

5.1. Primal eigen-pairs and duals, a, u0;w0

In order to examine the method and its performance we first select an isotropic material for which we can compute u0 ana-
lytically. The numerical results are compared with the analytical ones to assess the accuracy and efficiency of present methods.

We select Young modulus to be 1 and Poisson ration to be 0.3, so Lamé constants are k ¼ 0:5769 and l ¼ 0:3846. The
first three eigen-pairs are associated in fracture mechanics with Mode I, Mode II and Mode III deformations. The first
three eigen-values for the case of cracked domain (computed analytically) are

aEx
1 ¼ aEx

2 ¼ aEx
3 ¼

1

2
: ð69Þ

The eigen-functions u
ðaiÞ
0 associated with these three eigen-values and the duals w

ðaiÞ
0 are given in [22] and Appendix A.

Using a single finite element and increasing the order of shape functions, we summarize the eigen-values, relative error,
p-level and the number of degrees of freedom in Table 1. The exponential rate of convergence of the eigen-values as
expected for p-extensions is clearly visible when plotted on a log–log scale in Fig. 2.

The eigen-functions u0; v0 associated with a1; a2 and w0 for a3 are presented in Fig. 3. The function w0 associated with a1

and a2 is zero and therefore not plotted herein as well as u0 and v0 for a3.
Defining the relative error in L2 norm for u0, for example, by

keðu0ÞkL2 ¼
R x

0 ðuFE
0 � uEx

0 Þ
2 dhR x

0
ðuEx

0 Þ
2 dh

; ð70Þ

we plot the relative errors for uða1Þ
0 ; vða1Þ

0 ; uða2Þ
0 ; vða2Þ

0 and wða3Þ
0 in Fig. 4. As expected, exponential convergence rate is noticed.

The dual eigen-functions u0; v0 associated with �a1;�a2 and w0 for �a3 are presented in Fig. 5. The functions w0 asso-
ciated with �a1 and �a2 is zero and therefore not plotted herein as well as u0 and v0 associated with �a3.

We plot the relative errors for the duals uð�a1Þ
0 ; vð�a1Þ

0 ; uð�a2Þ
0 ; vð�a2Þ

0 and wð�a3Þ
0 in Fig. 6. The duals show also an exponential

convergence rate.

5.2. Computation of the first primal and dual shadow functions, u1 and w1

There are many valid u1 and w1 functions (see Section 4.3) so that we cannot compare them with the analytical solution.
In Fig. 7 the first shadow functions and the first dual shadow functions associated with a1; a2; a3 computed by (47) with
p ¼ 11 are shown.
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conditions ðk ¼ 0:5769;l ¼ 0:3846Þ.
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5.3. Computation of the second primal and dual shadow functions, u2 and w2

There are many valid u2 and w2 functions and therefore we cannot compare them with the analytical solution. The sec-
ond shadow functions and the second dual shadow functions associated with a1; a2 and a3 computed by (63) with p ¼ 11
are shown in Fig. 8. These will be used in the sequel for the extraction of the edge stress intensity functions.
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6. Extracting edge stress intensity function by the quasi-dual function method

Following the computation of the asymptotic series representing the elastic solution in the vicinity of an edge, we pro-
ceed to extraction of edge stress intensity functions by using the quasi-dual function method [7]. This extraction method has
been presented for scalar elliptic problems in [16] and for elastic isotropic problems in [22]. Herein we demonstrate its effi-
ciency when the eigen-pairs and the shadow functions are computed numerically for a general anisotropic domain. We
briefly describe herein the quasi-dual function method, whereas full details are given in [7,16,22].

