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Predictor Representation and Prediction Strategies
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An important difference between visual and numerical representation of the
predictor is that the former entails a frame of reference against which the
predictor can be evaluated, thereby facilitating reliance on the representative-
ness heuristic. The main hypothesis examined in Experiment 1 is that reliance
on representativeness will increase when predictions are based on predictors
that are represented visually rather than numerically. In addition, it is hypoth-
esized that factors such as predictor validity, number of predictors, and
amount of outcome feedback interact with predictor representation in deter-
mining the influence of representativeness on predictions. Experiment 2 ex-
amines the hypothesis that reliance on representativeness will increase if sub-
jects are provided with a frame of reference for the predictor by informing
them about the predictor’s scale. In both experiments, extremity and consis-
tency of predictions are used as indicators for reliance on representativeness.
The results of Experiment 1 indicate that: (1) Predictions are more extreme
when they are based on visually represented predictors, but this effect de-
pends on the amount of outcome feedback and disappears in high predictor
validity, and (2) predictor representation interacts with the number of predic-
tors in determining prediction consistency, but not in determining prediction
extremity, but this interaction depends on predictor validity. Experiment 2
replicates Experiment 1 with regards to extremity but not with regard to con-
sistency.  © 1993 Academic Press, Inc.

Research in Cue Probability Learning (CPL)—the learning of relation-
ship between predictor and outcome through the reception of outcome
feedback—indicates that in making predictions people develop rules and
apply strategies, rather than simply learning a stimulus-response relation-
ship between predictor and outcome (Brehmer, 1974).! These rules, how-
ever, differ from the probabilistic rules necessary for achieving optimal
performance in such tasks. Consider for example, the positive linear re-
lationship between predictor and outcome, the easiest rule to learn in
CPL tasks. People do not apply appropriate probabilistic strategies even
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! The terms predictor, prediction, and outcome are used rather than the terms cue, re-
sponse, and criteria, which are more commonly used in the CPL literature, since the em-
phasis in this paper is on prediction heuristic.
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when they have been given considerable explanation about the probabi-
listic nature of the relationship or provided with the appropriate proba-
bilistic rule or with aids that illustrate this rule (Brehmer & Kuylenstierna,
1978, 1980, 1981; Brehmer & Johnansson, 1979).

What, then, is the strategy used when the rule relating predictor to
outcome is positive-linear? In my view, people rely, to a large extent, on
the representativeness heuristic (Kahneman & Tversky, 1973). According
to this heuristic, people first learn the distribution of the predictor and
outcome variables. Subsequently, they use a matching strategy, whereby
the predicted value is chosen so that its extremity (deviation from central
tendency) matches the extremity of the predictor. The matching strategy
leads to systematic differences between intuitive predictions and norma-
tive predictions. Normative predictions are regressive: The position of
the predicted value on the distribution of the outcome is less extreme than
the position of the predictor on its distribution; the less valid the predic-
tor, the less extreme the prediction. On the other hand, intuitive predic-
tions are—at least when not much learning is involved—nonregressive,
and, therefore, more extreme. The position of the predicted value on the
distribution of the outcome is roughly equal to the position of the predic-
tor on its distribution, and the validity of the predictor is, to a large extent,
ignored. Indeed, there are findings that support the view that subjects use
the representativeness heuristic in CPL tasks. For example, Brehmer and
Lindberg (1970) observed **over-shooting”’ in prediction: The siope of the
regression line relating subjects’ predictions to predictor values is steeper
than the slope of the regression line relating outcome values to the pre-
dictor values; the lower the correlation between predictor and the out-
come, the larger this effect. This is exactly the pattern of predictions one
would expect if subjects predict by representativeness.

However, the representativeness heuristic is not the only heuristic used
in making predictions. Heuristics that lead to regressive predictions are
likely to ‘“‘compete’” (Agnoli & Krantz, 1989) with representativeness.
For example, Ganzach and Krantz (1991) showed that in addition to the
representativeness heuristic, other heuristics operate in determining in-
tuitive predictions. The operation of these heuristics can lead to regres-
sive predictions which can be quite different from normative regressive
predictions. For example Ganzach and Krantz (1991) showed that, unlike
normative predictions, intuitive predictions are asymmetrically regres-
sive: They are more regressive when they are made from a low level of the
predictor than from a high level (see also Ganzach & Krantz, 1990, for an
additional example of a prediction strategy that leads to regressive pre-
dictions which are dissimilar from normative predictions).

If the representativeness heuristic is not the only heuristic used in
intuitive predictions, factors that facilitate or hinder its use may exist.
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One such factor is likely to be the mode of predictor representation. The
main hypothesis of Experiment 1 is that when predictions are based on
visual representation of the predictors (e.g., bar graphs), people are more
prone to use the representativeness heuristic than when the predictors are
represented numerically and therefore make more extreme predictions.

The reason for the increased tendency to use the representativeness
heuristic when predictors are represented visually is a consequence of the
ease by which the extremity of the predictor can be determined in this
type of representation. Visual representation provides the prediction
maker with a natural frame of reference, or scale, on which the extremity
of the predictor can be assessed. Consider, for example, the case in which
the predictor is represented as a bar on a computer screen. The extremity
of the predictor is easily determined by comparing the length of the bar to
the length of the computer screen. This is not the case when the predictor
is represented numerically. In this case there is not an obvious frame of
reference to which the predictor can be compared.

