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Abstract

The active mechanical response of an artery wall resulting from the contraction of the
smooth muscle cells (SMCs) is represented by a strain energyfunction (SEDF) that aug-
ments the passive SEDF recently reported in Yosibash Z. and Priel E., “p-FEMs for hyper-
elastic anisotropic nearly incompressible materials under finite deformations with applica-
tions to arteries simulation”,Int. Jour. Num. Meth. Eng., 88:11521174, 2011. The passive-
active hyperelastic, anisotropic, nearly-incompressible problem is solved using high-order
finite element methods (p-FEMs). A new iterative algorithm, named “p-prediction”, is
introduced that accelerates considerably the Newton-Raphson algorithm when combined
with p-FEMs. Verification of the numerical implementation is conducted by comparison
to problems with analytic solutions and the advantages ofp-FEMs are demonstrated by
considering both degrees of freedom and CPU.

The passive and active material parameters are fitted to bi-axial inflation-extension tests
conducted on rabbit carotid arteries reported in Wagner H.P. and Humphrey J.D., “Differen-
tial passive and active biaxial mechanical behavior of muscular and elastic arteries: Basilar
versus common carotid”,Jour. Biomech. Eng., 133, 2011. Article number: 051009. Our
study demonstrates that the proposed SEDF is capable of describing the coupled passive-
active response as observed in experiments. Artery-like structures are thereafter investi-
gated and the effect of the activation level on the stress anddeformation are reported. The
active contribution reduces overall stress levels across the artery thickness and along the
artery inner boundary.
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1 INTRODUCTION

Artery walls are anisotropic and nearly incompressible andconsist of two main thin
layers made of an elastin matrix embedded with stiff collagen fibers and smooth
muscle cells (SMCs). In addition to the passive mechanical response due to the
elastin and collagen fibers (well investigated in past studies), the SMCs contract in
response to chemical stimulus thereby augment the passive response. Experiments
show that the amount of tension generated by the SMCs is a function of the concen-
tration of the chemical stimulus (does-tension relation) and the amount of stretch
exerted on the muscle fiber (tension-stretch relation) [1].

Artery walls are considered as being hyperelastic, thus a strain energy density func-
tion (SEDF) is sought which determines the constitutive equation (stress-strain re-
lationship). Numerous studies propose different SEDFs forthe passive mechanical
response [2,3,4]. Some are phenomenological based, so the SEDFs are formulated
to result in a stress-strain response that mimics the experimentally observed re-
sponse [2], or semi-structural [5,6] in which some terms in the SEDF are related to
the tissue microstructure. A fully-structural model, in which each component of the
artery wall is modeled, individually, best describes the overall passive response, see
e.g. the recent work by Hollander et al. [6]. However, fully structural models are
very difficult to formulate because they require knowledge of arterial microstruc-
ture which is in most cases unavailable. Therefore, semi-structural models are pre-
ferred, and herein we modify the semi-structuralincompressiblehyperelastic SEDF
by Holzapfel et. al [5] for the passive part of the artery-wall response.

The active response and its numerical treatment were scarcely addressed in past
publications comparing to publications on the passive response. One of the early
works on the subject is by Rachev&Hayashi [7] in which the SMCs contribution
was considered by an additional term to the Cauchy stress in the circumferential di-
rection. The magnitude of the added stress depends on the chemical concentration
and the circumferential stretch ratio. There, no clear relation was provided between
the concentration of the stimulating chemical and the developed active stress. The
study showed that incorporation of SMCs resulted in a reduction of the circumfer-
ential Cauchy stresses. The “added stress” proposed in [7] was utilized by Masson
et al [8] to model the active response and to fit active material parameters from
in-vivo monitoring of the time dependent pressure responseof a human carotid
artery, assuming as in [7], that the SMCs fibers were circumferentially oriented.
A different functional representation for the added activestress was used by Wag-
ner&Humphrey [9] for simulation of inflation-extension experiments on the basilar
and common carotid arteries of New-Zealand white rabbits. The functional rep-
resentation for tension-dose relation was more specific, enabling the modeling of
partial SMCs contraction. An incompressible one-layer cylindrical tube-like artery
undergoing pure radial deformation (enabling an analytical solution to be obtained)
was considered.
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Another method of introducing the SMCs effect in the constitutive model is through
an “active-SEDF”, see e.g., Zulliger et al. [10] and Murtadaet al. [11]. The active-
SEDF proposed in [10] does not incorporate the tension-doserelation and focuses
on the passive, normal tone state (for which the pointwise activation level takes
the form of Gaussian distribution function) and then on the maximum SMCs con-
traction. This results in a linear stress-strain relationship for maximal contracted
SMCs thus it is only suited for the ascending part of the tension-stretch curve. The
active-SEDF in [11] is based on a micro-mechanical approachso that the activation
level is determined by a chemical kinetics model with an internal time-dependent
variable, requiring the determination of many material properties. Schmitz and Bol
[12] incorporated in the finite element (FE) framework an active-SEDF similar to
the one in [11]. Uniaxial strip experiments on porcine medial strips reported by
Herlihy&Murphy [13] under passive and active response wereused to fit the active
material parameters together with the collagen fiber dispersion reported by Dahl
et al. [14] for the fit of the passive material parameters. Good agrement between
the predicted and experimental results is reported, but themethods were not ex-
tended to artery-like structures and were restricted to strip specimens. It must also
be noted that in [12] the implementation of the SEDF in the framework of FEs is
not described and thus not verified.

In [15] the p-version of the FE method (p-FEM) was shown to perform very well for
modeling the passive-response of artery-like structures and that slight compressibil-
ity which is mostly neglected in past studies was taken into consideration. Here we
develop a new active-SEDF (aimed at augmenting the passive-SEDF in [15]) that is
easily incorporated in the framework ofp-FEMs. The use ofp-FEMs based on the
displacement formulation is motivated by the recent results [16,17,18,15] showing
their advantages over conventionalh-FEMs. p-FEMs were shown to be highly-
efficiency for the analysis of isotropic hyperelastic materials and are locking-free
for nearly incompressible Neo-Hook isotropic hyperelastic materials. These ad-
vantages in addition to the robustness of thep-FEM with respect to large aspect
ratios and distortion of the elements, makes it especially attractive for modeling
biological tissues as arteries. To the best of our knowledgethis is the first study that
usesp-FEMs to investigate the passive-active artery response. We present several
”benchmark” problems used to verify our numerical implementation and demon-
strate the superiority ofp-FEMs over traditionalh-FEMs in terms of degrees-of-
freedom (DOFs) and CPU. A novel method, intrinsic to the hierarchic property
of the p-shape functions, is exploited here to expedite the Newton-Rahpson al-
gorithm and dramatically reduce computational time. Following the verification
of our methods we use experimental inflation-extension observations reported by
Wagner&Humphrey [9] to fit the material parameters for the passive and active
SEDFs.