Assume that the edge stress intensity function (ESIF) Aiðx3Þ is of interest. For its extraction a quasi-dual-singular func-
tion KðaiÞ

m ½B� is constructed where m is a natural integer called the order of the quasi-dual function, and Bðx3Þ is a function,
provided in the sequel, called extraction polynomial. KðaiÞ

m ½B� is characterized by the number of dual singular functions m

needed to construct it and the extraction polynomial B:

KðaiÞ
m ½B� ¼

def
Xm

j¼0

o
j
3Bðx3ÞWðaiÞ

j : ð71Þ

A scalar product of Aiðx3Þ with Bðx3Þ on E can be extracted with the help of the anti-symmetric boundary integral J[R], over
the cylindrical surface CR (1).

J ½R�ðf; vÞ ¼def
Z

I

Z x

0

ðTCR f � v� f � TCR vÞjr¼RR dhdx3; ð72Þ

where I � E (the edge) along x3 axis (Fig. 1) and TCR is the radial Neumann trace operator presented in (30). Note that J[R]
in (72) is unrelated with the classical J-integral [17], but rather an extension of the dual singular function method [3] to 3-D
domains. With the above definitions we have the following theorem [7]:

Theorem 1. Take Bðx3Þ such that

o
j
3Bðx3Þ ¼ 0 for j ¼ 0; ::::;m� 1 on oI ð73Þ

then, if the ESIFs Ai in the expansion (7) are smooth enough:

J ½R�ð~u;KðaiÞ
m ½B�Þ ¼

Z
I

Aiðx3ÞBðx3Þdx3 þ OðRa1�aiþmþ1Þ; as R! 0: ð74Þ

Here a1 is the smallest of the positive real eigen-values ai; i 2 N, and we assume that any other complex eigen-value a with

positive real part satisfies Ra P a1, as mentioned in Remark 2.

Choosing m ¼ 2 we have in (74) OðRa1�aiþ3Þ. Theorem 1 allows a precise determination of
R

I Aiðx3ÞBðx3Þdx3 by computing
(74) for two or three R values as R! 0. We construct an adaptive class of orthonormal polynomials (Jacobi) with a given
weight wðx3Þ ¼ ð1� x2

3Þ
~m so to represent Bðx3Þ. In this way, if Aiðx3Þ is a polynomial of degree N, it is expanded as a linear
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Fig. 7. First shadow function u1 (left) and dual shadow function w1 (right) associated with a1 (Mode I) first row, a2 (Mode II) second row, and a3 (Mode
III) third row, for isotropic cracked domain with traction free boundary conditions ðk ¼ 0:5769; l ¼ 0:3846Þ using p ¼ 11.
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combination of Jacobi polynomials. By selecting ~m ¼ m ¼ 2, (73) is satisfied, however the derivatives of these Jacobi poly-
nomials are significantly large which effect the result of the extracted ESIF at the two ends of the edge (see [22]). Therefore
we choose ~m ¼ 4 which satisfy (73) up to m ¼ 4. The family of extraction polynomials is

BðkÞðx3Þ ¼ ð1� x2
3Þ

4 J ðkÞ4 ðx3Þ
hk

; hk ¼
29ðk þ 4Þ!ðk þ 4Þ!
ð2k þ 9Þðk þ 8Þ! : ð75Þ

If Aiðx3Þ is represented by a polynomial of Nth order as linear combination of Jacobi polynomials,

Aiðx3Þ ¼ ~a0J ð0Þ4 þ ~a1J ð1Þ4 ðx3Þ þ � � � þ ~aN J ðNÞ4 ðx3Þ; ð76Þ
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Fig. 8. Second shadow function u2 (left) and dual shadow function w2 (right) associated with a1 (Mode I) first row, a2 (Mode II) second row, and a3

(Mode III) third row, for isotropic cracked domain with traction free boundary conditions ðk ¼ 0:5769;l ¼ 0:3846Þ using p ¼ 11.
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where J ðkÞ4 is the Jacobi polynomial of degree k and order 4 then

Z 1

�1

Aiðx3ÞBðkÞðx3Þdx3 ¼ ~ak k ¼ 0; 1; . . . ;N : ð77Þ
Thus, in the view of (74), the J[R] integral evaluated for the quasi-dual functions KðaiÞ
m ½BðkÞ�, k ¼ 0; 1; . . . ;N provides approx-

imations of the coefficients ~ak. Note that the polynomial degree is the superscript k. Of course, in general Aiðx3Þ is an



3642 Z. Yosibash, N. Omer / Comput. Methods Appl. Mech. Engrg. 196 (2007) 3624–3649
unknown function and we wish to find a projection of it into spaces of polynomials. It is expected that as we increase the
polynomial space, the approximation is better.