In this paper I also explore that moderate the influence of the repre-
sentativeness heuristic on predictions and, as a result, interact with pre-
dictor representation. One such factor is experience. While earlier work
argued that prediction biases in general (Brehmer, 1980), and biases that
result from predicting by representativeness, in particular (Kahneman &
Tversky, 1973), are rather unamenable to experience, more recent re-
search has shown that experience can improve probabilistic judgment
(e.g., Zukier and Pepitone, 1984; Nisbett, Krantz, Jepson, & Kunda,
1983). These findings were interpreted in terms of a decrease in the ten-
dency to rely on representativeness and an increase in the tendency to
adopt strategies that result in more accurate predictions (Nisbett et al.,
1983; Ganzach & Krantz, 1990). In the context of CPL, the influence of
experience {operationalized as outcome feedback) on the use of the rep-
resentativeness heuristic has never been investigated directly. However,
there are findings—albeit conflicting—that are relevant to this issue.
While Brehmer and Lindberg (1970; Fig. 3) and Brehmer (1973; Fig. 2)
found that continuous outcome feedback does not influence the extremity
of predictions in Single Cue Probability Learning, Ganzach and Krantz
(1990; Fig. 3) found that the extremity of prediction in this task does
decrease with outcome feedback. This latter finding suggests that the
influence of the representativeness heuristic on predictions declines with
exposure to continuous outcome feedback.

In Experiment 1 (as well as Experiment 2), this latter finding regarding
outcome feedback is replicated. Furthermore, the interaction between
outcome feedback and predictor representation is investigated. Such an
interaction should be expected since, if the tendency to rely on represen-
tativeness is higher in visual than in numerical representation, then in the
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former there is a larger discrepancy between intuitive predictions and
optimal predictions, and, therefore, people have ‘‘more’’ to learn from
outcome feedback. As a result, it is expected that the difference in pre-
diction extremity between visual and numerical representation will de-
crease with experience, primarily as a result of decrease in extremity in
the visual representation condition.

Another factor that may moderate the influence of representativeness
on predictions is predictor validity. The pattern of the interaction between
this factor and the representation factor should also be indicative of the
operation of the representativeness heuristic. First, if subjects rely more
on representativeness when predictors are represented visually than
when they are represented numerically, prediction extremity should be
less sensitive to predictor validity in visual representation than in numer-
ical representation. Second, the difference in prediction extremity be-
tween visual and numerical representation should be larger in low pre-
dictor validity than in high predictor validity. There are two reasons for
this latter expectation. First, when predictor validity is high, adherence to
prediction strategies that lead to systematic biases from optimal predic-
tions in general, and adherence to the matching strategy, in particular, is
low, because feedback provides a fairly clear indication of the bias. The
second reason is that the higher the validity, the smaller the discrepancy
between optimal predictions and predictions by representativeness.

Yet another factor in Experiment 1 was the number of predictors,
whether the explained variance in the outcome is accounted for by one or
two predictors. Predictions by representativeness that are based on two
predictors imply an averaging strategy, i.e., a strategy in which the ex-
tremity of the prediction is matched to the extremity of the two predic-
tors. When the stimuli-generating model is an additive model, these pre-
dictions are less extreme than optimal predictions (Lichtenstein, Earle, &
Slovic, 1975; see also Birenbaum, 1976). A fortiori, they are less extreme
than predictions by representativeness based on one (equally valid) pre-
dictor.? Thus, a main effect for the number of predictors factor is ex-

? For example, consider two orthogonal predictors with equal (normal) distributions, each
having a correlation of .6 with the outcome. Assume that the perceived extremity of the
predictors and the outcome can be approximated by their Z-scores. If the values of the
predictors in Z-scores are | and 2, their average extremity is 1.5 Z-scores, and therefore
predictions by representativeness will lead subjects to choose a prediction whose value is
1.5 Z-scores on the outcome scale. On the other hand, if the two predictors are represented
by an equally valid one predictor, the extremity of this predictor is .7071 * 1 + 7071 2 =
2.13 Z-scores (in the current experiment each of the two predictors explain half of the
variance in the equally valid one predictor), and therefore predictions by representativeness
will lead subjects to choose a prediction whose value is 2.13 Z-scores on the outcome scale.
Note that the normative prediction in this case is .6 * 1 + .6 * 2 = 1.8 Z-scores on the
outcome scale.
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pected. In addition, an interaction between number of predictors and
prediction representation should be expected, since the effect of the num-
ber of predictors on the extremity of the predictions depends on the
extent to which subjects rely on representativeness which, in turn, is
hypothesized to be dependent on predictor representation.

In addition to prediction extremity, prediction consistency is used as a
secondary indicator for the tendency to rely on representativeness. For a
linear relationship between predictor and outcome, the representative-
ness heuristic reduces both acquisition and application difficulties (See
Hammond & Summers, 1972, for a discussion of these concepts in CPL
task) because it implies a linear relationship between predictor and pre-
diction. Thus, it should be expected that the higher the reliance on rep-
resentativeness, the higher the consistency. Therefore, the main hypoth-
esis regarding the influence of predictor representation on consistency is
that in conditions in which reliance on representativeness is high (.e.,
visual representation of the predictor) consistency will be higher than that
in conditions in which reliance on representativeness is low (i.e,, numer-
ical representation).

It should be noted, however, that while the main effect of predictor
representation may be similar for consistency and extremity, the pattern
of interactions between predictor representation and the other factors
may differ. In particular, while extremity is expected to decrease with
experience, consistency tends to increase with experience (e.g., Naylor &
Clark, 1968; Brehmer & Lindberg, 1970), since subjects learn the linear
relationship between predictor and outcome. Furthermore, since consis-
tency is lower in the numerical representation condition, more learning,
and therefore larger change in consistency, is likely to occur in this con-
dition. Note that while differences between numerical and visual condi-
tions are expected to decrease as a result of experience for both consis-
tency and extremity, the way by which these differences decrease is
expected to differ for these two measures. Learning is likely to influence
{decrease) extremity primarily in the visual representation condition and
to influence (increase) consistency primarily in the numerical represen-
tation condition.