In section 2 the notations and the derivation of the active-SEDF are outlined and the
ingredients required for implementation of the active model in the FE framework
are explicitly presented. Three problems with analytic solution are utilized in sec-
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tion 3 to verify our numerical implementation and to investigate the performance
of thep- andh-FEMs. Fitting of passive and active model material parameters to
experiments is outlined in section 4. There we also investigate thep-FEM perfor-
mance for a more realistic bi-layer artery-like structure.In section 5 we emphasize
the effect of the various active parameters on the artery wall. We summarize our
work and draw several conclusions in section 6.

2 NOTATIONS AND IMPLEMENTATION OF AN ACTIVE-SEDF IN THE
FRAMEWORK OF FEMs

The point of departure is a brief description of our notations for a fiber reinforced
hyper-elastic material. The basic quantity is the deformation gradientF = Grad x(X, t)
= ∂xk(X1, X2, X3, t)/∂XKgi ⊗GK , wherex(X, t) defines the placement of the
pointX at timet. XK , k = 1, 2, 3, are the material (reference) coordinates,gi are
the tangent andGK the gradient vectors in the current and the reference config-
uration. Customary, the displacement vectorU(X, t)

def
= (UX , UY , UZ)T is intro-

duced, i.e.x = X + U(X, t), and with this notationF = I + Grad U(X, t). We
interchangeX1, X2, X3 with X, Y, Z when appropriate. A general strain-energy
density function (SEDF) for an isotropic hyperelastic material with two families of
fibers used to model the passive response is denoted by,ψpassive(C,M̂0,M̂ 1) =
Ψpassive(IC, IIC, III C, IVC,VIC), following Holzapfel et al. [5]. It depends on the
invariants of the right Cauchy-Green tensorC = F T F = (I + GradU)T (I + GradU),
and two unit direction vectors along collagen fiber directionsM̂ 0, andM̂ 1. For ex-
ample, using the Cartesian coordinate system in Figure 1, the fibers directions are
M̂ 0 = (sin β,− cosβ Y√

Y 2+Z2 , cosβ Z√
Y 2+Z2 )

T , M̂ 1 = (− sin β,− cosβ Y√
Y 2+Z2 , cosβ Z√

Y 2+Z2 )
T .

The invariants of the Cauchy-Green tensor are

Fig. 1. Coordinate system in a typical artery.
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IC = trC, IIC =
1

2
((trC)2 − trC2), III C = det C = (det F )2 def

= J2,

(1)
wheretrC symbolizes the trace operator and the invariants that represent stretch in
the fiber directions are

IVC = M̂ 0 · C · M̂ 0, VIC = M̂ 1 · C · M̂ 1, (2)

Following [5] we consider a strain-energy density functioncomposed of three parts
for modeling the passive response, an isochoric isotropic and a volumetric isotropic
Neo-Hook parts representing the elastic matrix, and a transversely isotropic part
representing the collagen fibers in the artery wall

Ψpassive(IC, III C, IVC,VIC) = [Ψisoch(IC, III C) + Ψvol(III C)]+Ψfibers(IVC,VIC),
(3)

The isochoric isotropic and volumetric isotropic parts arerepresented by a nearly
incompressible Neo-Hookean SEDF:

Ψisoch = c1(ICIII −1/3
C

− 3), Ψvol =
1

D1
(III 1/2

C
− 1)2 (4)

c1 andD1 are constants related to the shear modulusµ and to the bulk modulusκ

c1 =
µ

2
, D1 =

2

κ
. (5)

The transversely isotropic part for modeling the collagen fiber contribution is [19]:

Ψfibers =
k1

2k2

[

exp
[

k2 (IVC − 1)2
]

− 1
]

(6)

+
k1

2k2

[

exp
[

k2 (VIC − 1)2
]

− 1
]

, IVC,VIC ≥ 1

Remark 1 In some publicationsΨfibers is expressed in terms of the invariants
of the unimodular right Cauchy-Green tensorC = (det C)−1/3C, i.e., IV

C
=

IVCIII −1/3
C

, VI
C

= VICIII −1/3
C

(see [5]). This representation is inappropriate be-
cause no stresses are generated when an unimodular deformation is prescribed
resulting in a homogeneous deformation that stretches the collagen fibers.

For modeling the active response we construct a SEDF based on[7]. The first Piola-
Kirchhoff stress component due to SMCs contraction was found to be proportional
to the concentration of the vasoconstrictor[A], as well as the stretch ratio in the
SMCs-fibers directionM̂MF , denoted byλf :

P active
ff = S([A])f(λf) (7)

whereS([A]) is the tension-dose relationship andf(λf) is the tension-stretch rela-
tion. The tension-dose relationship is usually available from ring-tests, as given for
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example in [1], so that:

S([A]) = Smax
[A]m

[A]m + ECm
50

(8)

wherem is the slope parameter,Smax the maximum value of contraction (saturation
level) andEC50 is the concentration at which50% of maximum generated tension
is obtained. In Figure 2 a representative tension-dose relation is presented. It shows

Fig. 2. Representative tension-dose relation usingEC50 = 0.000015 [mol/liter], m = 1
taken from [1] andSmax = 100 kPa taken from [7].

that under a vasoconstrictor threshold concentration no induced active response is
generated and on the other end the active response reaches a saturation level beyond
a given vasoconstrictor concentration.

The tension-stretch relation is adopted from the work by Rachev&Hayashi [7], see
e.g. Figure 11:

f(λf) =











[

1 −
(

λm−λf

λm−λ0

)2
]

, λ1 > λf > λ0

0, Otherwise
(9)

with λm being the stretch at which maximum contraction is possible and λ0 and
λ1 = λ0+2(λm−λ0) being the minimum and maximum stretches at which contrac-
tion can be generated. This relationship is obtained from experiments at saturation
levels so forλm:

P active
ff = Smax (10)

Inserting (8) and (9) in (7) one obtains:

P active
ff =











Smax
[A]m

[A]m+ECm
50

[

1 −
(

λm−λf

λm−λ0

)2
]

, λ1 > λf > λ0

0, Otherwise
(11)
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Remark 2 The expression given in(11) results in different active stress values for
the same chemical concentration provided that the SMCs are under different stretch
ratios as demonstrated in experiments [13].

Defining the direction of the SMCs after deformation asmMF , one can compute
λf from the initial fiber direction and the right Cauchy-Green deformation tensor,
see [20, (6.200)]:

λ2
f = (mMF )T · (mMF ) = (FM̂MF )T · (FM̂MF ) = M̂MF · (CM̂MF ) = IVMF

C

(12)
Assuming the existence of an active-SEDFΨactive, the first Piola-Kirchhoff stress
in the SMC-fiber direction can be derived directly from the SEDF [20, (16.47)]:

P active
ff =

∂ψactive

∂λf
(13)

Inserting (11) in (13) then integrating, on may obtain an expression forψactive:

ψactive(λf , [A]) =







Smax
[A]m

[A]m+ECm
50

[

(λm−λf )3

3(λm−λ0)2
+ λf

]

, λ1 > λf > λ0

0, Otherwise
(14)

Substituting (12) in (14), a general form of the active-SEDFis obtained:

Ψactive(IV
MF
C

, [A]) =











Smax
[A]m

[A]m+ECm
50

[

(λm−
√

IVMF
C

)3

3(λm−λ0)2
+
√

IVMF
C

]

, λ2
1 > IVMF

C
> λ2

0

0, Otherwise
(15)

The dependency ofΨactive on IVMF
C

assures that the active stress is in the SMCs
direction only, with zero components perpendicular to it. In Appendix A we demon-
strate that for the incompressible case(J = 1) the SEDF (15) results in the Cauchy
stress term for the active response given in [7], even if the deformation of the tissue
is not in the SMC fiber direction.

