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Feedback Representation and Prediction Strategies

Yoav GANZACH

School of Business Administration, The Hebrew University of Jerusalem

The influence of feedback representation on prediction is examined in a
single cue probability learning paradigm. Two types of feedback representa-
tion are examined: deviation representation, in which the feedback is the
magnitude, or even just the sign, of the prediction error, and standard repre-
sentation, in which the feedback is the outcome itself. It is found that when the
predictor is represented visually (rather than numerically), and when the out-
come scale is unknown, deviation representation results in higher prediction
extremity than standard representation. In addition, deviation representation
results in higher prediction consistency than standard representation. These
findings are explained as resulting from more reliance on the representa-
tiveness heuristic in the deviation representation conditions.  © 1994 Academic

Press. Inc.

Prediction behavior may be conceptualized within a theoretical frame-
work in which people have at their disposal various prediction strategies,
which differ in their “‘strength,’”” or probability of being selected. This
framework was used primarily to investigate the learning of the functional
rule relating predictor to outcome in Cue Probability Learning (Brehmer,
1974, 1979, 1980; Sniezek, 1986; Sawyer, 1991). For example, Brehmer
{1974) suggested that people have a hierarchy of hypotheses about this
functional rule in the order of positive linear, negative linear, and inverted
U and U, where rules that are higher in the hierarchy have higher prob-
ability of being utilized.

Recently, this framework was also used to investigate prediction strat-
egies within the heuristics and biases tradition (Kahneman, Slovic, &
Tversky, 1982). Agnoli and Krantz (1989) suggested that people often
have available few heuristics which vary in strength and that these heu-
ristics compete for the determination of prediction output. While the
strength of these heuristics may vary as a function of training and expe-
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rience, some heuristics are ‘‘naturally’’ stronger and determine prediction
when there is little learning involved.!

Among these natural heuristics, the representativeness heuristic (Kah-
neman & Tversky, 1972, 1973) is especially important. According to this
heuristic, people base their predictions on some perception of the disper-
sions of the predictor and outcome. Based on this perception, a matching
strategy is used to arrive at a prediction. The predicted value is chosen so
that its extremity (deviation from central tendency) matches the extremity
of the predictor.

Prediction by representativeness leads to excessively extreme predic-
tions (Kahneman & Tversky, 1973). One reason is that while normative
predictions are regressive (the position of the predicted value on the
distribution of the outcome is less extreme than the position of the pre-
dictor on its distribution), intuitive predictions are—at least when little
learning is involved—nonregressive. Another reason, which is of special
importance to this paper, is biased perception of the width of the outcome
distribution. Since predictions by representativeness rely on some per-
ception of the outcome distribution as an input, factors that make the
perceived distribution wider than the actual distribution may lead to ex-
cessive extremity (see Nisbett & Kunda, 1985, for an example of factors
that may influence the perception of distribution width).

The manner by which information is presented may influence heuristic
selection, and therefore the output of prediction. To illustrate, consider
recent studies in which the influence of predicror representation on pre-
diction was examined (Ganzach, 1993). The results of one study indicate
that predictions are more extreme and more consistent when the predictor
is represented visually (as a bar on a computer screen), rather than nu-
merically. Most likely there is more reliance on representativeness in the
former representation than in the latter, since in the former representation
there is a natural ‘‘frame of reference’’—the computer screen—against
which the extremity of the predictor can be assessed. This frame of ref-
erence facilitates the use of representativeness, since it eases estimation
of predictor extremity. Indeed, when predictor frame of reference is in-
duced quite differently, by representing it on a familiar (e.g., percentile)
rather than an unfamiliar scale, similar results are obtained.

In this paper 1 investigate how feedback representation influences pre-
diction. Consider the two following representations of feedback. In one,
the feedback is the outcome itself. I will call this representation standard

! While in Brehmer's (1974) theorizing there is no direct parallel to the concept of natural
heuristic, hypotheses that are high in the hierarchy are conceptually similar to natural
heuristics.
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representation, since this is the way feedback is usually represented in
Cue Probability Learning experiments. In the other, it is represented as
the deviation of the prediction from the outcome (e.g., the magnitude, or
even just the sign, of the prediction error). I will call this representation
deviation representation.

Since a main difference between standard representation and deviation
representation is that the outcome distribution can be learned more easily
in the former representation than in the latter, two opposing hypotheses
about the influence of feedback representation on prediction strategies
can be advanced. The first hypothesis is that reliance on representative-
ness is stronger in standard representation than in deviation representa-
tion. The second hypothesis, which is my working hypothesis, suggests
the opposite: reliance on representativeness is stronger in deviation rep-
resentation.