To summarize, the above analysis suggests that the mode of predictor
representation should influence both the extremity of predictions and
their consistency. However, this influence depends on other factors such
as amount of outcome feedback; predictor validity, and the number of
predictors.

EXPERIMENT 1

Method
Subjects. Two hundred and ninety first-year Business Administration
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students participated in the experiment to fulfill a class requirement. Sub-
jects were assigned randomly to eight conditions. (See Table 3 for the
number of subjects in each condition).

Design. Each subject predicted an outcome based on either one or two
predictors presented either numerically or visually. The explained vari-
ance of the outcome was either .95 (high-validity condition) or .7 (low-
validity condition). This resulted in a 2 X 2 X 2 between subject design
with respect to these three factors. Note that the R-squares used in this
experiment are larger than most R-squares in CPL tasks. The reason for
this is that the focus of this experiment is on the strategies people use for
a positive-linear rule and not on the process of learning such a rule. Large
R-squares are likely to facilitate this learning. The instructions below also
reflect this consideration.

Procedure. Subjects participated in the experiment in groups number-
ing between four and eight. After entering the laboratory, they were
seated in front of an IBM XT computer and told to read the initial in-
structions. Subjects were told that in many areas experts are interested in
learning how to make optimal predictions and this is the reason why
researchers are interested in how people learn to make predictions and
how they improve these predictions as a result of experience. A descrip-
tion of the experiment was given, with an emphasis that ‘‘The relationship
between the predictor(s) and the outcome is positive, that is, the higher
the predictor(s), the higher the outcome,”” and that, *‘It is almost impos-
sible to predict the outcome precisely. Your task is therefore to make
predictions that are as close as possible to the outcome.’” Subjects then
performed six practice trials. After the practice trials, the experimenter
checked that subjects understood how to operate the computer and again
emphasized the rule relating predictor(s) to outcome as well as the prob-
abilistic nature of the task. Subsequently, subjects completed the 120
experimental trials at their own pace.

In each trial, the computer first displayed the predictor(s). In the nu-
merical conditions the predictor(s) were number(s) located in the center
of the screen. In the visual conditions the predictor(s) was a horizontal
bar(s) whose length(s) was proportional to the value(s) of the number(s) in
the numerical conditions. After 2 s the computer prompted the subjects to
type their prediction. Subjects typed their predictions numerically in all
conditions. After typing the prediction, the predictors and the prediction
were erased and the computer displayed the outcome for 2 s. Subse-
quently, the outcome was erased, and a new trial began. In all conditions,
the outcome was displayed numerically.

There was not a time limit for typing the predictions. To avoid reading
inadvertent mistakes by the computer, the predictions were examined,
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and if they were completely out of range (numbers of four or more digits
or two or less digits), subjects were prompted to the prediction again.

Stimuli. One set of stimuli was used for all subjects. The stimuli were
created as follows. Eight blocks of 15 trials were constructed by sampling
two predictors and a random error from a trivariate standardized normal
distribution with covariances 0. To be included in the experiment, a block
was required to fulfill the following conditions: (1) the correlation be-
tween each of the three variables would not exceed =.1; (2) the mean of
each of the three variables would not exceed +.05; and (3) the standard
deviation of each of the three variables would not exceed *.05.

Outcome feedback was generated for the low-validity conditions by the
equation £ = 592 * C1 + .592 C2 + .548 * ¢, where E is the outcome,
C1 and C2 the predictors, and € is the error, and for the high-validity
conditions by the equation E = .689 * C1 + .689 * C2 + .224 * ¢. The
predictor in the one-predictor conditions was generated by summing the
two predictors. Thus, total predictability was equal in the one-predictor
and two-predictor conditions.

The stimuli that subjects actually received in the numerical conditions
were created by transforming the standardized predictors and feed-
back values to desired distributions. Each of the predictors in the two
predictor conditions was transformed to have a mean of 75 and a standard
deviation of 13. The predictor in the one-predictor conditions was trans-
formed to have a mean of 150 and a standard deviation of about 18.4.
The outcome was transformed to have a mean of 585 and a standard
deviation of 50 (numbers were rounded to the nearest whole number).
This resulted in a task slope (regression slope relating outcome to predic-
tor) of about 2.28 in the low-validity conditions and 2.65 in the high-
validity conditions.

In the visual conditions, the predictors were horizontal bars whose
values were proportional to the numerical values of the predictors
in the corresponding trial in the numerical conditions. In the one-
predictor conditions, an increase of 1 cm in the bar corresponded to an
increase of about 3.5 units in the predictor in the numerical conditions.
In the two-predictor conditions, an increase of 1 cm in the bar corre-
sponded to an increase of about 2.5 units in the predictor in the numerical
conditions.

RESULTS AND DISCUSSION

Extremity. Extremity was defined in terms of the prediction slope, the
regression slope relating subjects’ predictions to predictor values. This
regression slope was calculated for each subject and each 30-trial block.
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(The data were also analyzed for fifteen trial blocks and the results, ex-
cept for small differences, were similar. These differences are mentioned
in the text.) To allow for comparability, in the two predictor conditions,
the slope was calculated by regressing subjects’ predictions on the sum of
the two predictors. In the visual conditions, it was calculated by regress-
ing subjects’ predictions on the numerical value corresponding to the
predictor(s). The regression slopes were subjected toa 2 x 2 X 2 x 4
analysis of variance with repeated measures on the fourth factor (block).
The results of this analysis are summarized in Table 1 and plotted in Fig.
1, where the means are collapsed over the number of predictor factor
(neither the main effect nor the interactions involving this factor are sig-
nificant).