The passive-active SEDF is the sum of the passive and active SEDFs:

Ψtissue = Ψpassive + Ψactive (16)

For the purposes of implementation in a finite element code itis necessary to obtain
expressions for the second- Piola- Kirchhoff stressS and the elasticity tensorC =
∂S

∂C
. In [15] explicit expressions forSpassive andCpassive are provided. Using (15)

one obtains explicit expressions for the active componentsrequired.

Sactive = Smax
[A]m

[A]m + ECm
50

(

IVMF
C

)− 1
2





1 −




λm −
√

IVMF
C

λm − λ0





2





[

M̂MF ⊗ M̂MF

]

(17)
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Cactive =Smax
[A]m

[A]m + ECm
50



2
(

IVMF
C

)−1 (λm −
√

IVMF
C

)

(λm − λ0)2
(18)

−
(

IVMF
C

)− 3
2





1 −




λm −
√

IVMF
C

λm − λ0





2











[

M̂MF ⊗ M̂MF

] [

M̂MF ⊗ M̂MF

]

The expressions forSactive andCactive are necessary for the ”tangent stiffness ma-
trix” and ”out of balance” vector at each Newton-Raphson iteration used in the FE
framework:

S = Spassive + Sactive, C = Cpassive + Cactive (19)

3 VERIFICATION OF THE IMPLEMENTATION

To verify our numerical implementation for the SMCs contribution we consider
three ”benchmark” problems for which an analytical solution can be computed.
The first two problems denoted as A and B represent homogenousstretch and shear
respectively while problem C represents an inhomogeneous deformation. For all
problems we assume a Neo-Hook matrix embedded with SMC fibersin a 2 × 2 ×
2 mm3 cube. For problems A and B the two families of collagen fibers are also in-
corporated in the SEDF and the domain is defined by{(X, Y, Z)| 0 < X < 2, 0 <
Y < 2, 0 < Z < 2}. For problem C the domain is defined by{(X, Y, Z)| 0 < X <
2, 0 < Y < 2, 1 < Z < 3}. The orientations of the collagen fiber families are
M̂ 0 = [cosβ,− sin β sin φ, sinβ cosφ], M̂ 1 = [cosβ, sin β sin φ,− sinβ cosφ]
and the SMC fiber orientation iŝMMF = [0, cosβMF , sin βMF ] (Figure 3). The
material parameters used in (4), (6) and (15) for problems A and B arec1 =
0.027 MPa, D1 = 30 MPa−1, k1 = 0.00064 MPa, k2 = 3.54 MPa andλm =
1.4, λ0 = 0.65, S([A]) = 0.05 MPa. The constant valueS([A]) = 0.05 MPa
assigned is attributed to normal basal tone according to Rachev&Hayashi [7]. In
Table 1 we summarize the boundary conditions and exact solutions for problems
A-C. The matrix and fiber material parameters used above represent the human
coronary artery [21]. The fourth and sixth invariants in Table 1 for problems A
are IVC = VIC = cos β2 + sin2 β(sin2 φ + a2 cos2 φ) and for problem B are
IVC = VIC = cosβ2 + sin2 β(1 − sin 2φ sin θ). The fourth invariant of the SMC
for problem A is IVMF

C
= cos2 βMF + a2 sin2 βMF and for problem B IVMF

C
=

sin θ sin 2βMF + 1 . These invariants are to be substituted in the expressions given
in Table 1.

For problem C we assumed the SMCs are aligned along theZ direction and did
not consider the collagen fibers so as to be able to obtain an analytical solution. To
ensure equilibrium one must also apply the following body forcefZ = −4c1

18
Z

4
3 −

20c1
18
Z− 7

3 − 1
D1Z

− S([A])
(

λm−
√

Z
λm−λ0

)

Z−1 with the first part associated with the pas-
sive component and the second part associated with the active component (deriva-
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Fig. 3. Top Left and Middle: Domain and deformation for problems A/C, and B. Top Right:
Face labeling used in Table 1. Bottom: Collagen and SMC fiber orientations.

tion of the body force are given in Appendix B). For problems Aand B the analytic
solution is obtained using one hexahedral element withp = 1 (due to the homoge-
nous stress state higherp-levels are unnecessary). Several SMCs initial orientation
angles were consideredβMF = 00, 100, 300, 500, 700, 900. Deformations of up to
100% were considered for problem A (a = 2) and shear angles of up toθ = 600 for
problem B. We used different combinations ofβ, βMF , φ in our verification pro-
cess. The exact solution was obtained in all cases using thep-FEM with ten load
steps with an average of three equilibrium iterations for each load increment.

For problem C the deformation is inhomogeneous allowing to inspect the perfor-
mance ofp-FEMs compared to the conventionalh-FEM for the coupled passive-
active response. No commercialh-FEM code has the active model implemented
thus we use our code forh-extensions also.

Remark 3 Since we use our code for theh-extensions, in Appendix C we show that
compared to the commercial finite element code Abaqus 6.8 E.Fa maximum CPU
factor of ≈ 2.5 between the run-times is obtained when a standard Neo-Hooke
problem is considered.

A p-extension on a uniform mesh with eight hexahedral elementsis performed for
the solution of problem C. Atp = 4 already a relative error||e(U)|| < 10−5% (see
(20)) is obtained. For theh-extension the number of elements is increased, keeping
fixed the polynomial degree over all elements with eitherp = 1 or p = 2. For the
h-FEM ten equal load increments were used (the minimal numberof load steps
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required for convergence) and up to four equilibrium iterations were required for
each load step.

For thep-FEM we use a novel iterative scheme denoted “p-prediction”. In this case
for p = 1 the regular Newton-Raphson iterative algorithm is used. For a nearly-
incompressible material, since thep-FEM encounters locking untilp = 4, then the
first p-FE solution starts atp = 4 by a regular Newton-Raphson algorithm. For
p ≥ 2 (andp ≥ 5 for a nearly incompressible material), the converged solution at
p− 1 is used as the ”initial guess” to the iterative algorithm, sothat the entire load
is not sub-divided in sub-loads. This results in a very fast convergence, usually with
one load step. The “p-prediction” algorithm is shown in Figure 4.

Fig. 4. The “p-prediction” algorithm.