The logic behind the first hypothesis is that since reliance on represen-
tativeness requires a knowledge of the outcome’s distribution, factors
that hinder the learning of this distribution—such as deviation represen-
tation—will also hinder reliance on representativeness. Furthermore, de-
viation representation may easily lead to the abandonment of represen-
tativeness and the adoption of less biased (i.e., more moderate) prediction
strategies. The reason is that by focusing attention on the deviation of the
prediction from the outcome, the systematic bias in responses based on
representativeness may be highlighted, since the deviation’s sign tends to
be positive (negative) when predictions are based on a predictor whose
value is below (above) the predictor average. This may suggest a direction
for correction of the bias.

On the other hand, the second hypothesis suggests that since deviation
representation does not supply (subjectively) clear feedback, subjects do
not develop moderate prediction strategies, but rather tend to keep their
natural strategy, i.e., representativeness (see Sawyer, 1991, and Gan-
zach, 1993, for discussion of how strategies are changed). A critical ques-
tion that arises from this line of reasoning is which outcome distribution
subjects use, if their predictions are based on representativeness, since
such predictions require the outcome distribution as an input. I believe
that there are two important factors that influence the outcome distribu-
tion used by subjects in deviation representation. First, this distribution is
likely to be inferred from contextual details of the experimental proce-
dure, which are required to direct subjects to the appropriate outcome
range (e.g, the numbers of digits in the example introducing the experi-
ment, the number of digits required as an output, etc.). Second, this
distribution is likely to be wider than the distribution used by subjects in
standard representation (as well as the actual distribution), because the
process of narrowing down the range of outcome values becomes more
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difficult. Thus, in deviation representation, excess extremism may result
not only from nonregressiveness, but also from biased perception of the
outcome distribution.

In summary the two hypotheses differ in the effect they assign for the
added opacity involved in making predictions when feedback is repre-
sented in a deviation form. The first hypothesis suggests that this added
opacity impedes the learning of the outcome distribution and therefore
weakens reliance on representativeness. The second suggests that this
opacity interferes with the use of all possible heuristics and therefore
strengthens reliance on representativeness—the simplest, most natural,
heuristic to use.

Dependent measures. Two dependent measures were used as indica-
tors for reliance on representativeness: extremity and consistency. Ex-
tremity is widely used as an indictor for prediction by representativeness
(e.g., Kahneman & Tversky, 1973; Fischoff, Slovic, & Lichtenstein,
1979; Yates & Jagacinski, 1979). It is operationalized in this paper as the
ratio between the prediction slope—the regression slope relating subjects’
predictions to predictor values—and the normative slope—the regression
slope relating outcome values to predictor values (see Brehmer & Lind-
berg, 1970, for the use of this ratio as a measure for extremity).? Note that
extremity may also be influenced by experience. If predictions are exces-
sively extreme (or excessively moderate) in early trials, decrease (or in-
crease) in extremity may occur throughout the experiment as a result of
learning.

In addition to extremity, reliance on representativeness may also influ-
ence prediction consistency—the correlation between predictor and pre-
diction (Ganzach, in press). The reason is that when a linear relationship
between predictor and outcome exists, the representativeness heuristic
reduces both acquisition and application difficulties (see Hammond &
Summers, 1972a,b for a discussion of these concepts in cue probability
learning task), because it implies a linear relationship between predictor
and prediction (i.e., ‘‘pure’” matching results in predictor-prediction cor-
relation of 1). Thus, it is expected that the higher the reliance on repre-
sentativeness, the higher the consistency. Note also that in addition to
representativeness, experience may also influence consistency. Specifi-
cally, learning would cause consistency to increase over trials, while
reliance on representativeness would cause consistency to be high in
early trails and remain relatively steady throughout the experiment.

2 Note that extremity as defined here is also equal to (rcg * ox)/(rcg * o), where C is the
predictor, R is the prediction, and E is the outcome. Thus, as defined here, extremity does
not depend on the predictor scale.
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EXPERIMENT 1

The experiment was a Single Cue Probability Learning experiment. It
included two crossed factors: a feedback representation factor and a pre-
dictor representation factor. There were three levels of feedback repre-
sentation: a standard representation level and two deviation representa-
tion levels. In the first of the two deviation representation levels, the
feedback was the prediction error [i.e., (R-E), where R is the prediction
and E the outcome]. I will call this level magnitude deviation. In the
second, the feedback was simply the sign of the error. I will call this level
sign deviation. Magnitude deviation representation and standard repre-
sentation are similar in respect to the objective information available for
subjects, but differ in the ease by which the outcome distribution can be
learned. It is more difficult to learn it in magnitude deviation. In the third
level of feedback representation—sign deviation—the learning of the out-
come distribution becomes even more difficult. This level also differs
from the other two levels in that less information is available.

