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Abstract—

 

Despite our intuition that representative expert judgments
are highly nonlinear, previous studies have shown only little, if any,
nonlinearity in such judgments. The current study presents a method
for assessing nonlinearity in judgment that is based on estimating
communal nonlinearity—the systematic nonlinearity shared by the
community of judges. The article also examines the predictive accu-
racy of communal nonlinearity, and compares it with the correspond-

 

ing linear accuracy.

 

A considerable portion of the decision-making literature has been
devoted to empirical research examining nonlinearity in multiattribute
judgment. The results of this research have been mixed. On the one
hand, studies based on nonrepresentative, orthogonal stimuli, con-
ducted within Anderson’s (1981) information-integration paradigm,
and using primarily nonexpert participants have documented strong
nonlinearity in judgment (e.g., Birnbaum, Coffey, Mellers, & Weiss,
1992; Meyer, 1987; Weber, 1994). On the other hand, studies based on
nonorthogonal, representative stimuli, conducted within the regression
paradigm (Slovic & Lichtenstein, 1971), and using primarily expert
participants have documented little, if any, nonlinearity in judgment
(e.g., Billing & Marcus, 1983; Brannick & Brannick, 1989; Goldberg,
1971; Wiggins & Hoffman, 1968; see Brehmer & Brehmer, 1988, for
a review). These latter findings are surprising because both process-
tracing studies (e.g., E.J. Johnson, 1988; P.E. Johnson, Hassebrock,
Duran, & Moller, 1982) and people’s intuition about their judgments
(e.g., Meehl, 1954) suggest that judgments are highly nonlinear.

More recently, however, I showed (Ganzach, 1995) that some ver-
sions of a nonlinear regression model labeled the scatter model, which
takes into account the internal variation of attribute values (i.e., the de-
gree of inconsistency between the profile’s attributes), do succeed in
explaining more variance in judgment than a simple linear model (see
also Brannick & Brannick, 1989; Ganzach & Czaczkes, 1995). Never-
theless, the additional variance explained by the scatter model was not
large. The best version of this model provided an incremental variance
(

 

�

 

R

 

2

 

) of about .03 over the linear model, which amounted to an in-
crease of only 5% of the explained variance. Thus, although this work
demonstrates a significant nonlinear element in judgment, this element
is rather small.

Why was the additional fit of regression models that attempted to
take into account nonlinearity in judgment so small and hard to de-
tect? There are three possible answers to this question. One is that
there is indeed little nonlinearity in human judgment—that despite our
intuition that judgments are often highly configural, in reality the pro-
cesses underlying judgment are linear. Another explanation is the ro-
bustness of the linear model—the fact that linear models provide good
fit to the data even if the “true” model is highly nonlinear (Dawes &

Corrigan, 1974). Finally, a third explanation is that so far, all the mod-
els that have attempted to examine nonlinearity in judgment have re-
quired the specification of the nonlinear process underlying judgment;
that is, the researcher has had to represent the nonlinear processes as a
function of the attribute values. If this specification was inaccurate, the
nonlinear variance could not be large.

The current study takes a new approach to modeling nonlinearity
in judgment. This approach relies on the residuals from a linear model
of the judgment of a reference group to specify nonlinearity in the
judgment of other judges. If the nonlinear strategies of these judges
are similar to the nonlinear strategies of the reference group, a repre-
sentation of the nonlinear processes in their judgment could be ob-
tained without specifying these processes.

 

NONLINEAR COMMUNALITY

 

In judgment modeling, a judgment of a multiattribute profile is of-
ten expressed as the sum of a linear combination of the attributes’ val-
ues and a residual. The residual can be divided into two major parts,
one representing nonlinear rules underlying the judgment and the
other representing error. The nonlinear part can further be divided into
two portions, one representing 

 

communal nonlinearity

 

—systematic
nonlinearity shared by the community of judges—and the other repre-
senting 

 

idiosyncratic nonlinearity

 

—nonlinearity specific to the indi-
vidual judge. Note that as defined here communal nonlinearity is
profile-specific, but not judge-specific, whereas idiosyncratic nonlin-
earity is both profile- and judge-specific. A formal definition of these
concepts appears in the appendix.