To verify the numerical results we consider both global and pointwise values. The
performance ofp- andh-FEMs is demonstrated by inspecting the convergence of
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the relative error in energy norm [22] .

||e(U)||(%) =

√

√

√

√

∫

Ω Ψ(C)dΩFE − ∫

Ω Ψ(C)dΩExact
∫

Ω Ψ(C)dΩExact

× 100 (20)

and pointwise by inspecting the convergence ofUz andσzz, σxx at points A and B
(see Figure 5). In Figure 6 the convergence in the relative error in strain energy as

Fig. 5. Mesh used for problem C. Left: Uniform mesh for thep-FEM and points A and B.
Right: Example of an uniform mesh for theh-FEM (2744 elements).

percentage, as a function of both DOFs and CPU is shown. The convergence of the
relative error for the displacement and stresses at points Aand B shown in Figure
5 is provided in Figures 7 to 9.

Fig. 6. Problem C: Convergence of the relative error in energy norm (the numbers in paren-
theses are number of load steps for convergence) for bothp- andh-FEMs. Left: DOFs.
Right: CPU.
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Fig. 7. Problem C: Convergence inUZ for point A=(2,2,3) (top) and point
B=(1.5,1.5,2.5)(bottom).

Fig. 8. Problem C: Convergence inσzz for point A=(2,2,3) (top) and point B=(1.5,1.5,2.5)
(bottom).

As evident from Figures 6 to 9 thep-FEM is considerably more efficient for solv-
ing the passive-active mechanical response especially when computations of stress
values are of interest.
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Fig. 9. Problem C: Convergence inσxx for point A=(2,2,3) (top) and point B=(1.5,1.5,2.5)
(bottom).
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Table 1. Tractions and exact solution for problem A.
Problem Ω0 Boundary conditions applied to faces F1-F6 Solution

F1 : uX = uY = uZ = 0

0 ≤ X ≤ 2 F2 : tY = −
[

2
3
c1

(

a−
2

3 − a
4

3

)

+ 2
D1

(

a2 − a
)

−4k1 [IVC − 1] ×
(

sin2 β cos φ sinφ
)

expk2(IVC−1)2

+S([A])
(

IVMF
C

)

−
1

2

(

1 −

(

λm−

√

IVMF

C

λm−λ0

)2
)

cos2 βMF

]

x = X, y = Y, z = aZ

tZ = −
[

4k1 [IVC − 1] ×
(

sin2 β cos2 φ
)

expk2(IVC−1)2

+S([A]) · a
(

IVMF
C

)

−
1

2

(

1 −

(

λm−

√

IVMF

C

λm−λ0

)2
)

cos βMF sin βMF

]

A 0 ≤ Y ≤ 2 F3 : tX = 2
3
c1

(

a−
2

3 − a
4

3

)

+ 2
D1

(

a2 − a
)

uX = 0

+4k1 [IVC − 1] ×
(

cos2 β
)

expk2(IVC−1)2

0 ≤ Z ≤ 2 F4 : tY = 2
3
c1

(

a−
2

3 − a
4

3

)

+ 2
D1

(

a2 − a
)

+4k1 [IVC − 1] ×
(

sin2 β cos φ sinφ
)

expk2(IVC−1)2

+S([A])
(

IVMF
C

)

−
1

2

(

1 −

(

λm−

√

IVMF

C

λm−λ0

)2
)

cos2 βMF

)

uY = 0

tZ =
[

4k1 [IVC − 1] ×
(

sin2 β cos2 φ
)

expk2(IVC−1)2

+S([A]) · a
(

IVMF
C

)

−
1

2

(

1 −

(

λm−

√

IVMF

C

λm−λ0

)2
)

cos βMF sin βMF

F5 : tX = −
(

2
3
c1

(

a−
2

3 − a
4

3

)

+ 2
D1

(

a2 − a
)

)

uZ = Z(a − 1)

−4k1 [IVC − 1] ×
(

cos2 β
)

expk2(IVC−1)2

F6 : tZ = 4
3
c1

(

a
1

3 − a
5

3

)

+ 2
D1

(a − 1)

+4k1 [IVC − 1] ×
(

sin2 β cos2 φ
)

expk2(IVC−1)2

+S([A])a
(

IVMF
C

)

−
1

2

(

1 −

(

λm−

√

IVMF

C

λm−λ0

)2
)

sin2 βMF

)

tY = −4k1a [IVC − 1] ×
(

sin2 β cos φ sinφ
)

expk2(IVC−1)2

−S([A])
(

IVMF
C

)

−
1

2

(

1 −

(

λm−

√

IVMF

C

λm−λ0

)2
)

cos βMF sinβMF

1
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Continuation of Table 1: Tractions and exact solution for problem B.
Problem Ω0 Boundary conditions applied to faces F1-F6 Solution

F1 : uX = uY = uZ = 0

F2 : tY = −
(

2c1

(

cos−
2

3 (θ) − cos−
8

3 (θ)(1 + sin2(θ))

)

+ 2
D1

(

sin(θ)
cos(θ)

− sin(θ) + cos(θ) − 1
)

)

x = X, y = Y + Zsin(θ)

+4k1 [IVC − 1] × ek2(IVC−1)2 sin2 β
[

sin2 φ − sin θ sin φ cos φ
]

+S([A])
(

IVMF
C

)

−
1

2

(

1 +

(

λm−

√

IVMF

C

λm−λ0

)2
)

[

cos2 βMF + sin θ sinβMF cos βMF

]

)

z = Zcos(θ)

tZ = −2c1

(

cos−
8

3 (θ)sin(θ) + cos
1

3 (θ) − cos−
5

3 (θ)

)

+ 2
D1

(

sin(θ)
cos(θ)

− sin(θ) + cos(θ) − 1
)

−4k1 [IVC − 1] sin2 β sinφ cos φ cos θ × expk2(IVC−1)2

0 ≤ X ≤ 2 +S([A])
(

IVMF
C

)

−
1

2

(

1 +

(

λm−

√

IVMF

C

λm−λ0

)2
)

cos θ cos βMF sin βMF

)

uX = 0

B 0 ≤ Y ≤ 2 F3 : tX = 2
D1

(

cos2(θ) − cos(θ)
)

+ 4k1 [IVC − 1] cos2 β × expk2(IVC−1)2 uY = Zsin(θ)

0 ≤ Z ≤ 2 F4 : tY = 2c1

(

cos−
2

3 (θ) − cos−
8

3 (θ)(1 + sin2(θ))

)

+ 2
D1

(

1 − cos−1(θ) + sin2(θ)(cos−1(θ) − 1)
)

uZ = Z(cos(θ) − 1)

+4k1 [IVC − 1] × ek2(IVC−1)2 sin2 β
[

sin2 φ − sin θ sin φ cos φ
]

+S([A])
(

IVMF
C

)

−
1

2

(

1 +

(

λm−

√

IVMF

C

λm−λ0

)2
)

[

cos2 βMF + sin θ sin βMF cos βMF

]

)

tZ = 2c1

(

cos−
8

3 (θ)sin(θ) + cos
1

3 (θ) − cos−
5

3 (θ))

)

+ 2
D1

(

sin(θ)
cos(θ)

− sin(θ) + cos(θ) − 1)
)

−4k1 [IVC − 1] sin2 β sinφ cos φ cos θ × expk2(IVC−1)2

+S([A])
(

IVMF
C

)