The predictor representation factor had two levels. In visual represen-
tation the predictor was presented in the form of a bar graph. In numerical
representation it was presented as a number. This factor was included to
contrast the effect of feedback representation in conditions in which pre-
dictor representation induces strong reliance on representativeness (the
visual conditions) and conditions in which it induces weak reliance on
representativeness (the numerical conditions).

Method

Subjects. One hundred twenty-three first year business administration
students participated in the experiment to fulfill a class requirement. Sub-
jects were assigned randomly to one of six conditions.

Procedure. Subjects participated in the experiment in groups number-
ing between four and eight. After entering the laboratory, they were
seated in front of an IBM XT computer and told to read the initial in-
structions, which explained the task. The instructions gave a description
of the experiment, explained that its purpose is to study how people learn
relationships between two variables, and emphasized that the relationship
between the predictor and the outcome is positive but probabilistic. Sub-
jects were given a practice trial in which the response was typed for them
on the computer screen, were instructed that their responses should be
three digit numbers, and received six additional practice trials in which
they themselves entered the responses. After finishing the practice trials,
the experimenter verified that each of the subjects understood how to
operate the computer. Subsequently, subjects completed the 120 experi-
mental trials at their own pace.
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In each trial, the computer first displayed the predictor. In the numer-
ical conditions, the predictor was a number located in the center of the
screen. In the visual conditions, the predictor was a horizontal bar, whose
length was proportional to the value of the number in the numerical con-
ditions. After 2 s the computer prompted the subjects to type their pre-
dictions. Subjects typed their predictions numerically in all conditions.
After each prediction was typed, the predictor and the prediction were
erased and the computer displayed the feedback. In the standard repre-
sentation conditions, this feedback was the true outcome, in a numerical
form. In the magnitude deviation condition, it was the absolute value of
the prediction error accompanied with a short sentence indicating to the
subjects whether their predictions were above or below the true outcome.
In the sign deviation conditions, the feedback simply informed the subject
whether their prediction was above or below the true outcome. The feed-
back was displayed to the subject for 2 s. Subsequently, the feedback was
erased, and a new trial began.

Subjects did not have a time limit in typing their predictions. To avoid
responses that are completely out of range, the predictions were exam-
ined, and if they were numbers of four or more digits or two or less digits,
subjects were prompted to type their predictions again.

Stimuli. Four 30-trial blocks were sampled from a parent bivariate nor-
mal distribution with a correlation of .709. The mean (standard deviation)
of the outcome variable was 585 (50) and that of the predictor variable 150
(18.4). Blocks were chosen so that this statistical structure will be pre-
served within each block, with the condition that no outcome values
smaller than —2.5 standard deviations and higher than +2.5 standard
deviations will occur.?

In the visual conditions, the predictor was a horizontal bar whose value
was proportional to the numerical value of the predictor in the corre-
sponding trial in the numerical conditions. An increase of 1 cm in the bar
corresponded to an increase of about 3.5 units in the predictor in the
numerical conditions.

Results

Extremity. The ratio between the prediction slope and the normative
slope was calculated for each subject and each 30-trial block. These ratios
were subjected to a 2 (predictor representation) x 3 (feedback represen-
tation) X 4 (block) analysis of variance with repeated measures on the
third factor (four subjects whose regression slopes were negative were

3 Upper and lower limits were needed to fit all stimuli in the visual condition into the
computer screen.
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TABLE 1
SuMMARY TABLE FOR ANOVA oN PREDICTION SLOPE iN EXPERIMENT 1|
Source df F p
Between groups 118
Feedback representation 2 8.9 .0003
Predictor representation 1 47.0 .0001
Feedback x Predictor 2 12.6 .0001
Error 113
Within subjects 357
Block 3 29.5 .0001
Block x Feedback 6 8.5 .0001
Block x Predictor 3 21.6 L0001
Block x Feedback x Predictor 6 5.0 .0002
Error 339

omitted from the analyses).* The results of this analysis are summarized
in Table 1, the means are plotted in Fig. 1, and the standard deviations are
given in the legend to Fig. 1.

Several facts are evident from the results. First, feedback representa-
tion has a strong impact on extremity when the predictor is represented
visually, but has negligible effect when it is represented numerically. A 3
(feedback representation) x 4 (block) ANOVA, which was performed
separately for the numerical and visual conditions, revealed a significant
effect for feedback representation within the visual conditions (F(2,55) =
13.8, p < .0001) but not within the numerical representation conditions
(F(2,58) = 4,p > .7).

Second, in spite of this interaction between feedback representation
and predictor representation, the main effect for predictor representation
is meaningful, since extremity is higher in all three visual representation
conditions.

