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Nonlinearity, Multicollinearity and
the Probability of Type Il Error in
Detecting Interaction

Yoav Ganzach
Tel Aviv University

The paper analyzes the impact of the inclusion of quadratic terms
on the probability of type Il error in testing for interaction in the pres-
ence of multicollinearity. The analysis focuses on two situations: (a)
when the true model includes only linear and interaction terms; and (b)
when the true model includes linear, interaction and quadratic terms.
The implications of this analysis on the estimation of interaction in
multiple regression are discussed.

An interaction between two independent variables is said to occur when the
impact of one independent variable on the dependent variable depends on the
level of another independent variable. When there are two independent variables,
X and Z, and one dependent variable, Y, interaction is usually conceptualized in
terms of the effect of the product XZ on Y after the linear effects of X and Z are
partialled; it is examined by estimating the model:

Y=By+BiX+BZ+B:XZ+¢ @

and by testing whether the value of B is significantly different from zero.

However, examining hypotheses about interaction by estimating model (1)
may lead to increased probability of type I error—the error of accepting the
hypothesis that an interaction exists (rejecting the hypothesis that an interaction
does not exist) when the true model does not include an interaction. Two impor-
tant conditions leading to this error are the presence of both multicollinearity
between the independent variables and curvilinear (and in particular quadratic)
relationships between the independent variables and the dependent variable. That
is, if the “true” model is:

Y=by+b X +byZ+ by X? + byZ? + £ )
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and the researcher mistakenly estimates the model of equation 1, the estimated
interaction may be significant even though there is no true interaction. The reason
for this is that when the correlation between X and Z increases, so does the corre-
lation between XZ and the quadratic terms X? and Z?, which results in an overlap
between the variance explained by XZ and the variance explained by the quadratic
terms. Busemeyer and Jones (1983) present an extensive discussion of such
“spurious” interactions.

Two recent papers have dealt with this issue. Lubinski and Humphreys
(1990) analyzed data pertaining to a widely held interactive theory about the ante-
cedents of mathematical achievement, and showed that this theory was erroneous,
because researchers failed to include quadratic terms in models that examine for
interaction. They suggested that nonlinear monotonic relationships between the
predictors and the dependent variable often lead to type I error in testing for inter-
action effects.

In response to this work, Cortina (1993) argued that many of the significant
interactions reported in the literature may be spurious, suggesting that, when the
independent variables are correlated, quadratic terms should be examined when-
ever an interaction hypothesis is being tested; that is, he suggested that the model
for testing interactions should be:

Y=Py+ B X+ BZ+ BsX? + BuZ% + BsXZ 3)

The work of Lubinski and Humphreys (1990) and Cortina (1993) is certainly
important in pointing out problems associated with type I error in the estimation
of interaction effects. However, not enough attention was paid in these studies to
problems associated with type II error, that is, the error of failing to reject the null
hypothesis with respect to the interaction, when the true model does include an
interaction. The purpose of this paper is to highlight some issues associated with
the antecedents of type II error when interaction is estimated in the presence of
multicollinearity.

The paper is organized as follows. The first section examines the argument
made by Cortina (1993) that entering the quadratic terms into the model prior to
testing for interaction does not reduce the power of detecting interaction (except
for a negligible decrease due to a change in the number of degrees of freedom). The
second section presents the results of a simulation that examines how the probabil-
ity of type Il error depends on the inclusion of quadratic terms when the true model
does not include quadratic terms. The third section demonstrates that, when the
true model does include quadratic terms, type II error can also result from not
including quadratic terms in the regression. Finally, the last section discusses the
implications of the results for the examination of interaction in multiple regression.

The Addition of Quadratic Terms Increases the Probability of Type II
Error When the True Model Does Not Include Quadratic Terms

Cortina (1993) argued that when the true model does not include quadratic
terms, adding these terms to the model when testing interaction hypotheses does
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not decrease the power of detecting interaction, except for a small decrease asso-
ciated with a change in the number of degrees of freedom. Since the power of a
test equals one minus the probability of type II error, this argument suggests that
the probability of type II error is not affected by adding quadratic terms to the
model. In this section, it is shown that when the true model does not include
quadratic terms, there is loss of power—and, therefore, increase in the probability
of type II erro—when the curvillinear terms X2 and Z? are added to the model. To
see why, note that if model (1) is estimated, the effect size of the interaction is
given by:

2 2
R® -R

A= K 2L (N-1) @)
1-R3,

where R; is the variance of the dependent variable explained by the linear terms,
Ry, is the variance explained by the linear and interaction terms, and N is the
number of observations (Cohen, 1988: 457).