−
1

2

(

1 +

(

λm−

√

IVMF

C

λm−λ0

)2
)

cos θ cos βMF sin βMF

)

F5 : tX = −
(

2
D1

(

cos2(θ) − cos(θ)
))

− 4k1 [IVC − 1] cos2 β × expk2(IVC−1)2

F6 : tZ = 2c1

(

cos
1

3 (θ) − cos−
5

3 (θ)

)

+ 2
D1

(cos(θ) − 1)

4k1 [IVC − 1] sin2 β sin2 φ cos θ × expk2(IVC−1)2

+S([A])
(

IVMF
C

)

−
1

2

(

1 +

(

λm−

√

IVMF

C

λm−λ0

)2
)

cos θ sin2 βMF

)

tY = 2c1cos−
5

3 (θ)sin(θ) + 2
D1

(sin(θ) − cos(θ)sin(θ))

−4k1 [IVC − 1] sin2 β sinφ cos φ cos θ × expk2(IVC−1)2

+S([A])
(

IVMF
C

)

−
1

2

(

1 +

(

λm−

√

IVMF

C

λm−λ0

)2
)

[

sin θ sin2 βMF + sin βMF cos βMF

]

)

1
5



Continuation of Table 1: Tractions and exact solution for problem C.
Problem Ω0 Boundary conditions applied to faces F1-F6 Solution

F1 : uX = uY = uZ = 0

0 ≤ X ≤ 2 F2 : tY = −
(

2
3
c1

(

Z−
2

6 − Z
4

6

)

+ 2
D1

(

Z −
√

Z
)

)

x = X, y = Y, z = 2
3
Z

3

2 + 1
3

C 0 ≤ Y ≤ 2 F3 : tX = 2
3
c1

(

Z−
2

6 − Z
4

6

)

+ 2
D1

(

Z −
√

Z
)

uX = 0

1 ≤ Z ≤ 3 F4 : tY = 2
3
c1

(

Z−
2

6 − Z
4

6

)

+ 2
D1

(

Z −
√

Z
)

uY = 0

F5 : tX = −
(

2
3
c1

(

Z−
2

6 − Z
4

6

)

+ 2
D1

(

Z −
√

Z
)

)

uZ = 2
3
Z

3

2 − Z + 1
3

F6 : tZ = 4
3
c1

(

Z
1

6 − Z
5

6

)

+ 2
D1

(√
Z − 1

)

+ S([A])

(

1 +

(

λm−

√

Z
λm−λ0

)2
)

1
6



4 FITTING MATERIAL PARAMETERS TO INFLATION-EXTENSION
EXPERIMENTS

After verifying the FE implementation on simple problems for which an analytical
solution may be derived, we investigate how well one may predict the passive-active
response (usingp-FEMs with the suggested SEDF), when compared to experimen-
tal observations. For this purpose, one needs to estimate the material properties
using experiments in which multi-axial loadings (tension,extension, torsion) are
applied on the distinct layers of the arteries in a passive state, and thereafter when
the smooth muscle cells are activated. Publications detailing such experiments on
arteries including geometrical data, precise loading conditions and detailed mea-
sured observations, are very rare, and usually only partialinformation is available.
Here we use the recent publication by Wagner and Humphrey [9]in which inflation-
extension experiments of carotid artery specimens harvested from the New Zealand
rabbit are reported. The numerical performance of thep-FEM implementation on a
more realistic artery is demonstrated after fitting the material parameters to the ex-
periments in [9]. There, artery specimens were stretched totheir observed in-vivo
axial stretchλx = 1.68 and then an internal pressure was applied (P = 7mmHg
toP = 120mmHg) while measuring the outer diameter and axial force required to
maintain the axial-stretch constant. These experiments were conducted for a pure
passive state and thereafter when exposing the artery to increasing concentrations
of the vasoconstrictor Endothelin-1 ([A] = 10−10 − 10−7[mol/liter]).

We mimic the experiments by constructing a bi-layered cylindrical tube with a mesh
and boundary condition shown in Figure 10. The inner and outer radial displace-
ments, circumferential stress and energy norm were computed for p-levelsp = 1−8
to ensure that the results are free of numerical errors. Since for all parameters ex-
amined, the values obtained atp = 4 are within less than0.1% error compared to
p = 8 results, we used in the subsequent computations a p-level of4.

No data is provided in [9] on the ratio between the media thickness to the total wall
thickness, thus we assume it to be2/3 as common in a muscular artery [21].

Fig. 10. Mesh and boundary conditions that mimic a bi-layered artery described in [9].

The material parameters for the passive response are first determined so that the
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outer diameter and axial force measured correspond to the ones computed when
the pre-stretch is applied and internal pressure is increased. The compressibility
parameterD1 is determined by assuming that under physiological pressure, the
relative change of volume is≈ 1% as reported in [23] for the rabbit aorta. The
fitted material properties for the passive response are provided in Table 2 and the
comparison between the predicted response and the experimental observations is
depicted in Figure 12 by the solid line.

Table 2
Material parameters fitted to a slightly compressible passive SEDF.

Layer c1 D1 k1 k2 βM

[MPa] [MPa−1] [MPa] [0]

Media 0.01 3 0.0006 1.2 ±20

Adventitia 0.005 3 0.0004 1.2 ±64

To determine the active material parameters we fitted the data for the tension-stretch
and tension-dose relationship reported in [9] as presentedin Figure 11. These pa-
rameters are summarized in Table 3.
Table 3
Material parameters fitted to the coupled passive-active SEDF.

λm λ0 Smax m EC50

[MPa] [mol/liter]

1.49 0.85 0.045 5.9 10−10

Neither the density nor the orientation of SMCs is available, thus we assumed that
these are uniformly distributed so a similar active response is obtained in the entire
artery and that SMC are oriented circumferentially, i.e.βMF = 0. With these as-
sumptions, and using the already determined passive and active material properties,
we predict the pressure-diameter and pressure-axial forceresponse when the artery
is activated by a vasoconstrictor. In Figure 12 we present the predicted response as
compared to the experimental observations extracted from [9] for different inter-
nal pressures and a given axial stretch ofλx = 1.68. The axial force is computed
by the integral of the Cauchy stress over the deformed cross section area of the
artery. One may observe that the passive-active predicted response is close to the
experimental observations. However, below a pressure of about 40 mmHg in the
passive state, and70 mmHg in the active state, an unclear phenomenon in the ex-
perimental observations is visible, namely, the axial force increases as the pressure
decreases. This phenomenon in the experimental observations in [9] is unclear to
us and cannot be explained by the proposed SEDF.

An important experimental observation associated with theactive response of the
SMCs is the phenomenon of reduced contraction (at a fixed concentration of the
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Fig. 11. Fitting of tension-stretch and tension-dose relationships: Circles - experimental
results extracted from [9], Squares - fitted data using (9) and (8).

vasoconstrictor) beyond a given stretch ratio (λm). This observation is clearly shown
by Herlihy&Murphy [13]. There uniaxial tension experiments of stimulated strips
harvested from the media layer of the swine carotid artery are reported. In Appendix
D we demonstrate that our analyses simulate well this phenomena.