Third, the within subject part of the analysis reveals a learning effect
(see the main effect for block in Table 1): Predictions become more mod-
erate during the course of the experiment. This learning effect replicates
some earlier findings (Ganzach & Krantz, 1990; Fig. 3; Ganzach, in press;
Fig. 1), but not others (Brehmer & Lindberg, 1970; Fig. 3; Brehmer, 1973,
Fig. 2). However, this learning effect should be understood in light of the
triple interaction of predictor representation, feedback representation,
and block. This triple interaction results from the fact that learning occurs
mainly in conditions in which extremity is high in the early phases of the

* One was in the visual predictor standard feedback; one of the visual predictor deviation
feedback; one in the numerical predictor standard feedback; and one in the numerical
predictor sign feedback.



398

Extremity
~N
an

YOAV GANZACH

- Visual Magnitude Dev. ~+— Visual Standard ¢ Visual Sign Dev.

-a2- Numerical Magnitude Dev. - Numerical Standard -~ Numerical Sign Dev.

matching
extremity

g normative
extremity

2 3 4
block

F1G6. 1. Mean extremity as a function of predictor representation, outcome representation
and block for Experiment 1. Standard deviations, in ascending block numbers are 1.47, 1.34,
1.21, and 1.63 for the visual sign deviation condition; 1.24, 1.06, 1.06, and .93 for the visual
magnitude deviation condition; .72, .49, .50, and .39 for the visual standard condition; .99,
.63, .59, and .49 for the numerical sign deviation condition; .72, .77, .41 and .72 for the
numerical magnitude deviation condition; and .66, .49, .45, and .35 for the numerical stan-

dard condition.

3.5
3.04
2.6

Extremity

2.0+
1.5
18-
U.El

-8 Magnitude Dev. — Standard - Sign Dev.

matching
= extremity

g normative

axtremity

T

0.0-

FI1G. 2. Mean extremity as a function of outcome representation and block, for Experi-
ment 2. Standard deviations, in ascending block number, are 1.54, 1.38, 1.08, and .85 for the
sign deviation condition; 1.21, .94, .25, and .27 for the magnitude-deviation condition; and

4

-
~N
P

block

.96, .37, .26, and .39 for the standard condition.



FEEDBACK REPRESENTATION AND PREDICTION STRATEGIES 399

experiment and particularly in the two visual-predictor/deviation-
feedback conditions. The 3 X 4 ANOVA within the visual conditions
revealed both a significant block effect (p < .0001), indicating a decrease
in extremity throughout the experiment in all three conditions, and a
significant interaction between block and feedback representation (p <
.0001), resulting from a larger decrease in extremity the steeper the initial
extremity. The same ANOVA within the numerical conditions revealed
neither a block effect (p > .5) nor an interaction between block and
feedback representation (p > 5).

Subjects extremity in the various conditions could also be compared to
the ‘‘matching extremity,’’ the extremity that would be obtained if sub-
jects used a ‘‘pure’’ matching strategy (the value of the matching extrem-
ity is 1.41)° and to the ‘‘normative extremity,”’ the extremity that would
be obtained if subjects followed the normative strategy (the value of this
extremity is 1.00). In the numerical conditions subjects extremity does
not differ significantly from the normative extremity (#(21) = .6, p > .6;
1(20) = .4, p > .7; and #(20) = .6, p > .6 for the sign deviation, magnitude
deviation, and standard representation condition, respectively), whereas
it does differ significantly from the matching extremity (¢#(21) = 4.1, p <
.0006; 1(20) = 2.7, p < .01; #(20) = 3.8, p < .001, respectively). (Since in
these conditions there is no trend, the averages over four blocks were
used in these tests.)

The picture is quite different in the visual conditions. In the standard
representation condition, subjects extremity tends to lie between the nor-
mative extremity and the matching extremity. On the other hand, subjects
extremity in the deviation representation conditions if far above the
matching extremity in the first part of the experiment (#(19) = 3.3, p <
.004; 1(19) = 3.4, p < .004, for the first two blocks of the magnitude
deviation, respectively; and #(17) = 6.9, p < .0001; 1(17) = 4.2, p < .0006,
for the sign deviation, respectively). These effects are quite dramatic. For
example, in the first block, subjects extremity in the sign deviation con-
dition is almost three times the matching extremity. In the second part of
the experiment, after some learning has occurred, subjects extremity ap-
proaches not only the matching extremity, but also the normative extrem-
ity. In the last block, subjects extremity is quite similar to the normative
extremity in the magnitude deviation condition (#(19) = 1.2, p > .3), but
still differs from it in the sign deviation condition (#(17) = 2.1, p < .05).