If model (3) is estimated, the effect size of the interaction is given by:

2 2
R; ., —R

A o= _£Q1_2L2 (N-3) (5)
1-Ry g

where R; g is the variance of the dependent variable explained by the linear and
quadratic terms, R; o is the variance explained by the linear, quadratic and inter-
action terms, and N 1s the number of observations.

From equations 4 and 5, it can be seen that if the true model does not
include quadratic terms, the effect size of the interaction is larger when
model (1) is estimated than when model (3) is estimated (i.e., A" < A). This
happens because R, < R;g (the quadratic terms “capture” some of the interac-
tion variance), whereas Ryj = Ry (once the interaction is included, there is
no incremental variance associated with the quadratic terms). Finally, since
effect size is directly related to the power of detecting the effect,! and since
type 1I error decreases with increase in power, the probability of type II error
in detecting interaction is higher when quadratic terms are included in the
model.

The Effect of Degree of Multicollinearity, Strength of Interaction, and
Sample Size on the Probability of Type II Error When the
True Model Does Not Include Quadratic Terms

To assess the effect of the degree of multicollinearity and the strength of the
interaction on the probability of type II error, a number of simulations were
performed. The data sets for these simulations were generated by a (true) model
that included only two linear terms and their interaction.
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In all the data sets used in the simulations, the variance explained by the true
model was kept constant at 25%. Three parameters were varied: (a) N, the number
of observations (200 or 500); (b) r,,, the correlation between the predictors (.1, .3,

.5 and .7); and (c) IS, the strength of the interaction (about 2%, 3%, 6% and 8% of
the variance was explained by the interaction). The values of the parameters were
chosen to represent the ranges of values, which are usually found in management
research (see Cortina, 1993 and McClelland & Judd, 1993).

Using the following procedure, 1000 data sets were generated for each of the
32 combinations of the parameters. First, values of X and Z were sampled from a
bivariate standard normal distribution with the required correlation between X and
Z. Second, values for ¥’ were generated using the equation ¥* = X + Z + bXZ,
where b was .3, .5, .7, and .9, corresponding to the four levels of interaction
strength. Finally, Y* was standardized, and a random error, €, sampled from a stan-
dard normal distribution, was added to it, to generate Y, the dependent variable in
the simulation. Y was related to Y” and € by the equation ¥ = 5Y + .866¢, resulting
in X, Z and XZ explaining 25% of the variance of Y. Note that this procedure
resulted in the strength of the interaction being approximately constant within each
value of b; that is, it did not depend on the multicollinearity. Therefore, the effect
of r,, on type II error in the results cannot be attributed to variations in IS.

For each of the 32,000 data sets, interaction was examined by estimating two
models. One model included only the linear and interaction terms (the LI model)
and the other included the linear, interaction, and quadratic terms (the LQI model).
For each combination of parameters, the number of significant (p < .05) interaction
coefficients in the LI model and the number of significant interaction coefficients
in the LQI model were counted. The difference between these two counts indicates
the degree of type Il error which is attributable to the inclusion of quadratic terms.

The results of the simulations are presented in Table 1. It is clear from these
results that, when the true model does not include quadratic terms, adding these
terms to the model increases the probability of type 1I error. For example, when IS
=~ 3% and n = 200, the probability of type II error increases from 23% to 27%
when r,, = .3 and from 27% to 43% when r,, = .5. This increase is even higher
when the r,, = .7. However, for the parameters typically encountered in manage-
ment research, the increase in type II error associated with adding the quadratlc
terms is not large, and as the number of observations rises, it becomes quite mini-
mal. Only when multicollinearity is very high (i.e., above .7), does the addition of
quadratic terms have a substantial impact on the probability of type II error. Thus,
whereas Cortina’s (1993) suggestion that the addition of quadratic terms has little
impact on the power of detecting interaction is appropriate for the conditions most
frequently discussed in management research (the first two rows of Table 1),
when multicollinearity is high, substantial loss of power may occur.

The Addition of Quadratic Terms May Decrease the Probability of
Type II Error When the True Model Does Include Quadratic Terms

The previous sections showed that including quadratic terms in the regres-
sion equation increases the probability of type II error in detecting interaction.
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However, not including these terms may also increase the probability of type II
error with respect to the significance test for the interaction. This happens when
the true model includes quadratic terms, and the signs of the coefficients of the
quadratic terms are opposite to the sign of the product term. That is, if the true
model is given by

Y =bg + byX + byZ + b3X? + byZ? + bsXZ (©6)

and the signs of b3 and b, are different from the sign of bs (for simplicity we
assume that b; and b, have the same sign; otherwise either X or Z can usually be
transformed by multiplying by -1 so that the signs will be the same). In this case,
not including the quadratic terms increases the probability of type II error. The
reason for this is that when the multicollinearity between X and Z increases, so
does the correlation between XZ and the quadratic terms. As a result, the observed
interaction “captures” some of the variance associated with the quadratic terms,
and the true interactive relationship is canceled out by the curvilinear relationships.