The main hypothesis of the experiment, that predictions are more ex-
treme when the predictor is represented visually than when it is repre-
sented numerically, is supported by a highly significant main effect for
predictor representation. Other hypotheses are also supported. First, a
significant main effect for block indicates that extremity declines during
the course of the experiment. Second, a significant representation X
block interaction indicates that overall extremity declines more in the
visual conditions than in the numerical conditions.

TABLE 1
SuMMARY TABLE FOR ANOVA oN RESPONSE SLOPE
Source df F P
Between groups 289
Cue representation 1 13.9 .0003
Cue validity 1 14.9 .0001
Number of cues 1 8 .38
Representation x validity 1 16.1 .0001
Representation x number of cues 1 .2 .64
Validity X number of cues 1 .1 .84
Representation X validity X number of cues 1 4 .55
Error 282
Within subjects 870
Block 3 16.7 .0001
Block X representation 3 6.8 0003
Block x validity 3 2.7 .05
Block x number of cues 3 1.1 .34
Block X representation X validity 3 5.0 .003
Block X representation X number of cues 3 1.9 .14
Block x validity X number of cues 3 .7 .57

Block X representation X vahlidity x
number of cues 3 7 .57
Error 846
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F1G. 1. Mean prediction slope as a function of block, predictor representation, and pre-
dictor validity. Data are collapsed over the number of cue conditions. Standard errors are,
in an ascending block number, .21, .18, .14, .14 for the visual low-validity conditions; .14,
11, .12, .11 for the visual high-validity conditions; .12, .10, .1, .14 for the numerical
low-validity conditions; and .11, .09, .10, .10 for numerical high-validity conditions.

However, these results should be viewed in light of the triple interac-
tion between representation, validity, and block.> One feature of this
interaction is that in the numerical representation, the slopes in the high-
validity conditions are steeper than the slopes in the low-validity condi-
tions during the entire course of the experiment (p < .0001 for all four
blocks), and the differences between them are approximately constant.
On the other hand, in the visual representation, the slope in the first block
is steeper in the low-validity conditions (!) [#(143) = 2.17, p < .03], while
in the rest of the blocks there is no significant difference between the con-

3 The main effect of predictor validity results from the fact that the predictions in the
high-validity conditions are more extreme than the predictions in the low-validity conditions
(the mean response slope over blocks and subjects is 2.32 for the former and 1.93 for the
latter). This effect is not surprising given that the task slope is indeed steeper in the high-
validity conditions, and it is in agreement with previous findings. The other significant
effects (the main effect of representation, the interaction between representation and block,
and the interaction between representation and predictor validity) are better understood in
terms of the triple interaction.
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ditions, although there is a tendency for the siope in the low-validity
conditions to be more moderate. Thus, for visual representation, predic-
tion extremity is inappropriately sensitive to validity in the first block and
not sensitive to validity in the rest of the blocks, while for numerical
representation, it is appropriately sensitive to validity in all blocks.

Another feature of this interaction is that in the high-validity conditions
there are actually no differences between numerical and visual represen-
tation (p > .5 for all four blocks). In the low-validity conditions, there are
substantial differences between the extremity of predictions in the two
representation conditions. These differences, however, decrease during
the course of the experiment as a result of the decrease in prediction
extremity in the visual representation conditions.

This pattern of results indicates that the subjects in the low-validity
visual conditions are the ones most seriously susceptible to biases stem-
ming from representativeness. Unlike the subjects in the low-validity nu-
merical conditions, it is difficult for them to use strategies other than
representativeness. Unlike the subjects in the high-validity visual condi-
tions, feedback does not provide them with as clear an indication of
possible biases. Also, as previously mentioned, while for these subjects
reliance on representativeness can lead to large biases, for subjects in the
high-validity visual conditions, reliance on representativeness should not
lead to large biases. Subjects in the low-validity visual conditions are also
characterized by the continuous moderation of prediction extremity,
while subjects in the other conditions appear to have accomplished most
of their learning in the first block. The reason is that the subjects in the
low-validity visual conditions have the most learning to do, and they have
to do it from relatively noisy outcome feedback.

Although moderation of predictions during the course of the experi-
ment is very salient in the low-validity visual condition, it is common to
all conditions, as indicated by the main effect of block. While a test for
linear trend was highly significant in the low-validity visual conditions
[#(71) = 5.38, p < .0001], it was also significant in the high-validity visual
conditions {#(72) = 2.72, p < .008], and it was marginally significant in the
high validity numerical conditions {#(68) = 1.74, p < .09]. Linear trend in
the low-validity numerical conditions was not significant although it was
in the expected direction [#(75) = .86, p < .4].

The continuous moderation of predictions stands in contradiction to
some previous findings (Brehmer, 1973; Brehmer & Lindberg, 1970). The
reason for this is related, in my view, to methodological details of the CPL
task that, so far, have not received attention. For example, Brehmer used
in his experiments rectangular distributions while the distributions in the
current experiment are normal. Different forms of distribution will lead to
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different prediction strategies if one of the strategies available for subjects
is averaging two values. One value is an outcome value which is as ex-
treme as the predictor; the other value is a representative value of the
outcome distribution, i.e., a central tendency value (Tversky & Kahne-
man, 1982). In the normal distribution, this central tendency value is
much more representative of the distribution and therefore much more
likely to influence predictions, since it is also the most frequent value (see
Andreassen, 1987, for an example of the influence of central tendency
values on prediction). In other words, it could be that what subjects learn
from outcome feedback in this experiment is a strategy of ‘‘regression to
the mode.’” This hypothesis lends itself to experimental test by examining
predictions from the two types of distributions, and it could potentially
shed some light on the nature of the heuristics that replace representa-
tiveness as a result of experience.