Consistency. For each subject and each 30-trial block, the correlation
between predictor and prediction was calculated. These correlations were
then subjected to Fisher’s Z transformation. The means and standard

3 Prediction by matching implies rcg = 1 and og = 0. Since in the stimuli Rgg = .707,
using the equation in footnote 2 we obtain a matching extremity of 1.41.
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deviations of the transformed correlations by condition and block are
given in Table 2. The transformed correlations were subjected toa 3 x 2
% 4 analysis of variance with repeated measures on the third factor
(block). The results of this analysis revealed only a significant main effect
for block [£(3,339) = 10.7, p < .0001], which occurred primarily because
of lower consistency in the first block, i.e., from a learning effect (see
Dudycha & Naylor, 1966, or Naylor & Clark, 1968, for early documen-
tation of a learning effect in regard to consistency).

A further 3 (feedback) x 4 (block) mixed ANOVA was conducted on
the numerical and visual conditions separately. For the numerical condi-
tions, this analysis revealed a significant main effect for block (p < .0007)
but no significant effect associated with the feedback representation fac-
tor. For the visual conditions, this analysis revealed, in addition to the
block main effect (p < .0004), a marginally significant interaction between
block and feedback representation (p < .06). This interaction results from
large differences in consistency in the first block (p < .03), but small
differences in the latter blocks. These findings (see Table 2 for the pattern
of the means) give only a weak support to the notion that there is more
reliance representativeness, and therefore higher consistency, in the de-
viation conditions (these differences decrease in the latter blocks, most
likely as a result of learning). However, in Experiment 2, in which pre-
dictions are less ‘‘noisy,”’ a stronger effect of feedback representation on
consistency is observed.

Discussion
The conditions in which the predictor is represented visually are the

TABLE 2
MEAN CONSISTENCY BY CONDITION AND BLOCK IN EXPERIMENT |
Visual Numerical
Magnitude Sign Magnitude Sign
Block Standard deviation deviation Standard deviation deviation
1 72 .90 1.05 .80 .78 .69
(.47) (.33) (.27) (.41) (.41) (.45)
2 1.08 1.17 1.07 1.00 .98 .82
(.51) (.39 (.54) (.3 (.52) (.42)
3 1.11 1.12 1.01 .98 .93 1.02
(.53) (.38) (.50) (.41) (.45) (.67)
4 .95 .93 1.02 1.09 91 .93
.61) (.53) (.65) (.39) (.53) (.68)
Mean .97 1.03 1.04 .97 .90 .86
(.48) (.30) (.43) (.27) (.36) (.50)

Note. Entries are the mean Fisher’s Z transformation of the correlation between predictor
and prediction. Numbers in parentheses are standard deviations.
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critical conditions for the test of the hypotheses about the influence of
feedback representation, since these are the conditions in which repre-
sentativeness is most likely to operate. Indeed, in these conditions there
is a strong effect of feedback representation on extremity. The pattern of
the cell means suggests that deviation representation increases, rather
than decreases, extremity, and that the more powerful the deviation ma-
nipulation (i.e., sign vs magnitude deviation), the greater the extremity.
These results are in line with the hypothesis suggesting that deviation
representation in general, and sign deviation representation in particular
(the representation which supply the most ambiguous feedback), en-
hances reliance on representativeness.

The overall difference in extremity between the numerical and visual
conditions is consistent with reliance on representativeness when the
predictor is represented visually but not when it is represented numeri-
cally (Ganzach, 1993), However, more relevant to the subject of this
paper is that while feedback representation has a strong effect in the
visual conditions, it has no effect in the numerical conditions. This sug-
gests that the influence of predictor representation and feedback repre-
sentation on prediction strategies is not additive. This lack of additivity
may be explained by the fact that in the numerical conditions, the strat-
egies that are used do not depend on feedback representation. For exam-
ple, in these conditions subjects may predict using an arithmetic rule
relating prediction to predictor. Predictions using such a rule are less
likely to be dependent on feedback representation than predictions by
representativeness (e.g., they do not necessarily require the outcome
distribution as an input). Indeed, the fact that subjects extremity in the
numerical conditions do not deviate significantly from the normative ex-
tremity, and are significantly lower than the matching extremity, suggests
that representativeness is not very important here.

That the extremity of prediction in the visual-predictor/deviation-
feedback conditions exceeds not only the normative predictions, but also
far exceeds predictions by matching, suggests that in addition to nonre-
gressiveness, which is generally involved in the process leading to excess
extremity, biased perception of the outcome distribution is involved as
well. As the data indicate, this biased perception can be quite significant.
For example, if one assumes that subjects use a pure matching strategy in
the visual-predictor/sign-deviation-feedback condition, the relationship
between the perceived outcome distribution and the actual outcome dis-
tribution is the same as the relationship between subjects extremity and
the matching extremity, which implies that in the first block of this con-
dition, the perceived distribution is almost three times as large as the
actual distribution.