4.1 Verification of thep − FE implementation on a representative bi-layered
artery

Using the fitted material parameters given in Tables 2 and 3 weconsider the bi-
layered artery having the dimensions and boundary conditions as in Figure 10.
Since we only considerβMF = 0, a circumferential segment can be used, and we
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Fig. 12. Comparison of the predicted and experimental observed response of a New Zealand
rabbit carotid artery in passive and passive-active statesreported in [9]. Left: Diameter–
pressure response atX = 5 mm for a constantλx = 1.68. Right: Pressure-axial force
response.

chose one fourth with appropriate symmetry boundary conditions. A physiolog-
ical pressure ofP = 100mmHg is applied on the internal surface and a SMC
activation caused by a vasoconstrictor concentration[A] = 10 · 10−11. A ”bench-
mark” solution is obtained by solving the problem using240 hexahedral elements
(4 × 6 × 10 in θ, R,X directions) andp = 8. The convergence in energy norm
for the ”benchmark” solution is given in Figure 13. The problem is solved also

Fig. 13. Convergence in energy norm forp = 1 to 7 in comparison to the benchmark
solution atp = 8.

by h-extension and p-extension with and without the p-prediction algorithm. In
case of h-extension meshes with12, 150, 300, 480, 1200, 4800 elements were used,
whereas for p-extensions we use a coarse mesh, see Figure 14.For both theh-FEM
andp-FEM without p-prediction, the load was applied in thirty equal load steps.
In Figures 1516 and 17 the convergence in energy norm, radialdisplacement and
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Fig. 14. Top: Representativeh-FE mesh consisting of480 elements. Bottom: Constantp-FE
mesh consisting of12 elements and the point of data extraction.

circumferential stress are presented. One may observe thatthe p-prediction algo-

Fig. 15. Convergence in energy norm for the artery problem with the number of average
equilibrium iterations in parenthesis.

rithm significantly reduces the computation time and thatp-FEMs are by far more
efficient thanh-FEM, both in DOFs and CPU.

5 THE EFFECT OF SMCs ON THE MECHANICAL RESPONSE OF AN
ARTERY

The bi-layered artery with boundary conditions and mesh similar to these presented
in Figure 10 is used as the basis for the investigation of the SMCs-effects on the

21



Fig. 16. Convergence in radial displacement at the point of interest for the artery problem.

Fig. 17. Convergence in circumferential Cauchy stress at the point of interest for the artery
problem.

mechanical response. The material parameters are those in Tables 2 and 3 and the
SMCs are assumed to be oriented in the circumferential direction βMF = 0. To in-
vestigate the effect of the vasoconstrictor concentrationlevels we increase[A] from
a pure passive state until saturation level[A] = 10 ·10−12, [A] = 8.3×10−11, 10×
10−11, 12 × 10−11, 10 × 10−8[mol/liter]. The activation levels chosen represent
values of0, 25, 50, 75, 100% on the tension-dose curve (Figure 11). To investigate
the effect of the tension-stretch relation we fix the vasoconstrictor concentration at
[A] = 10 ·10−11 and investigate different pressure values in the physiological range
P = 80, 100, 120 mmHg. In all cases the radial displacement and circumferen-
tial Cauchy stress across the artery wall thickness (atX = 5 mm) are computed.
In Figure 18 the effect of increased activation level on the circumferential stress
and stretch ratio is shown. The dashed vertical line in Figure 18-Top represents the
media-adventitia-interface, whereas the horizontal dashed line in 18-Bottom rep-
resents the value ofλm = 1.49. Figure 18 demonstrates that an increase in the
concentration of the vasoconstrictor results in the ”flattening” of the stress distribu-
tion across the artery wall. One may observe a decrease in thecircumferential stress
at the inner boundary of the media and an increase at the outerboundary of the me-
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Fig. 18. Top: Circumferential Cauchy stress distribution across artery wall for different
SMCs activation levels andβMF = 00, P = 100 mmHg. Bottom: Stretch ratio across the
artery wall atX = 5 for different SMC activation levels, with tension-stretchrelationship
presented in the inner caption.

dia and across the adventitia. The contraction is inhomogeneous across the artery
thickness due to the circumferential stretch ratios (in theSMC direction). In Figure
18-Bottom atR = 0.63 − 0.67 mm a transition for all activation levels occurs,
so that the circumferential stretch ratio which is initially greater thenλm decreases
bellowλm. Since at the boundary of the inner mediaλθ > λm, then as the stretch ra-
tio decreases across the artery wall the effect of SMC contraction increases. Once a
point is reached in the artery wall wereλθ = λm any further decrease inλθ results
in a decrease in the effect of SMC contraction. In Figure 19 the Cauchy stresses
across the artery thickness forβMF = 00 andA = 10 × 10−11[mol/liter] for
different pressures are shown. Figure 19 demonstrates thateven under a constant
activation level the SMC contraction is inhomogeneous across the artery thickness
as a result of the different stretch ratios induced on the SMCs.
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Fig. 19. Left: Circumferential Cauchy stress atX = 5 for different internal pressures for
βMF = 00, [A] = 10 × 10−11[mol/liter], Right: Stretch ratio across the artery wall at
X = 5 for different pressure values andβMF = 00, [A] = 10 × 10−11[mol/liter].

6 SUMMARY AND CONCLUSIONS

In [15] an anisotropic hyperelastic model, representing the passive response of the
artery wall, was incorporated in the framework of the p-FEMs. Here we extended
the application of p-FEMs to the passive-active response ofthe artery wall. A SEDF
for describing the SMCs was formulated based on [7]. The ingredients required for
incorporating the proposed SEDF in the finite element framework were explicitly
provided. Three problems with analytical solutions used for the verification of the
numerical implementation are detailed and the superiorityof p-FEMs over the tra-
ditionalh-FEMs for solving the coupled passive-active response was demonstrated.
CPU times required to solve these nonlinear problems may be reduced by a factor
of ≈ 25 and more by using the new ”p-prediction” algorithm described herein.

The passive-active, tension-inflation experiments reported in [9] were used to fit
both the passive and active model parameters, demonstrating that the proposed
SEDF can describe the coupled passive-active response including the reduction in
stress levels observed following stretches overλm. However, at low pressure lev-
els (which are not physiological) our SEDF is not capable of well representing the
mechanical response documented in [9]. Investigation of the active response for an
artery-like structure was presented with the effect of activation level on the stresses
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and deformations.