If we want to increase the space in which Aiðx3Þ is projected, all which is needed is the computation of (74) for k ¼ N þ 1.
This way: Anewðx3Þ ¼ Apreviousðx3Þ þ ~aNþ1J Nþ1ðx3Þ.

In a cracked domain subject to boundary conditions the exact solution ~u is in general unknown, so we have to use finite
element methods and obtain ~uFE instead, to be used in (72), and computed using a Gaussian quadrature of order nG:

J ½R�ð~u;KðaiÞ
2 ½BðkÞ�Þ ¼

XnG

k¼1

XnG

‘¼1

x
2

wkw‘ðTCR ~uFE � KðaiÞ
2 ½BðkÞ� � ~uFE � TCR K

ðaiÞ
2 ½BðkÞ�Þnk ;g‘

; ð78Þ

where wk are the weights and nk and g‘ are the abscissas of the Gaussian quadrature. The Neumann trace operator, TCR ,
operates on both ~uFE and K

ðaiÞ
2 ½BðkÞ�. For ~uFE and TCR~uFE we use the numerical approximations computed by finite elements

(notice that such extractions are easily computed by the p-version of the FEM at any point within an element), whereas
K
ðaiÞ
2 ½BðkÞ� and TCR K

ðaiÞ
2 ½BðkÞ� are computed numerically using wFE

0 ;wFE
1 and wFE

2 in Sections 3 and 4.

6.1. Numerical example: ESIFs extraction for an isotropic cracked domain ðx ¼ 2pÞ with traction free boundary conditions

The extraction method of the ESIFs for isotropic domains was presented in [22]. It was shown to be accurate and effi-
cient, however, the available dual eigen-pairs and shadow functions were all analytical. In this subsection we examine the
extraction method using WFE

0 ;WFE
1 ;WFE

2 computed numerically. We choose the Young modulus to be 1 and Poisson ratio
0.3, (k ¼ 0:5769 and l ¼ 0:3846), so

C ¼

1:346153 0:576923 0:576923 0 0 0

1:346153 0:576923 0 0 0

1:346153 0 0 0

0:384615 0 0

0:384615 0

0:384615

0
BBBBBBBB@

1
CCCCCCCCA
: ð79Þ

Having the exact solution to a crack in a 3-D isotropic domain with traction free boundary conditions we can consider the
first three eigen-values only, and chose the ESIFs to be, for example, a polynomial of order 3. Thus an exact solution is

~u ¼ A1ðx3Þra1u
ða1Þ
0 ðhÞ þ o3A1ðx3Þra1þ1u

ða1Þ
1 ðhÞ þ o2

3A1ðx3Þra1þ2u
ða1Þ
2 ðhÞ þ A2ðx3Þra2u

ða2Þ
0 ðhÞ þ o3A2ðx3Þra2þ1u

ða2Þ
1 ðhÞ

þ o
2
3A2ðx3Þra2þ2u

ða2Þ
2 ðhÞ þ A3ðx3Þra3u

ða3Þ
0 ðhÞ þ o3A3ðx3Þra3þ1u

ða3Þ
1 ðhÞ þ o

2
3A3ðx3Þra3þ2u

ða3Þ
2 ðhÞ; ð80Þ

where all eigen-pairs and shadows in (80) are given analytically in Appendix A. For example, consider the following exact
ESIFs (polynomials of order 3):