As an example, consider the following simulation in which N = 500; X, Z and
€ (an error term) are normally distributed with the same mean and standard devia-
tion; the correlatlon between X and Z is .701; and the true value of Y is given by Y
=X+Z+X*+Z7°-2XZ+8e.In only 4% of 1000 such simulations did the regres-
sion Y = By + BiX + BZ + ByXZ yield a significant coefficient for XZ. Thus,
despite the existence of a true negative interaction, the omission of the quadratic
terms resulted in a non-significant interaction coefficient in the estimated model.

Lubinski and Humphreys (1990) and Cortina (1993) suggest that some of the
interactions reported in the literature may be spurious, since researchers failed to
include quadratic terms in their models when testing hypotheses about interac-
tions in the presence of multicollinearity. However, as the current discussion
shows, the conclusion that the results of tests for interaction in the literature are
biased towards type I error is premature; they may often be biased towards type II
error. Note also that if b; and b, in equation 6 are opposite in sign to bs and their
absolute values are larger than the absolute value of bs, estimating an interaction
model without including the quadratic terms may lead to significant interaction
coefficients whose values are opposite to the value of the true coefficient.
Ganzach (1997) supplies real world examples for such a situation.

Finally, a more informative cost/benefit analysis of the effect of adding
quadratic terms on the estimation of interaction hypotheses when the true model
includes quadratic terms should involve the study of the probability of type I
error, as well as the probability of type II error. However, to evaluate the probabil-
ity of this type I error, information about typical quadratic effects in management
research is required. Since so far researchers have seldom included quadratic
terms in their models, such information is not yet available.

Discussion

The occurrence of type II error in the detection of interaction effects has
received much attention in the literature (Bobko & Russell, 1994; Sackett, Harris,
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& Orr, 1987), and researchers agree that the power of the methods commonly
used to detect these effects is very low (e.g., Cronbach, 1987). A number of
reasons for this have been offered, the most important being the low reliability of
the product term (Dunlap & Kemery, 1988; MacCallum & Marr, 1995) and the
small residual variance of this term when the main effects are controlled (Bobko,
1986; McClelland & Judd, 1993). Note, however, that these issues are relevant to
the detection of interaction in general, and not necessarily to the detection of inter-
action in the presence of multicollinearity, which is the subject of the current
paper. Thus, the problem of type II error, which usually occurs in testing interac-
tion hypotheses, may be compounded in the presence of multicollinearity.

The current paper demonstrates that when multicollinearity exists and the
true model does not include curvilinear trends, adding quadratic terms does
increase the probability of type II error in detecting interaction. On the other hand,
not including quadratic terms may also increase the probability of type II error (as
demonstrated in the previous section), as well as the probability of type I error
(Lubinski & Humphreys, 1990). It is, thus, natural to ask whether quadratic terms
should be added to the regression equation when examining hypotheses about
interaction.

The answer to this question depends on factors such as the cost of type I error
versus the cost of type II error, or prior beliefs about the probability that the true
model includes interaction and/or quadratic terms. Nevertheless, the current simu-
lations indicate that in most of the situations which are encountered by researchers
in management, adding quadratic terms does not result in a considerable increase
in the probability of type II error in detecting interaction if the true model does not
include quadratic terms. Thus, including quadratic terms affords protection
against type I and type II error associated with the estimation of interaction when
the true model includes quadratic terms—for a relatively small increase in the
probability of type II error associated with the case of the true model not including
quadratic terms.

On the premise that theory should serve as the prime guideline in deciding
which terms are to be included in a regression model, it could be argued that when
the theory predicts interaction, but not quadratic, relationships—as is often the
case in applied psychology—quadratic terms should not be included in the equa-
tion (Shepperd, 1991). However, in my view, two basic considerations, which are
unrelated to any specific interaction theory being tested, suggest that quadratic
terms should be introduced into the model, even if the theory being tested is about
interaction. First, psychological theories are usually associated with a condition-
ally monotone, rather than a conditionally linear, relationship between indepen-
dent and dependent variables. Thus, a model that includes quadratic terms is
usually a better representation of underlying theories than one that includes only
linear terms. Second, psychological measurements are usually associated with a
monotone, rather than linear, relationship between the true score of the variable
and the measure of this variable (e.g., Krantz & Tversky, 1971), which may result
in significant quadratic terms in a regression even if the true relationships among
underlying constructs are linear (Busemeyer & Jones, 1983).
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Notes

1. The relationship between effect size and power depends only on the sample size and the significance criterion,
which are equal in the two models.
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