Proper description of the mechanical response of the arterywall in-vivo requires the
incorporation of SMCs contribution, because experimentalobservations demon-
strate that their activation is notable [13]. Our proposed active SEDF, although
phenomenological, incorporates the distinct features of SMCs contraction as ob-
served in experiments (tension-dose and tension-stretch relationships), and requires
five material parametersλ0, λm, EC50, Smax, m and one microstructural parameter
βMF . The active response reduces significantly the circumferential stress distribu-
tion across the artery thickness and along the artery length. The reduction in cir-
cumferential stress value is not surprising and has been reported in [7] and [10] (in
both cases the tissue was assumed to be incompressible). Furthermore we observed
that for high activation levels the stress gradients acrossthe artery thickness may
increase compared to moderate activation levels due to reduction of active stress
generation at high stretches. On a side note, whenβMF > 00 for a constant stimu-
lation level (not reported in this manuscript) the contraction forces which limit ar-
terial inflation are reduced, enabling a greater arterial deformation which increases
active stress generation as there is a ”climb” along the tension-stretch curve pro-
vided thatλθ < λm. This results in an increase in both axial and circumferential
stress values for increasing values ofβMF .

Past studies [24,25] also suggested that the stress level may drive growth and re-
modeling of the tissue to maintain homeostatic baseline stress values. Since we
noticed that SMCs contraction largely affects the stresses, these may have a large
effect on growth and remodeling. This aspect will be investigated in a future study.

With respect to the tension-stretch curve it has been shown in several studies that
the value ofλm differs greatly when different species are analyzed. In ourstudies
based on [9] a value ofλm = 1.49 was determined for the carotid artery of the
New Zealand rabbit, whereas in [13]λm = 1.25 is reported for the swine carotid
artery and in [8]λm = 1.7 andλm = 1.62 are reported for the human carotid
artery. Some studies refer to the stress generated at the midpoint of the tension-
dose curve as the basal tone value as reported in [7] and more recently in [8] but
since the coupling between the active and passive states is mainly dependent on the
tension-stretch relation, it is reasonable to assume that basal tone values will differ
from one specimen to another even if the tension-dose relation is similar.

In this study we chose to use a simple SEDF not incorporating the chemical kinetics
as proposed in [11] and [26]. For models incorporating the chemical kinetics one
has to determine seven different rate constants which adds to the model’s complex-
ity. The work in [12] which utilized an SEDF similar to the oneproposed in [26]
for modeling the experiments reported in [13] assumed a converged contraction
process and as a result did not have to solve the rate equations. It is our opinion that
the activation level can be properly incorporated via the tension-dose relationship
when time independent problems are considered.
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In our analysis we neglected both axial and circumferentialresidual stress as we did
not want to complicate the two effects. We also assumed only one SMCs helix layer
in our analysis whereas several layers with different pitchangles may exist in the
media layer. The main ”bottle neck” in further research is the lack of experiments
reported on the coupled response especially for human arteries. More experimental
work is necessary for both passive and active parameter identification to pursue
more elaborate simulations for investigation of in-vivo artery response.

One of the limitations of our study is the use of non-systematic method for the deter-
mination of the material properties. Optimization algorithms as the ones suggested
by Hartmann [27] and Hollander et al. [6] will be implementedfor a systematic
optimization of the material parameters.

We may conclude that the SMCs-effect greatly influences the state of stress and
deformation in artery walls and thatp-FEMs may be utilized to investigate their
passive-active response, resulting in fast and accurate results. Future work is aimed
at further validating of the proposed active SEDF by experimental observation. The
possibility of introducing varying active response levelsfor each layer based on the
average volume fraction of the SMC constituents in the mediaand adventitia, will
also be investigated. Finally, the role the active stress field plays in the pathology
of vascular disease such as arterioscleroses or the development of aneurisms may
only be addressed once a validated model for the coupled mechanical response in a
healthy artery will be provided.

Acknowledgements

The authors gratefully acknowledge the anonymous refereesfor their valuable and
constructive comments, leading to improvements in the presentation and context.

26



References

[1] P. Chamiot-Clerc, X. Copie, J.F. Renaud, M. Safer, and X.Girerd. Comparative
reactivity amd mechanical properties of human isolated internal mammary and radial
arteries.Cardiovascular Resrearch, 37:811–819, 1998.

[2] Y.C. Fung, K. Fronek, and P. Patitucci. Pseudoelasticity of arteries and the choice of
its mathematical expression.American Journal of Physiology, 237(5):H620–H631,
1979.

[3] A. Delfino, N. Stergiopulos, J. E. Moore, and J. J. Meister. Residual strain effects on
the stress field in a thick wall finite element model of the human carotid bifurcation.
Jour. Biomech., 30(8):777–786, 1997.

[4] M.A Zulliger, P. Fridez, K. Hayashi, and N. Stergiopulos. A strain energy function
for arteries accounting for wall composition and structure. Jour. Biomech., 37(7):989–
1000, 2004.

[5] G.A. Holzapfel, T.C. Gasser, and R.W. Ogden. A new constitutive framework for
arterial wall mechanics and a comparative study of materialmodels.Jour. Elasticity,
61:1–48, 2000.

[6] Y. Hollander, D. Durban, X. Lu, GS. Kassab, and Y. Lanir. Constitutive modeling of
coronary arterial media - comparison of three model classes. Jour. Biomech. Eng.,
133:1–12, 2011. Article number: 061008.

[7] A. Rachev and K. Hayashi. Theoretical study of the effects of vascular smooth
muscle contraction on strain and stress distributions in arteries.Annals of Biomedical
Engineering, 27(4):459–468, 1999.

[8] I. Masson, P. Boutouyrie, S. Laurent, J.D. Humphery, andZ. Mustapha.
Characterization of arterial wall mechanical behavior andstresses from human clinical
data.Jour. Biomech., 41:2618–2627, 2008.

[9] H.P. Wagner and J.D. Humphrey. Differential passive andactive biaxial mechanical
behavior of muscular and elastic arteries: Basilar versus common carotid. Jour.
Biomech. Eng., 133, 2011. Article number: 051009.

[10] M.A. Zulliger, A. Rachev, and N. Stergiopulos. A constitutive formulation of arterial
mechanics including vascular smooth muscle tone.Am J. Physiol. Heart Circ. Physiol,
287:H1335–H1343, 2004.

[11] S.I. Murtada, M. Kroon, and G.A. Holzapfel. A calcium-driven mechanochemical
model for prediction of force generation in smooth muscle.Biomech. Model.
Mechanobiology, 9:749–762, 2010.

[12] A. Schmitz and M. Böl. On a phenomecnological model foractive smooth muscle
contration.Jour. Biomech., 44:2090–2095, 2011.

[13] J.T. Herlihy and R.A. Murphy. Length-tension relationship of smooth-muscle of hog-
carotid artery.Circ. Research, 33:275–283, 1973.

27



[14] S.L.M. Dahl, M.E. Vaughn, and L.E. Niklason. An ultrastructural analysis of collagen
in tissue engineered arteries.Annals Biomed. Eng., 35:1749–1755, 2007.