It is clear how the attribute values of each profile could be used
in modeling the judgments of each of the judges. However, it is less
clear how communal nonlinearity could be used as well. Therefore,
the assessment of this communal nonlinearity, and its use in judgment
modeling, is at the center of the modeling approach suggested in this
article.

In principle, the communal nonlinearity of a profile can be as-
sessed by averaging the judgment residuals (from a linear model of the
judgment) of a group of judges. This averaging “cancels out” the error
component as well as the idiosyncratic nonlinearity component, and
provides a good estimate of the nonlinearity that is common to the
population of judges. However, to use communal nonlinearity in mod-
eling multiattribute judgments, it is necessary to know, a priori, its
value for each of the multiattribute profiles. Therefore, in modeling
the judgment of judge 

 

j

 

, the appropriate estimate for the communal
nonlinearity of a profile is obtained by averaging the judgment residu-
als (from the linear model of the attributes) of this profile across all
other judges. That is, although in principle underlying communal non-
linearity is not judge-specific, and is only profile-specific, for each
judge I compute a slightly different communal nonlinearity that can be
labeled the “average residual of the other judges,” and this value is not
only profile-specific, but also judge-specific. A formal definition of
this variable appears in the appendix.
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In sum, although in principle communal nonlinearity is a function
of the attribute values (it may involve curvilinear, interactive, or any
other nonlinear use of attributes), my measure of communal nonlin-
earity allows for its estimation without specifying this function. As a
result, this measure can provide a good method for estimating nonlin-
earity in judgment by circumventing the need to specify the functional
form of this nonlinearity.

 

NONLINEAR COMMUNALITY AND
NONLINEAR ACCURACY

 

Communal nonlinearity is associated not only with the average
judgment residual of a group of judges, but also with the residual of
the (linear) model of the 

 

composite judge

 

—a “judge” whose judg-
ments are the average of the judgments of all judges. The average
judgment residual of a group of judges and the residual of the compos-
ite judge are exactly equal.

In this section, I discuss the predictive accuracy of judgments—the
extent to which a judgment predicts the criterion. Because it is more
convenient to analyze the relationship between communal nonlinear-
ity and the predictive accuracy of judgment in terms of the residual of
the composite judge than in terms of the average judgment residual of
the judges, I develop the discussion of nonlinear accuracy in terms of
the former rather than the latter.

A number of studies have shown that nonlinear elements of judg-
ment may have predictive accuracy (Einhorn, 1974; Ganzach, 1998;
Goldberg, 1970). That is, they have shown that the correlation be-
tween the criterion and the residual of the linear model of a judgment
is significantly different from zero. However, all these studies concen-
trated on the nonlinear accuracy of the individual judges, and none ex-
amined whether aggregating over judges improves nonlinear accuracy.
That is, none of them examined the nonlinear accuracy of the compos-
ite judge (i.e., the nonlinear accuracy of communal nonlinearity). The
preceding analysis suggests that if the nonlinear rules shared by the
judges have ecological validity, communal nonlinearity is the part of
the residual that underlies nonlinear accuracy, because it is communal
nonlinearity that captures the systematic nonlinear rules used by the
judges. In other words, this line of reasoning suggests that if the source of
individual nonlinear accuracy is the nonlinear rules an individual judge
shares with the community of judges (rather than his or her idiosyncratic
nonlinearity), then the nonlinear accuracy of the composite judge will be
higher than the nonlinear accuracy of most of the individual judges.

Within this context, it is interesting to compare the composite
judge with the individual judges in terms of two types of predictive ac-
curacy: (a) linear accuracy, the predictive accuracy of the modeled
part of the judgment, the part that can be modeled by a linear model;
and (b) residual accuracy, the predictive accuracy of the residual part
of the judgment. (Formal definitions of linear accuracy and residual
accuracy appear in the appendix.) This comparison is interesting be-
cause in his seminal work, Goldberg (1970) showed that the linear ac-
curacy of the composite judge is about the average linear accuracy of
the individual judges. However, the preceding discussion suggests that
the residual accuracy of the composite judge is superior to the residual
accuracy of the individual judges.