It should be noted that in past research, extremity-based inferences
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about reliance on representatives were made under the implicit assump-
tion that the outcome distribution is perceived accurately (i.e., extremity
was explained as resulting from nonregressiveness rather than biased
perception of outcome distribution). The notion that reliance on repre-
sentativeness is also associated with extremity resulting from biased per-
ception of the outcome distribution is new to this article. Must the rep-
resentativeness explanation be invoked to explain the results of this
study, or could the results be simply attributed to differences in biased
perception of the outcome distribution? In my view, a biased perception
explanation is insufficient by itself, since an additional assumption about
reliance on a heuristic that utilizes the perceived outcome distribution as
an input (i.e., representativeness) is required. Furthermore, the differ-
ence between the numerical and the visual conditions in regard to ex-
tremity gives strong support to the representativeness explanation, since
this difference is readily explained by the notion that there is more reli-
ance on representativeness when the predictor is represented visually
than when it is represented numerically.

The effect of feedback representation on consistency in the first block
of the visual conditions (higher consistency in the deviation representa-
tion conditions and in particular in the sign deviation) provides some
support for the representativeness explanation of the differences in ex-
tremity in the visual conditions. It could be questioned, however, why the
consistency effect appears only in the first block, while the extremity
effects occur in all four blocks. One reason is probably that the influence
of representativeness on extremity is stronger than its influence on con-
sistency (see Ganzach, in press, for other examples of this differential
influence). However, in the next two experiments, when conditions are
more favorable to obtain an effect for consistency, such an effect is in-
deed observed.

EXPERIMENT 2

One reason for the weak effect of feedback representation on consis-
tency in Experiment 1 may be a lack of motivation. Increased motivation
may lead to more pronounced differences between conditions because it
decreases noise in prediction (see Hogarth, Gibbs, McKenzie, and Mar-
quis, 1991). Furthermore, increased motivation may strengthen between
conditions differences in heuristic use since in a situation in which various
heuristics compete for the determination of prediction output, it is likely
that the higher the motivation the higher the reliance on the dominant
heuristic. (see Zajonc, 1965, for discussion of the relationship between
motivation and the elicitation of dominant response). In this study, there-
fore, I replicate the three critical conditions—the conditions in which the
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predictor is represented visually—in a situation in which there is an in-
creased motivation to produce less noisy predictions.

Method

Subjects. Fifty-eight first year business administration students partic-
ipated in the experiment to fulfill a class requirement. Subjects were
assigned randomly to one of six conditions.

Procedure. The experimental procedure was exactly identical to that of
Experiment 1, except that subjects were told that the three who make the
most accurate predictions would receive monetary rewards of 100, 50,
and 20 New Israeli Shekels (about $50, $25, and $10).

Stimuli. The same stimuli as those of the visual conditions of Experi-
ment 1 were used.

Results and Discussion

Extremity. Extremity was calculated in the same way as in the previous
experiment. The means by condition and block are plotted in Fig. 2 and
standard deviations are given in the legend to Fig. 1 (one subject from the
magnitude deviation condition whose regression slope was negative was
omitted). A 3 (feedback representation) X 4 (block) mixed ANOVA re-
vealed a main effect for feedback representation [F(2,54) = 14.9, p <
.0001], a main effect for block [F(3,162) = 31.5, p < .0001], and a signif-
icant block x feedback interaction [F(6,162) = 5.1, p < .0005]. These
effects parallel the effects found for extremity in Experiment 1.

Consistency. Consistency was calculated in the same way as in the
previous experiment. The means and standard deviations by condition
and block are given in Table 3. A 3 X 4 mixed ANOVA with repeated
measures on the second factor (block) revealed a significant main effect
for feedback representation [F(2,54) = 6.2, p < .004], but no other sig-
nificant effects. The effect of feedback representation on consistency was
significant in each of the four blocks (p < .006, p < .04, p < .03, and p <
.04, respectively. The F values, with 2 and 54 degrees of freedom, are 5.6,
3.4,3.9, and 3.6, respectively). In line with our hypothesis, consistency is
highest in the sign deviation condition and lowest in the standard repre-
sentation condition.® Note, however, that even though an effect of feed-
back representation on consistency is observed in this experiment, it is
again weaker than the effect of feedback representation on extremity.

¢ Although there was no random assignment of subjects in regard to experiments 1 and 2,
it is interesting to compare consistency in these two experiments. This comparison reveals
that subjects were more consistent in Experiment 2 than in Experiment 1, F(1,68) = 4.3, p
< .04. This lends some support to the notion that incentives reduce noise in prediction (see
footnote 3).
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TABLE 3
MEAN CONSISTENCY BY CONDITION AND BLOCK IN EXPERIMENT 2

Magnitude Sign

Block Standard deviation deviation
1 .83 1.05 1.23
(.35) (.32) (.46)
2 .98 1.23 1.32
(.40) (.44) (.43)
3 .93 1.15 1.29
.27 (.51) (.34)
4 .93 1.09 1.29
(.42) (.40) (.34)
Mean .92 1.13 1.28
(.33) (.33) (.32)

Note. Entries are the mean Fisher’s Z transformation of the correlation between predictor
and prediction. Numbers in parentheses are standard deviations.