[15] Z. Yosibash and E. Priel. p-FEMs for hyperelastic anisotropic nearly incompressible
materials under finite deformations with applications to arteries simulation.Int. Jour.
Numer. Meth. Engrg., 88:1152–1174, 2011.
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A The active SEDF assuming incompressibility

In this section we wish to demonstrate that the active SEDF provides the active
Cauchy stress term given in [7] for a general incompressibledeformation of the
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tissue. Consider the following incompressible Cartesian deformation of the tissue
embedding the SM fiber:

F =















λ−
1
2 0 0

0 λ 0

0 0 λ−
1
2















⇒ C =















λ−1 0 0

0 λ2 0

0 0 λ−1















, J(F ) = 1 (A.1)

Whereλ > 1 is the stretch of the entire tissue. The SMC are initially in the direction
M̂MF = [0, cosβMF , sin βMF ] which is not in direction of stretch. The structure
tensor is:

M̂MF ⊗ M̂MF =















0 0 0

0 cos2 βMF cosβMF sin βMF

0 cosβMF sin βMF sin2 βMF















(A.2)

Using (12) the stretch in the SMC direction is:λ2
f = IVMF

C
= M̂MF (C ·M̂MF ) =

λ2 cos2 βMF + λ−1 sin2 βMF . The Cauchy stress tensorσactive can be obtained by
pushing forwardSactive in equation (17).

σ =
1

J
FSF T (A.3)
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· S∗

With S∗ = S([A])f(IVMF
C

)
(

IVMF
C

)− 1
2 .

The unit vector in the SMC direction after the deformation is:

m̂MF =
mMF

|mMF |
=

FM̂MF
√

FM̂MF · FM̂MF

=















0

λ cosβMF

λ−
1
2 sin βMF















· 1√
IVC

(A.4)
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Thus the component of the Cauchy stress in the SMC direction is:

σMF = (σ · m̂MF )·m̂MF = S∗IVMF
C

= S([A])f(IVMF
C

)
√

IVC = S([A])f(λf)λf

(A.5)
This is in accordance with the expression for the Cauchy stress provided in [7] for
a stretch in the SMC direction.

B Derivation of the body force term for problem C

The equilibrium equations in Cartesian coordinates are:

∂σij

∂xi
= fj →

∂σij

∂Xk

∂Xk

∂xi
= fj →

∂σij

∂Xk
F−1

ki = fj (B.1)

The Cauchy stress tensor is computed byσ = 1
J
FSF T = 2

J
F ∂Ψ

∂C
F T . With the

deformation gradientF and left Cauchy-Green deformation tensorC for problem
C given as:

F =















1 0 0

0 1 0

0 0 Z
1
2















⇒ C =















1 0 0

0 1 0

0 0 Z















⇒ C−1 =















1 0 0

0 1 0

0 0 Z−1















, J = det F = Z
1
2

(B.2)
Using equations (4)(6)(15) one can obtain an expression forS in the form:

S =Z− 1
3 c1

(

−2

3
C−1 (2 + Z) + 2I

)

+
2

D1

C−1
(

Z − Z− 1
2

)

(B.3)

+S([A])
(

IVMF
C

)− 1
2





1 −




λm −
√

IVMF
C

λm − λ0





2





[

M̂MF ⊗ M̂MF

]

With M̂MF = [0, 0, 1] and IVMF
C

=
[

M̂MF ⊗ M̂MF

]

: C = Z. The Cauchy
stress takes the form:

σ =Z
1
6 c1

(

−2

3
C−1 (2 + Z) + 2I

)

+
2

D1

C−1
(

Z
3
2 − 1

)

(B.4)

+S([A])



1 −
(

λm −
√
Z

λm − λ0

)2




[

M̂MF ⊗ M̂MF

]

Using (B.1) and (B.4) the body force component required to maintain equilibrium
can be computed.
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fx =−
(

∂σxx

∂x
+
∂σyx

∂y
+
∂σzx

∂z

)

= 0 (B.5)

fy =−
(

∂σxy

∂x
+
∂σyy

∂y
+
∂σzy

∂z

)

= 0

fz =−
(

∂σxz

∂x
+
∂σyz

∂y
+
∂σzz

∂z

)

= −∂σzz

∂z
= −∂σzz

∂Z

∂Z

∂z
=

− 4c1
18
Z− 4

3 − 20c1
18

Z− 7
3 − 1

D1Z
− S([A])

(

λm −
√
Z

λm − λ0

)

Z−1

C Comparison of our code to Abaqus using h-extension

Here we wish to compare between the performance of our code and the commercial
code Abaqus [28] when h-extension is used. To that end we use problem C given
in Table 1 but with no SMC contribution (not available in Abaqus) similar to the
problem presented in [15]. In Abaqus an automatic load stepping was used result-
ing in 17 load increments with an average of3 equilibrium iterations per a step. In
our code we used20 equal load steps resulting in an average of three equilibrium
iterations per step. In Figure C.1 the relative error inuZ andσZZ extracted at point
X = 2, Y = 2, Z = 2 is compared as a function of CPU using both our code
and Abaqus. It can be seen that both our code and Abaqus cannotconverge to the
exact solution when onlyp = 1 is utilized for the h-extension used (8 to 1000 ele-
ments). When stresses are considered both codes reached a minimum relative error
of ∼ 3.5%. In terms of CPU times Abaqus requires shorter CPU times up toa factor
of ≈ 2.5 for the h-extension considered. This can be attributed in part to the auto-
matic load stepping algorithm implemented in Abaqus and notyet implemented in
our code. It should be noted however that when p-extension isconsidered for the
same problem and p-FEM is compared to h-FEM our code out performs Abaqus as
demonstrated in [15].

D Simulation of uniaxial extension experiments

In this section we wish to demonstrate that our proposed SEDFcan model the
reduction in active force generation observed in uniaxial-extension experiments re-
ported in [13]. Finite element models simulating the uniaxial stretch-tension exper-
iments were generated. The boundary conditions and mesh used for computation
are shown in Figure D.1.

Remark 4 It is reported in [13] that examination of the tissue showed that the
SMCs are arranged in a helix like structure with a pitch of angle θ = 4.50 with
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Fig. C.1. Relative error in displacement and stress using our code and Abaqus 6.8 E.F.

Fig. D.1. Boundary conditions and mesh for the uniaxial tension of an arterial strip.

respect to the circumferential direction. The specimens were cut so as to have the
SMCs aligned with the extension direction and therefore in our FE model the col-
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lagen fibers families are not symmetric with respect to the stretch direction as de-
picted in Figure D.1.

All analyses for the fitting process were conducted usingp = 4 following conver-
gence tests for which‖|e(U)|| < 0.1%. Displacement boundary conditions were
specified at one end of the strip while the other end was clamped and a constant
value[A] = 0.005 [mol/liter] was applied as reported in [13]. The fitted material
parameters and stress-stretch response for both passive and active states are given
in Table D.1 and Figure D.2 respectively. As evident from Figure D.2 the pro-

Table D.1
Material parameters fitted to a slightly compressible passive-active SEDF.

c1 D1 k1 k2 βM λ0 λ1 λm m EC50 Smax

[MPa] [MPa−1] [MPa] [0] [mol/liter] [kPa]

0.007 2 0.025 4.3 ±35 0.4 2.1 1.25 1 0.00075 222

Fig. D.2. Stress-stretch relationship for a swine carotid media strip - Model and experiments
from [13] for pure passive and coupled passive-active state, [A] = 0.005 [mol/liter].

posed active SEDF is capable of predicting the softening branch of the active curve
following λ > λm.
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