 

METHOD

 

Much of the research aimed at studying nonlinearity in judgment
has been based on data collected by Meehl in the 1950s (Meehl, 1959).

 

These data included judgments of 861 patients on the basis of their pro-
files (i.e., scores on eight clinical scales and three validity scales) on the
Minnesota Multiphasic Personality Inventory (MMPI). The judgments
were made on an 11-step forced normal distribution ranging from 

 

least
psychotic

 

 (1) to 

 

most psychotic

 

 (11). They were obtained from 13 clini-
cal psychologists and 16 clinical psychology trainees.

The data also included the criterion for each patient—the diagnosis
given to the patient in the clinic in which he or she received treatment.
Forty-seven percent of the patients were diagnosed as psychotics, and
53% were diagnosed as neurotics. Each patient’s diagnosis was based
primarily on information about the patient’s past and present behavior,
which was collected by the clinic’s staff.

 

RESULTS

Communal Nonlinearity as a Predictor of
Individuals’ Judgments

 

For each judge (e.g., Judge 1) and each profile, I calculated the av-
erage residual of the other judges (e.g., the average residual of Judges
2–29). Subsequently, for each judge, I used this average residual as an
additional variable, along with each of the 11 MMPI scales, to predict
the responses of that judge. Column 2 of Table 1 presents, for each of
the 29 judges, the cross-validated multiple correlation (CVMC) of this
model, whereas column 3 presents the CVMC of the linear model.
These correlations were calculated by splitting the 861 profiles into
two sets through an odd-even split, calculating the CMVC of each of
the sets, and averaging the two correlations.

 

1

 

It is clear that the CVMC of the model that includes communal
nonlinearity far exceeds the CVMC of the linear model. Whereas the
average CVMC of the linear model is .76 (

 

SD

 

 

 

�

 

 0.06), the average
CVMC of the model that includes communal nonlinearity is .84 (

 

SD

 

 

 

�

 

0.06). The difference is highly significant, 

 

t

 

(28) 

 

�

 

 16.6, 

 

p

 

 

 

�

 

 .0001. It
is clear from these data that the judgment variance explained by com-
munal nonlinearity is not at all trivial; it amounts to 22% of the linear
variance.

Column 4 in Table 1 presents the CVMC of the multiple scatter
model—the “best” nonlinear model that was applied to Meehl’s
(1959) data (as well as to other sets of data; see Ganzach & Czaczkes,
1995). The data in this column suggest that the nonlinear variance ex-
plained by the scatter model is small compared with the nonlinear
variance explained by communal nonlinearity.

 

On the Sources of Communal Nonlinearity

 

Goldberg (1971) suggested that the nonlinearity in Meehl’s (1959)
data arises from specific configural rules that were popular in MMPI-
based clinical judgments at the time Meehl’s experiment was con-
ducted, and in particular the high-point rules, the number of clinical
scales on which the patient scores below 45, and the variance of the
Paranoia, Psychasthenia, and Schizophrenia scales (see Goldberg,
1965, for a quantitative specification of these rules). However, an al-

 

1. Note that a computationally simpler method for obtaining the CVMC
associated with adding communal nonlinearity is to calculate, for each judge
(e.g., Judge 1), the mean judgment of the other judges (e.g., Judges 2–29) and
use it in addition to the 11 MMPI scales to predict the responses of that judge
(i.e., Judge 1).
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ternative explanation is that nonlinearity in judgment often arises from
a general configural confirmatory strategy, and in particular a value-
dependent weighing strategy (Ganzach, 2000, Fig. 1). Within the con-
text of Meehl’s experiment, this strategy implies that in integrating the
neurotic (psychotic) scales to arrive at an overall evaluation of the neurotic
(psychotic) tendency of the patient, the judges gave the most neurotic
(psychotic) information relatively high weight (see Ganzach, 1998, for a
quantitative specification of this strategy).