AEx
1 ðx3Þ ¼ 3þ 4x3 þ 5x2

3; AEx
2 ðx3Þ ¼ 2þ 3x3 þ 4x2

3; AEx
3 ðx3Þ ¼ 5þ 4x3 þ 2x2

3: ð81Þ
If we prescribe on a traction free cracked domain Dirichlet boundary conditions according to (80) and (81), the exact solu-
tion at each r; h; x3 is as (80) and (81). Consider a 3-D domain as shown in Fig. 1 with x ¼ 2p. The domain is discretized by
using a p-FEM mesh, with geometrical progression towards the singular edge with a factor of 0.15, having four layers of
elements. In the x3 direction, a uniform discretization using five elements has been adopted. In Fig. 9 we present the mesh
used for the cracked domain.
Fig. 9. The p-FEM model of the cracked domain.
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We specify on the entire boundary oX Dirichlet boundary conditions according to the exact solution ~u (80). This way,
the exact solution at any point x � ðr; h; x3Þ is (80).

When J[R] is computed with the quasi-dual function K
ðaiÞ
2 and BðkÞðx3Þ we expect to obtain, according to (74), the coef-

ficient ~aðaiÞ
j . The ESIF is then easily represented by a linear combination of the Jacobi polynomials in (76): We extract the

ESIFs at R ¼ 0:05 by using the numerically computed dual eigen-pairs and their shadows for construction of KðaiÞ
2 ½BðkÞ�.

We compute the relative error of the extracted AFE
1 ðx3Þ;AFE

2 ðx3Þ;AFE
3 ðx3Þ of order 3,4,5 in Fig. 10. We compare these

results with the extracted polynomial representation obtained using analytical formulas of the duals and shadows (see
[22] for further details).
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Fig. 10. Relative error of ESIFs computed using analytical (left) and numerical p-FEM (right) duals and shadows. Computation done with BðkÞ; k ¼ 3; 4; 5,
where AEx

1 ðx3Þ ¼ 3þ 4x3 þ 5x2
3; AEx

2 ðx3Þ ¼ 2þ 3x3 þ 4x2
3; AEx

3 ðx3Þ ¼ 5þ 4x3 þ 2x2
3; x ¼ 2p; k ¼ 0:5769 and l ¼ 0:3846, at R ¼ 0:05.
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Notice that the relative error of both ESIFs computed using either analytical or numerical dual and shadows functions
are similar and in all cases lower than 0.1%. The results are accurate and efficient.

The same test was performed for a clamped V-notched domain x ¼ 3p
2

� �
. The ESIFs were extracted using numerically

computed duals and shadows and the results compared to the ESIFs extracted using analytic computations of these func-
tions. The results obtained were accurate, showing that both cases provide relative errors of less than 0.1%.

6.2. Numerical example: ESIFs extraction for an anisotropic cracked domain ðx ¼ 2pÞ with traction free boundary conditions

In this section we present the solution of the displacements in the vicinity of an edge for a traction free cracked aniso-
tropic domain. The computation of the eigen-pairs, duals and shadows for anisotropic domain is not documented in the
literature (to the best of our knowledge). We generate the solution in the vicinity of the edge using the numerically com-
puted eigen-pairs and shadows and test the ESIF extraction method for the anisotropic domain.

We select the material anisotropic matrix to be (notice that C23 ¼ C12 6¼ C13)

C ¼

1:346153 0:576923 1:153846 0 0 0

1:346153 0:576923 0 0 0

1:346153 0 0 0

0:384615 0 0

0:384615 0

0:384615

0
BBBBBBBB@

1
CCCCCCCCA
: ð82Þ

Herein, we use the C matrix in a Cartesian Hooke’s Law: r ¼ Ce.

Remark 5. Computation of eigen-pairs and shadows in the case of a Cartesian Hook’s law is similar to the method
presented in Sections 3 and 4. By transferring the stresses r and strains e to Polar coordinate system ð~r;~eÞ the material
matrix C becomes h dependent and therefore the ½Aj

i � and ½Bj
i � matrices are also h dependent, however the method remains

the same.