Comparison with normative predictions. In the low-validity visual con-
ditions, the prediction slope is significantly steeper than the task slope in
the first block [#(71) = 3.37, p < .001]. It is also steeper than the perfect
matching slope, the slope that would be obtained from a perfect matching
strategy (about 2.72). While this latter effect is not significant, if the first
block is divided into two 15-trial blocks, the slope in the first of these two
blocks (3.67) is significantly steeper than the perfect matching slope, #(71)
= 3.79, p < .0003.

In the low-validity numerical conditions, the prediction slope of the
first block is more moderate than the task slope [#(75) = 5.51, p < .0001],
while in the high-validity conditions, it does not differ significantly from
the task slope. In the last block, however, the prediction slope is clearly
below the task slope for all conditions, including the low-validity visual
conditions [#(71) = 3.06, p < .003; 1(75) = 6.25, p < .0001; 1(68) = 4.29,
p < .0001; and #(72) = 4.48, p < .0001 in the low-validity visual, low-
validity numerical, high-validity numerical, and high-validity visual con-
ditions, respectively].

This pattern of results departs from a simple model in which subjects
rely heavily on representativeness in the early phase of the experiment,
subsequently adopting regressive prediction strategies as a resuit of feed-
back. In my view, this departure occurs because various heuristics, rep-
resentativeness being only one of them, determine intuitive predictions.
For example, prediction by representativeness depends on the perceived
distribution of outcome and predictor rather than the actual distribution.
Thus, since extreme values of a distribution are more available in memory
(Nisbett & Kunda, 1985), the steep slope in the low-validity visual con-
ditions could be the result of the dispersion of the perceived distributions
being larger than the dispersion of the actual distribution (Ganzach, in press).
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The overregressiveness observed in the experiment is also likely to
stem from the fact that prediction moderation is the result of the operation
of various heuristics rather than the learning of a statistical principle.
For example, the ‘‘regression to the mode’ strategy described above
could lead to overly regressive predictions if subjects place too much
weight on one value—the central tendency value—relative to the other
value—the outcome value whose extremity matches the extremity of the
predictor.

Finally, why, in contrast to previous CPL experiments, is overregres-
siveness observed in this experiment? The reason is likely to be the high
predictor validities used in the current experiment. When predictor va-
lidity is high, the discrepancy between predictions by representativeness
and normative predictions is low. Thus, extremism is less likely to be
observed in high predictor validities. Indeed, in Experiment 2, where the
predictor validity was .5, predictions did not become overregressive even
in the fourth block, although moderation of predictions over the course of
the experiment was observed. This pattern was also observed in Ganzach
and Krantz (1990), where lower validity was used.

Consistency. Consistency was defined in terms of the correlation be-
tween predictor and prediction. (For the two predictor conditions, con-
sistency was defined as the multiple correlation between predictors and
prediction.) For each subject and each 30-trial biock, this correlation
was calculated, and subjected to Fisher's Z transformation. The trans-
formed correlations were subjected to a 2 X 2 X 2 X 4 analysis of
variance with repeated measures on the fourth factors. The results of
this analysis are summarized in Table 2, and the means and standard
deviations appear in Table 3. The main effect for predictor validity re-
sults from the fact that predictions in the high-validity conditions are
more consistent than predictions in the low-validity conditions (the
mean over blocks and subjects is 1.09 for the former and .74 for the
latter). The main effect for block results from an increase in consistency
during the course of the experiment. Both the main effect for validity
and the main effect for block replicate earlier findings (e.g., Brehmer &
Lindberg, 1970).

The main effect for representation arises from the fact that the consis-
tency in the visual conditions is greater than the consistency in the nu-
merical conditions (the mean over blocks and subjects is .95 for the visual
conditions and .87 for the numerical conditions). This supports the hy-
pothesis that predictions are more consistent when they are based on
visual representation. However, the main effect of representation should
be viewed in light of its interactions with the other factors. The interac-
tion between predictor representation and block is due to the fact
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TABLE 2
SuMMARY TABLE FOR ANOVA on CONSISTENCY
Source df F P
Between groups 289
Cue representation 1 3.7 .05
Cue validity 1 64.1 L0001
Number of cues 1 5.9 .02
Representation x validity 1 2.5 A2
Representation X number of cues 1 6.7 .01
Validity x number of cues 1 4.4 .04
Representation x validity X number of cues 1 3.5 .06
Error 282
Within subjects 870
Block 3 17.4 .0001
Block X representation 3 2.6 .06
Block x validity 3 1.4 .25
Block X number of cues 3 1.5 .21
Block x representation x validity 3 1.8 15
Block x representation X number of cues 3 9 42
Block x validity x number of cues 3 8 .48
Block X representation x validity X
number of cues 3 .8 .51

Error 846

Note. The consistency measure is the z transformation of the correlation between cues(s)
and response.

that subjects in the numerical conditions increase their consistency dur-
ing the course of the experiment more than subjects in the visual condi-
tions. In both representations there is a significant linear trend (p < .0001)
for consistency. However, this trend is stronger in the numerical condi-
tions [the difference between the two trends is not significant for the
30-trial blocks but is significant for the 15-trial blocks, #(288) = 2.5,
p < .01)]. This effect parallels the interaction effect between representa-
tion and block in regard to extremity, but in line with our theory, for
consistency, these are the subjects in the numerical conditions that have
more to learn.