To examine the nature of the nonlinearity detected by my model, I re-
gressed communal nonlinearity on the main sources of nonlinearity sug-
gested by these two alternative explanations. The results of this regression
are given in Table 2. It is clear from these results that the nonlinearity in
Meehl’s (1959) data is associated both with specific configural rules and
with general confirmatory configural strategies, and in particular with the
configural integration of the psychotic information.

Finally, note that the overall fit of the model presented in Table 2,
although highly significant (

 

p

 

 

 

�

 

 .001), was not large (

 

R

 

2

 

 

 

�

 

 .19). Al-

though Goldberg (1971) and I (Ganzach, 2000) suggested some addi-
tional, less important sources for nonlinearity, the omission of these
sources from the model does not explain its moderate fit, as the addi-
tional fit of these sources is small. Rather, in my view, the reason for
the moderate fit is the inherent difficulty of identifying and quantify-
ing the numerous complex nonlinear rules and strategies that are often
used in clinical judgment.

 

Nonlinear Communality and Nonlinear Accuracy

 

Column 5 of Table 1 presents the correlation between the residual
part of the judgment and the criterion. These correlations are nearly all
lower than .12, the corresponding correlation of the composite judge,

 

t

 

(28) 

 

�

 

 9.1, 

 

p

 

 

 

�

 

 .0001, for the null hypothesis that the correlation of
the composite judge equals the average correlation of the individual
judges. In fact, the correlation of the composite judge is higher than
the correlations of all but one of the individual judges. For compari-

 

Table 1.

 

Model fit and accuracies of individual judges

 

Judge

Model fit Predictive accuracy

Linear 

 

� 

 

communal
nonlinearity Linear Scatter Nonlinear Linear

1 .78 .69 .73 .11 .36
2 .87 .82 .84 .01 .35
3 .81 .71 .73 .08 .34
4 .76 .70 .73 .05 .39
5 .88 .76 .79 .12 .33
6 .86 .79 .84 .10 .34
7 .83 .73 .79 .13 .36
8 .87 .80 .81 .00 .32
9 .87 .81 .84 .06 .24

10 .81 .71 .73 .08 .17
11 .88 .84 .84 .07 .21
12 .85 .75 .77 .07 .33
13 .81 .72 .73 .05 .31
14 .60 .55 .57 .05 .20
15 .89 .82 .84 .08 .41
16 .91 .83 .86 .07 .32
17 .79 .73 .74 .06 .43
18 .90 .84 .86 .09 .39
19 .85 .77 .81 .07 .30
20 .85 .76 .76 .08 .24
21 .88 .84 .84 .01 .16
22 .87 .79 .82 .09 .25
23 .79 .73 .74 .05 .36
24 .79 .68 .71 .06 .38
25 .88 .83 .84 .02 .24
26 .83 .76 .77 .05 .37
27 .78 .72 .72 .08 .22
28 .89 .80 .82 .09 .38
29 .85 .77 .86 .08 .32

Average .84 .76 .78 .07 .31
Composite — .89 .92 .12 .33

 

Note.

 

 Correlations higher than .07 are significant, 

 

p 

 

� 

 

.05. The model fit of linear 

 

�

 

 communal 
nonlinearity cannot be calculated for the composite judge because it is estimated by the average residual 
of the other judges, which is a judge-specific parameter.
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son, column 6 presents the correlation between the predicted part of
the judgment and the criterion. In this case, the correlation of the com-
posite judge—.33—is about the average correlation of the individual
judges, 

 

t

 

(28) 

 

�

 

 0.07, 

 

p

 

 

 

�

 

 .9. It is higher than the correlation of 14 of
the judges and lower than the correlation of 13 of the judges.

 

DISCUSSION

 

The current study demonstrates larger nonlinearity than has been
previously detected in real-world, representative judgments in general,
and in Meehl’s (1959) data in particular. Thus, it is clear from these
findings that representative judgments can be highly nonlinear. The
fact that little nonlinearity was found in previous research may be the
result of inadequate methods, and not necessarily the result of any lin-
ear characteristics of the judgment process.