While this finding is in line with previous research indicating that extrem-
ity may be more sensitive measure of reliance on representativeness than
consistency (Ganzach, 1993), under certain conditions consistency may
be more sensitive. Experiment 3 demonstrates a condition in which the
effect of feedback representation on consistency is stronger than its effect
on extremity.

EXPERIMENT 3

This experiment includes the three ‘“‘critical’’ conditions of Experiment
1—the conditions in which the predictor is represented visually. The ma-
jor change in this experiment is that the scale of the outcome is known to
the subjects in all three conditions, and predictions are allowed only
within the range of this scale. Under this condition, the effect of feedback
representation on extremity is likely to be reduced and even disappear,
because the response scale is limited. However, the effect of feedback
representation on consistency must not necessarily disappear. Such dif-
ference between consistency and extremity when biased perception of the
outcome range is prevented is particularly important, since it supports the
notion that biased perception is not sufficient for explaining the effects of
feedback representation and that reliance on representativeness is in-
volved in producing these effects.

Method

Subjects. Sixty-four first year business administration students partic-
ipated in the experiment to fulfill a class requirement. Subjects were
assigned randomly to one of six conditions.
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TABLE 4
MEAN CoNSISTENCY BY CONDITION AND BLOCK IN EXPERIMENT 3

Magnitude Sign

Block Standard deviation deviation
1 .94 1.15 1.25
(.45) (.41) (.46)
2 .96 1.26 1.36
(.49) (.45) (.49)
3 .92 1.11 1.40
(.38) (.49) (.52)
4 .84 1.11 1.39
(.42) (.51 (.60)
Mean .92 1.16 1.35

(.36) (.41) (.47

Note. Entries are the mean Fisher’s Z transformation of the correlation between predictor
and prediction. Numbers in parentheses are standard deviations.

Procedure. The experimental procedure was identical to that of Exper-
iment 1 except that subjects were instructed that the scale of the outcome
ranges from 470 to 700 (a minimum symmetric range that includes all
outcome values). The range also appeared on the top of the computer
screen in each of the trials. Predictions were limited to this range. If
subjects typed a prediction below or above this range they were informed
that a mistake was made and prompted to type their predictions again.

Stimuli. The same stimuli as those of the visual conditions of Experi-
ments 1 and 2 were used.

Results and Discussion

Extremity. Extremity was calculated in the same way as in the previous
two experiments. A 3 (feedback representation) X 4 (block) mixed
ANOVA revealed neither a main effect for feedback representation
{F(2,59) = 1.0, p > .4], nor an interaction between block and feedback
[F(6,177) = .5, p > .5], but a significant main effect for block [F(3,177) =
8.3, p < .0001],” resulting from decrease in extremity during the course of
the experiment.

Consistency. Consistency was calculated in the same way as in the
previous two experiments. The means and standard deviations by condi-
tion and block are given in Table 4. A 3 X 4 mixed ANOV A with repeated
measures on the second factor (block) revealed a significant main effect
for feedback representation [F(2,59) = 5.6, p < .006], but no other sig-
nificant effects. The significance levels of the effect of feedback repre-

7 Two subjects whose regression slopes were negative, one in the standard representation
condition and one in the sign deviation condition, were omitted from the analyses.
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sentation on consistency in each of the four blocks were p < .09, p < .03,
p < .007, and p < .00S, respectively (F values with 2 and 59 degrees of
freedom are 2.5, 3.8, 5.4, and 5.8, respectively). The pattern of the means
is in line with the hypothesis that there is more reliance on representa-
tiveness in the deviation representation conditions, and in particular in
the sign deviation condition. Interestingly enough, the effect of feedback
representation on consistency appear to be stronger in this experiment
than in the other two experiments. The reason for this is that the limits put
on the response supply subjects with a ‘‘frame of reference’’ for the
outcome scale. This frame of reference facilitates the assessment of out-
come extremity and therefore enhances reliance on representativeness.

GENERAL DISCUSSION

The results of the first study indicate that (under conditions favoring
reliance on representativeness, such as visual representation of the pre-
dictor) predictions are more extreme when feedback is provided in a
deviation form than when it is provided in a standard form. The results of
the second study indicate that when incentives are involved, deviation
representation leads not only to more extreme, but also to more consis-
tent, predictions. These effects were traced to a higher reliance on rep-
resentativeness in the deviation representation conditions than in the
standard representation condition. The results of the third study show
that the effect of feedback representation on extremity, but not its effect
on consistency, disappears when the predictions are limited to the actual
outcome scale. This difference gives further support for the representa-
tiveness explanation over a mere biased perception explanation.