The interaction between representation and number of predictors is due
to the fact that in the visual conditions, consistency is not sensitive to the
number of predictors, while in the numerical conditions, it is (the results
in regard to the visual conditions are in agreement with results reported
by Brehmer, 1987). In the numerical conditions, two predictors decrease
consistency relative to one predictor. This effect is consistent with the
notion that subjects in the visual conditions rely on representativeness,
because this heuristic offers them a strategy for integrating the two pre-



TABLE 3
MeaAN CoNSISTENCY BY CONDITION AND BLOCK

Low validity High valid
One cue Two cues One cue

Block Visual Numerical Visual Numerical Visual Numerical

n 37 38 35 38 38 34

1 .74 .56 .80 .53 1.00 1.08
(.39) (.45) (30 (3bH (.46) (.32)

2 .88 .65 .86 .62 .16 1.43
(.55) (.40) (.40) (.43) (.37) (.43)

3 75 .78 .87 71 1.07 .33
(.50) (.49) (.45) (.43) (.46) (.38)

4 81 .78 82 .67 1.13 1.34
(.53) (.54) (.50) (.52) (.52) (.47)

Mean .80 .69 .83 .63 1.09 1.29
(.42) (.39) (.33) (.36) (.39) (.24)

Note. Entries are the mean Fisher’'s Z transformation of the correlation between cue(s) and response. Numbers i
deviations.
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dictors (i.e., averaging their extremity), which leads to consistent predic-
tions.*

It is interesting to compare the results of the analysis of consistency to
those of extremity. The main difference is that in regard to extremity, the
number of predictors did not make any difference, while in regard to
consistency, it did. If the notion that representativeness enhances con-
sistency in predicting from two predictors by reinforcing the use of an
averaging strategy is correct, why did it not lead also to less extreme
predictions in the two predictors conditions? One answer is that in the
CPL task used in this experiment, subjects predicting by representative-
ness from two predictors are likely not only to average the extremity of
the two predictors, but also to evaluate the extremity of the average
against the scale of the average rather than against the scale of the indi-
vidual predictors. Since the average scale is narrower than the predictors
scale, this should lead to no differences between the extremity of predic-
tions from two predictors and from one equally valid predictor.’

4 The analysis of variance reveals two additional effects of theoretical interest. First, the
interaction between validity and the number of predictors is due to the fact that the differ-
ence in consistency between the one-predictor conditions and the two-predictor conditions
is larger in high-validity than in low-validity. A possible explanation for this is that low-
validity predictors interfere more with the use of an accompanying predictor (Dudycha &
Naylor, 1966; see also Brehmer, 1973) and cause more difficulties in using each of the
predictors separately, thus ‘‘pushing’ subjects toward reliance on an averaging strategy,
which, in turn, minimizes the differences in consistency between the one-predictor condi-
tions and the two-predictor conditions. This effect depends, however, on predictor repre-
sentation, leading to triple interaction between representation, validity, and the number of
predictors. The effect is rather strong in the numerical representation and nonexistent in the
visual representation. One reason for this could be that in the visual representation, the
dominance of the representativeness heuristic is such that subjects use an averaging strategy
in the two-predictor conditions irrespective of validity. Another feature of this triple inter-
action is that consistency is greater in each of the visual conditions than in the respective
numerical condition except in the case of the high-validity one-predictor conditions, where
this relationship reverses. This feature of the triple interaction is likely to be related to the
fact that in the one predictor high-validity conditions there are no difficulties associated with
the integration of two predictors nor are there serious difficulties associated with the prob-
abilistic nature of the task. Thus, the representativeness heuristic does not *‘benefit’’ sub-
jects in these conditions as much as it does in the other conditions. On the other hand, in
these conditions the inferior accuracy of the visual representation (the length of the visual
scale allowed less accurate perception of changes in predictors in comparison to the nu-
merical scale) could lead to lower consistency.

3 To use the example in footnote 1, if the standard deviation of each of the two predictors
is §, the average of the two predictorsis 1 * § + 2 * § = 1,5 *» §. On the other hand, the
standard deviation of the average is equal to V.5 * §2 + 52 « §2 = 7071 * §. Therefore,
the extremity of the average on the average scale is 1.5 =« §/.7071 * § = 2.12, which is equal
to the extremity of the equally valid one predictor.
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This line of reasoning explains why, contrary to our results [as well as
Brehmer’s (1987)], Lichtenstein et al. (1975) found that predicting from
two predictors induces reduction in the extremity of predictions. In their
experimental paradigm, subjects were first trained in each of the two
predictors (which had equal distributions) separately, and only then were
they required to make predictions based on the two predictors without
feedback. In this case subjects are likely to evaluate the extremity of the
average on the predictors scale rather than on the average scale, which
can lead to reduction in the extremity of predictions.

The differences between the results of consistency and those of ex-
tremity also rule out the possibility that the between-condition differences
in the extremity measure used in the analysis (prediction slope) are due to
differences in noise in subjects’ predictions rather than to differences in
prediction strategy. First, while the prediction slope decreases continu-
ously, consistency increases, which suggests that the prediction slope
does not decrease because of increased noise in subjects’ predictions, but
rather because of decreased prediction extremity. Second, in regard to
prediction slope, the effect of representation depends primarily on pre-
dictor validity, while the interaction between representation and number
of predictors is nonsignificant. On the other hand, in regard to consis-
tency, the effect of representation depends primarily on the number of
predictors, while the interaction between representation and predictor
validity is nonsignificant. This discrepancy suggests that in this experi-
ment, prediction slope and consistency are, to a large extent, independent
measures of prediction strategy.