For anisotropic materials U0;U1;U2 as well as W0;W1;W2, are unknown, but the first three eigen-values for a cracked
domain ðx ¼ 2pÞ are aEx

1 ¼ aEx
2 ¼ aEx

3 ¼ 1
2

(for general elliptic systems with the same boundary conditions on both sides of
crack faces, the first three singularity exponents are 1

2
, see [5]).
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Fig. 11. The eigen-functions (top) and the dual eigen-functions (bottom) associated with a1 ¼ 1
2

in the case of anisotropic (82) cracked domain.
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We first compute numerically the first three eigen-values as in Section 3. The eigen-values, relative error, p-level and the
number of degrees of freedom are identical to these presented in Table 1 and therefore are not repeated. Although the
eigen-values for the anisotropic case are identical to these of the isotropic case, the shadow functions of the two cases
are different.

The primal, dual and shadow functions related with a1; a2 and a3 are presented in Figs. 11–13, respectively. All functions
presented herein were computed numerically at p ¼ 11.
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Fig. 13. The eigen-functions (top) and the dual eigen-functions (bottom) associated with a3 ¼ 1
2

in the case of anisotropic (82) cracked domain.
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Fig. 12. The eigen-functions (top) and the dual eigen-functions (bottom) associated with a2 ¼ 1
2

in the case of anisotropic (82) cracked domain.
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Similar to Section 6.1, we generate a solution to a crack in a three-dimensional anisotropic domain with traction free
boundary conditions by applying the primal and shadow eigen-functions UFE

0 ;UFE
1 ;UFE

2 (we refer to the first three
eigen-values only) computed at p ¼ 11. We select the ESIF Aiðx3Þ to be polynomials of order 2 as presented in (81), such
that the solution (7) contains nine terms in the sum: three eigen-functions and six shadow functions, as in (80). Because an
analytical solution is unavailable we have to subscribe UFE

0 ;UFE
1 and UFE

2 instead as boundary conditions.
The domain has been discretized by using p-FEM mesh, as presented in Fig. 9. We specify on the entire boundary oX

Dirichlet boundary conditions. This way, the solution at any point x � ðr; h; x3Þ is as in (80).
We compute the polynomial that approximates the ESIFs using the J[R] integrals with KðaiÞ

2 at R ¼ 0:05, and Jacobi
polynomials of order 3,4 and 5, and plot AFE

1 ðx3Þ;AFE
2 ðx3Þ;AFE

3 ðx3Þ and their relative errors in Fig. 14.
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Fig. 14. ESIFs (left) and their relative error (right) extracted at R ¼ 0:05 for anisotropic (82) cracked domain. Computations done with BðkÞ; k ¼ 3; 4; 5,
where Aex

1 ðx3Þ ¼ 3þ 4x3 þ 5x2
3; Aex

2 ðx3Þ ¼ 2þ 3x3 þ 4x2
3; Aex

3 ðx3Þ ¼ 5þ 4x3 þ 2x2
3.
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The relative error (as can be observed in Fig. 14) is lower than 0.5%. The results indicate that the eigen-functions, duals
and shadows computed for the anisotropic domain are accurate and the ESIF extraction method performs well for aniso-
tropic materials.

The results indicate that the solution in the vicinity of an edge for anisotropic domain may be computed numerically
using the p-FEM method and the J[R] integral, and obtain accurate and efficient results.
7. Summary and conclusions

The displacements in the vicinity of an edge for a 3-D elastic domain is described by a family of eigen-functions, shadow
functions and their associated edge stress intensity functions.

In the case of anisotropic materials, there is no analytic solution to the eigen-pairs and shadows. Herein we presented a
numerical method, based on the p-version of the finite element method for their computation. In isotropic domain the ana-
lytic solution is provided so the relative error of both primal eigen-functions and their shadows was shown to converge
exponentially to less than 1%.