The difference between standard representation and deviation repre-
sentation is of interest because it allows investigation of the processes
underlying prediction in CPL in general and the operation of the repre-
sentativeness heuristic in particular. Reliance on representativeness can
explain some apparently unrelated phenomena associated with the influ-
ence of feedback representation on prediction. First, it explains the find-
ing that “‘less can be more”’ in regard to feedback information provided to
the subjects; less information is available to the subjects in the sign de-
viation condition than either in the magnitude deviation condition or in
the standard feedback condition. Nevertheless, performance in regard to
consistency is superior in the former condition than in the latter two
conditions, since higher reliance on representativeness in this condition
leads to higher consistency (see also Hammond, Summers, & Deane,
1973, for another ‘‘less is more’’ effect associated with feedback repre-
sentation manipulation). Second, it explains the finding that feedback
representation influences extremity when the predictor is represented
visually but not when it is represented numerically: The effect of feedback
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representation stems from reliance on representativeness, which operates
primarily in the visual conditions. Third, it explains the finding that de-
viation representation results in more optimal responses in regard to con-
sistency but in less optimal responses in regard to extremity: representa-
tiveness increases consistency but also leads to overly excessive predic-
tions. And fourth, it explains the finding that, in Experiment 1, feedback
representation affects extremity but not consistency, while in Experiment
3, it affects consistency, but not extremity. Reliance on representative-
ness often affects extremity more than consistency when the outcome
scale is not known (Ganzach, 1993). On the other hand, knowledge of the
outcome scale minimizes differences in extremity, while at the same time
increasing differences in consistency due to the operation of a frame of
reference effect. Note also that the differences between consistency and
extremity observed in the three experiments suggest that variations in
consistency cannot be explained by variations in extremity (i.e,, variation
in prediction range) nor can variations in extremity be explained by vari-
ations in consistency (i.e., variations in prediction noise).

I suggested the possibility that deviation representation will lead to
less, rather than more, extremity in prediction, since subjects may be
more attuned to aspects of feedback that highlight systematic biases en-
tailed in predicting by representativeness. Why did subjects not use these
aspects of the feedback to arrive at moderate predictions in the (visual)
deviation conditions? In my view, the reason is that the process of learn-
ing from experience in a probabilistic environment is primarily deductive,
rather than inductive (Brehmer, 1974, 1980). People use feedback primar-
ily to (1) examine the adequacy of pre-existing heuristics, thereby replac-
ing natural, but less accurate, heuristics with more accurate ones and (2)
determine the parameters (e.g., the width of the outcome distribution) of
these heuristics (e.g., representativeness). However, when the feedback
is ambiguous, as is the case with deviation representation, it tends to be
ignored and, therefore, (1) there is less of a tendency to abandon natural
heuristics in spite of their inaccuracy and (2) the necessary parameters are
determined by contextual details that may be quite irrelevant and inac-
curate.

It is important to note that ambiguity may play various roles in the
process by which people use feedback to develop and improve prediction
strategies. The current results indicate that ambiguity is detrimental for
performance, since subjects adhere to inappropriate ‘‘strong’’ or ‘‘natu-
ral”’ strategies (i.e., representativeness). Sniezek’s (1986) results also in-
dicate that ambiguity decreases performance (e.g., congruent predictors’
labels improved performance versus neutral labels), since it decreases the
probability that the appropriate rule will be chosen by the subject (by
increasing the strength of inappropriate rules). On the other hand, Sawyer
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(1991) found that ambiguity increases performance (subjects better
learned nonlinear prediction strategies when the predictor’s label was
ambiguous rather than unambiguous), most likely since it reduced the
tendency to use natural strategies inappropriate for the task (i.e., linear
strategies). Thus, it appears that the relationship between ambiguity and
performance is rather complex. It may depend on the type of ambiguity
(e.g., ambiguiy in the label or in the feedback) and on the type of rule
people are required to learn. The study of this relationship is an important
issue, since it may facilitate our understanding of learning from experi-
ence in a probabilistic environment.

1 suggest that the process of learning from experience in the deviation
conditions is impeded by the ambiguity of the feedback. But it should also
be emphasized that even in these conditions learning occurs; subjects do
learn to moderate their predictions through the course of the experiment.
However, so far it is not clear what processes lead to this moderation.
One explanation, offered by Sawyer (1991), is the operation of an anchor-
ing and adjustment process, by which people anchor to the initial ‘‘nat-
ural’’ strategy (e.g., use the entire outcome range and match the extrem-
ity of the predictor to the extremity of the outcome) and adjust based on
the data (decrease the outcome range; predict values that are less extreme
than the matching values). An important goal for future research is to find
direct evidence for the operation of this process.
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