EXPERIMENT 2

Visual representation of the predictor is only one way by which a frame
of reference for the predictor can be made salient to the prediction maker.
Such a frame may become salient even if the predictor is represented
numerically, providing the scale of the predictor is known. The main
" purpose of this experiment is to examine whether awareness of the scale
increases reliance on representativeness in the case of nonvisual repre-
sentation of the predictor.

Method

Overview. Scale awareness was manipulated by presenting the predic-
tor in percentiles in one condition (the percentile representation condi-
tion), but not in the other (the standard numerical representation condi-
tion). The validity of the predictor was low in both conditions (low-
validity conditions were used since these conditions are the critical
conditions for testing the influence of predictor representation), and the
outcome was predicted on the basis of one predictor (one-predictor con-
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ditions were used since no important differences were found in regard to
the number of predictors factor in Experiment 1).

Subjects. Forty first-year Business Administration students partici-
pated in the experiment to fulfill a class requirement. Subjects were as-
signed randomly to two conditions, 20 in each condition.

Stimuli. Sampling of stimuli values was conducted separately for each
subject. In each trial, a predictor value and a random error were sampled
from two rectangular distributions. Outcome feedback was centered
around 450, and explained variance was equal to .5. The range of the
predictor was 100. In the percentile representation condition the predictor
was centered around 50 and in the standard numerical representation
condition it was centered around 120. The normative slope in both con-
ditions was 1.5.

Procedures. Subjects participated in the experiment in groups number-
ing between four and eight. After entering the laboratory, they were
seated in front of an IBM XT computer and told to read the initial in-
structions which explained the task. Subjects were told that they will be
asked to predict students’ scores in aptitude A from their scores in apti-
tude B. They were told that the relationship between the two aptitudes is
probabilistic.

Following these initial instructions, subjects in the percentile represen-
tation condition received a short explanation about percentiles and were
told that the scores in aptitude A will be given in percentiles. Subjects in
the standard numerical representation condition did not receive this ex-
planation. Subsequently, all subjects performed five practice trials and
then completed 120 experimental trials at their own pace. The trials were
similar in the two conditions except that in the percentile representation
condition subjects were reminded in each trial that the predictor is given
in percentiles and that the percentile scale ranges from 1 to 100. Similar to
Experiment 1, the predictions were examined, and if they were com-
pletely out of range (numbers of four or more digits and two or less digits),
subjects were prompted to type their predictions again.

RESULTS AND DISCUSSION

Extremity. Extremity was defined in terms of the prediction slope. This
slope was calculated for each subject and each 15-trial block. The slope
means by condition and block are plotted in Fig. 2. Standard errors ap-
pear in the figure caption. A 2 X 8 ANOVA (representation X block) with
repeated measures on the second factor revealed a significant main effect
for predictor representation [F(1,38) = 3.1, p < .01], a significant main
effect for block [F(7,266) = 8.5, p < .0001], and a significant represen-
tation X block interaction [F(1,266) = 5.0, p < .001].

These results replicate the results of Experiment 1. Predictions are
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Prediction Slope
™
3}
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F1G. 2. Mean prediction slope as a function of block and predictor representation. Stan-
dard errors are, in an ascending block number, .14, .21, .18, .19, .19, .18, .17 and .15 for the
standard numerical representation condition, and .51, .21, .21, .22, .19, .21, .21, and .14 for
the percentile representation condition.

more extreme in the percentile representation condition, where predictor
representation provides subjects with a frame of reference on which the
extremity of the predictor can be easily assessed. Furthermore, there is a
learning process in which the extremity of the prediction approaches its
optimal value through experience. This learning occurs primarily in the
condition in which subjects are susceptible to reliance on representative-
ness, since these subjects have the most learning to do.

Consistency. Consistency was defined in terms of the correlation be-
tween predictor and prediction. For each subject and each 15-trial block,
this correlation was calculated and subjected to Fisher’s Z transforma-
tion. The transformed correlations were subjected to a 2 X 8 ANOVA
with repeated measures on the second factor. The results showed no
significant main effect for representation, no significant main effect for
block, and no significant interaction. The means of the transformed cor-
relations over the eight blocks were 1.13 (§D = .44) for the percentile
representation condition and 1.03 (SD = .53) for the standard numerical
representation condition.

Comparison between Experiments 1 and 2. Why do the results of ob-
tained for extremity replicate the results of Experiment 1 while the results
obtained for consistency do not? First note that even in Experiment 1, the
effect of predictor representation on extremity is much stronger than its
effect on consistency, suggesting that extremity is a more sensitive mea-
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sure of reliance on representativeness. Therefore, the absence of predic-
tor representation effect for consistency in this experiment may be due to
lack of power. Second, note that even the strong effect of block on con-
sistency found in Experiment 1 is not replicated here. Subjects reach their
maximum level of consistency already in the first block. Furthermore,
consistency is higher in this experiment than in the low-validity condi-
tions of Experiment 1, although the predictability of the task is lower. The
reason for these differences is most likely that predictor and outcome
were labeled in the current experiment, whereas in Experiment 1 they are
not. The effect of labeling is likely to reduce the effect of representative-
ness on consistency. Since labeling leads to high consistency (Adelman,
1981; Miller, 1971; Muchinsky and Dudycha, 1974; Sniezek, 1986, for the
influence of labeling on consistency), it is difficult to observe an incre-
mental effect of representativeness on consistency.