Next, the quasi-dual function method for ESIFs extraction was recalled. The implementation of the method was pre-
sented in [16] for scalar problems and in [22] for 3-D elastic isotropic problems. The results presented in this paper examine
the accuracy of the method in the case of anisotropic domains for which the eigen-pairs, shadows and duals are computed
numerically.

As a test case the ESIF was extracted for an isotropic domain for which the exact solution is known, using either ana-
lytical or numerical solution of the duals and their shadows. The results show that in both cases the relative error of the
extracted ESIF was less than 1%. This indicates that the method is accurate and efficient.

Finally, ESIF extraction was performed for an anisotropic domain. Because the exact solution is unknown, the numer-
ical computation of the eigen-pairs and shadows was considered instead. The relative error of the extracted ESIFs for the
anisotropic problem was less than 0.5%.

The presented methods for the computation of eigen-pairs, shadow functions and the functional representation of ESIFs
in the vicinity of edges are shown to apply to isotropic as well as anisotropic domains, are accurate and efficient. These
methods are being extended to address problems having complex eigen-pairs and multi-material interfaces and will be
reported in future publications.
Acknowledgements

The authors thank Profs. Monique Dauge and Martin Costabel of the UMR-CNRS 6625-IRMAR, Universite de
Rennes 1, Campus de Beaulieu, Rennes, France, for helpful discussions, remarks and support.
Appendix A. Analytic solution of the eigen-pairs, duals and shadows for cracked domain ðx ¼ 2pÞ with traction free boundary
conditions

For an isotropic domain with a crack ðx ¼ 2pÞ with traction free boundary conditions, the functions UðaiÞ
0 ;UðaiÞ

1 ;UðaiÞ
2

and the dual functions WðaiÞ
0 ;WðaiÞ

1 and WðaiÞ
2 may be computed analytically (see [22]).

Uða1Þ
0 in the case of a crack is known as Mode I solution. The eigen-value in the case is a1 ¼ 1

2
and the primal and shadow

functions for k ¼ 0:5769 and l ¼ 0:3846 are

Uða1Þ
0 ðr; hÞ ¼ 0:084042r

1
2

2:6 sin 1
2
h

� �
þ sin 3

2
h

� �
4:6 cos 1

2
h

� �
þ cos 3

2
h

� �
0

0
BB@

1
CCA;

Uða1Þ
1 ðr; hÞ ¼ 0:084042r
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2

0

0

�2 sin 1
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� �
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� �
0
BB@

1
CCA;

Uða1Þ
2 ðr; hÞ ¼ 0:084042r
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� �
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� �
�0:76667 cos 1

2
h

� �
þ 0:03244 cos 3

2
h

� �
0

0
BB@

1
CCA; ðA:1Þ
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Wð�a1Þ
0 ðr; hÞ ¼ 0:659433r�

1
2

sin 1
2
h

� �
þ 1:53333 sin 3

2
h

� �
cos 1

2
h
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2
h
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0
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1
CCA;

Wð�a1Þ
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0
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Multiplying Uða1Þ
0 ðr; hÞ, (A.1), by 0.32408, we obtain the classical Mode I solution. Comparing the 3-D solution presented

herein with the 3-D test problem for Mode I presented by Meda et al. in [15] shows that both solutions are identical up to a
constant.

Uða2Þ
0 in the case of a crack is known as Mode II solution. The second eigen-value is a2 ¼ 1

2
and the primal and shadow

functions ðk ¼ 0:5769; l ¼ 0:3846Þ are
Uða2Þ
0 ðr; hÞ ¼ 0:123947r
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Multiplying Uða2Þ
0 ðr; hÞ, (A.3), by �0.17796, we obtain the classical Mode II solution for a crack.

Uða3Þ
0 in the case of a crack is known as Mode III solution. The third eigen-value is a3 ¼ 1

2
and the primal and shadow

functions ðk ¼ 0:5769; l ¼ 0:3846Þ are
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