The difference between the results obtained for extremity and those
obtained for consistency in this experiment rule out the possibility that
the between-conditions differences in the extremity measure used in the
analysis (prediction slope) are due to differences in noise in subjects’
predictions rather than to differences in prediction strategy. Furthermore,
as in Experiment 1, this difference suggests that consistency and extrem-
ity are, to a large extent, independent measures for prediction strategy.

GENERAL DISCUSSION

It is suggested in this paper that the representativeness heuristic influ-
ences predictions in CPL tasks involving a positive linear rule between
predictor(s) and outcome. This theoretical framework offers an explana-
tion for phenomena already observed in CPL literature such as overshoot-
ing (Brehmer & Lindberg, 1970) or the dependence of prediction extrem-
ity on experience with multiple determination (Ganzach & Krantz, 1990),
as well as the findings reported here concerning the influence of predictor
representation on prediction extremity (and to some extent on prediction
consistency).

Another implication of the findings reported here is methodological. In
the CPL literature, both numerical and visual representation of the pre-
dictor are used. Examples of numerical representation can be found in
Dudycha and Naylor (1966), Naylor and Clark (1968), Lichtenstein et al.
(1975), Sniezek and Reeves (1986), and Sniezek (1986). Examples of vi-
sual representation can be found in Hammond and Summers (1972),
Deane and Hammond (1972), Brehmer (1973, 1974, 1980, 1987), Brehmer
and Kuylenstierna (1978, 1980), and Rothstein (1986). Dual representation
is also used (see York, Doherty, & Kamouri, 1987). This paper suggests
that more attention should be paid to the method of predictor represen-
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tation, since the particular heuristic used may depend on the particular
representation.

Furthermore, in the applied decision-making literature, a great deal of
research has been devoted to the influence of information representation
or performance, especially in comparing numerical vs visual representa-
tion of the information (e.g., Benbasat & Dexter, 1986; Lusk & Kersnick,
1979; Remus, 1987; Zund, 1978). However, relatively little attention has
been devoted to the understanding of the cognitive mechanisms that re-
late information representation to performance (Benbasat & Dexter,
1985). The current research suggests that such an understanding may be
important in guiding the choice of information representation. For exam-
ple, if predictor consistency is important, visual representation of the
predictor may be a better choice than numerical representation, since
predictions are more consistent in the former representation than in the
latter. However, if minimum absolute error, or lack of systematic bias, is
important, numerical representation may be better (especially for low-
validity predictors), since predictions by representativeness result in large
positive (negative) errors for high (low) values of the predictor.

Although representativeness influences predictions in the current ex-
periments, these experiments suggest also that it is not the only heuristic
that influences predictions. Other heuristics *‘compete’’ with representa-
tiveness. This competition can be conceptualized in terms of the likeli-
hood of the use of representativeness vs the likelihood of the use of the
other heuristics. This likelihood, obviously, cannot be observed directly.
However, it can be inferred by investigating the influence of factors that
facilitate the use of representativeness (e.g., predictor representation,
amount of outcome feedback) on prediction parameters that are indicative
of its operation (extremity and consistency).

The emphasis of this research was on the competition between the
representativeness heuristic and other heuristics in the application of a
known rule. In the instructions of Experiment 1, subjects were specifi-
cally told about the rule relating predictors to outcome, and the probabi-
listic nature of the rule was strongly emphasized; in the instructions of
Experiment 2, labeling enhanced rule knowledge. Furthermore, the rela-
tionship between predictor and outcome in the experiment was positive
linear, which is exactly the relationship implied by the use of represen-
tativeness. Thus, one research question worth pursuing is the use of
representativeness in the application of rules other than the positive-
linear rule. Another question worth pursuing is the role of representative-
ness in the acquisition, rather than the application, of the positive-linear
rule. Brehmer (1974) suggested a model similar to the ‘‘competing heu-
ristics model”” (Agnoli & Krantz, 1989) to explain the acquisition of rules
relating predictor and outcome. According to this model, ‘*subjects have
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a hierarchy of hypotheses [about the possible rule] which differs in
strength, but where the actual sampling probability varies with the data
presented”’ (p. 24). Brehmer also found that the most dominant hypoth-
esis in this hierarchy is the hypothesis that the rule is a positive-linear
rule. Several explanations were offered for this phenomenon (Brehmer,
1974, 1980). According to the current analysis, the reason for the domi-
nance of this hypothesis is that it accords with representativeness, the
most dominant prediction heuristic. Furthermore, Brehmer also sug-
gested that the process by which intuitive predictions are made involves
a competition between deterministic and probabilistic prediction strate-
gies and that the former strategies are more dominant, even if the nature
of the task is probabilistic (Brehmer, 1980). In this context, the represen-
tative heuristic can be viewed as a deterministic prediction strategy, since
it is the appropriate strategy if the relationship between predictor and
outcome is deterministic (see Ganzach & Krantz, 1990, for a discussion
about the relationship between representativeness and deterministic pre-
diction strategies), while the heuristics that lead to regressive predictions
can be viewed as probabilistic prediction strategies. Thus, the process of
learning from outcome feedback, which is viewed in Brehmer framework
(Brehmer, 1980) as competition between various rules and strategies, is
viewed in the current framework as competition between various heuris-
tics.

The nature of the heuristics that compete with representativeness is still
not clearly understood, and this paper does not address this issue. Nev-
ertheless, the paper suggests that although these heuristics can lead to
predictions that are more in line with optimal predictions, they cannot
adequately be described by normative statistical rules. This is evident, for
example, by the overregressiveness of subjects in all conditions in the last
block of the experiment. The understanding of these heuristics is an im-
portant task for future research, since they may well explain the cognitive
processes that mediate learning from experience.
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