However, it is important to note that the present method for esti-
mating nonlinearity in judgment does not constitute a model of this
nonlinearity in the sense that it does not express nonlinearity in terms
of the attributes of the judged object. Therefore, one limitation of the
method is that it does not provide information about the nature of the
nonlinearity. Another limitation is that it does not allow predictions re-
garding the judgment of objects not included in the original set of ob-
jects used to elicit the judgments. Thus, communal nonlinearity cannot
be used in expert systems that are based on regression models of judg-
ments, because such systems rely on the information obtained from
the judgments of one set of objects to make predictions regarding the
entire universe of objects.

However, examination of communal nonlinearity is worthwhile in
developing regression-based expert systems, because it provides the
developer with an idea about the adequacy of the systems. If communal
nonlinearity explains a nontrivial part of the variance in judgments,
systems that are based on linear models are inadequate if the criterion
for adequacy is maximization of explained variance. On the other
hand, if the judgment variance explained by communal nonlinearity is
small, linear systems are adequate.

Finally, examination of communal nonlinearity is worthwhile when
trying to understand judgment processes. First, it can provide re-
searchers with an idea about the importance of nonlinear strategies
when studying clinical judgment. Second, when some nonlinear rules
are known, modeling nonlinear communality as a function of these
rules can provide researchers with information regarding the relative
importance of these rules in the nonlinear portion of judgments.
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Table 2.

 

The sources of communal nonlinearity

 

Source of nonlinearity

 

�

 

Partial 

 

r

 

High-Point Rule 1 .11

 

*

 

.10
High-Point Rule 2 .01 .01
Number of clinical scales on which the patient scores below 45 .23

 

***

 

.23
Variance of Paranoia, Psychasthenia, and Schizophrenia scales .07

 

*

 

.07
Configural integration of neurotic information

 

�

 

.12

 

**

 

�

 

.11
Configural integration of psychotic information .30

 

***

 

.26

 

Note.

 

 

 

N

 

 

 

�

 

 861. 

 

R

 

2

 

 �

 

 .19.
*

 

p

 

 

 

�

 

 .05. **

 

p

 

 

 

�

 

 .001. ***

 

p

 

 

 

�

 

 .0001.
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APPENDIX

Formal Definitions of Communal and 
Idiosyncratic Nonlinearity

 

Consider a situation in which 

 

J

 

 judges make 

 

L

 

 ratings regarding each of 

 

N

 

multiattribute profiles, each profile consisting of 

 

K

 

 attributes. Let 

 

j,

 

 

 

i

 

, and 

 

l

 

 be
the indices of the judge, profile, and replicate rating, respectively, and let 

 

k

 

 be

 

the index of the attribute. Thus, 

 

y

 

ijl

 

 is the 

 

l

 

th rating of the 

 

i

 

th profile of the 

 

j

 

th
judge, and 

 

V

 

ik

 

 is the measurement of the 

 

k

 

th attribute in the 

 

i

 

th profile.
Now consider the following nonlinear regression of 

 

y

 

ijl

 

 on the K cues:

where the regression function is given by

(El[	]) denotes the expectation of the bracketed quantity, taken over the sub-
script l, λij is the linear regression of judgments on attribute values, for the jth
judge’s ratings of the ith individual, 
i is the communal (across-judge) nonlin-
earity, �ij is the idiosyncratic (judge-specific) nonlinearity, and ∈ijl is the ran-
dom, residual error.

Formally, we define

yijl λij θi δij ∈ijl+ ,+ +=

Ε l yijl V ik( )[ ] λij θi δij .+ +=

λij

def
αj βjkVik

k 1=

K

∑+≡ ,

θi

def
Ej El yijl   λij–[ ] ,≡

and

where �j is the linear regression intercept for the jth judge, and �ij is the linear
regression slope for the jth judge and the ith subject, for predicting the judg-
ments from the attribute values.

Formal Definition of the Average Residual of the 
Other Judges

The estimate of communal nonlinearity, labeled “average residual of the
other judges,” is slightly different for each judge. It is given by

where M [	] is the mean of the bracketed quantities over the subscript, and 
is the ordinary least squares estimator of  calculated for a model that omits

 and .
When the data do not include replicates (as is the case in the present data),

this estimate is give by

Formal Definitions of Linear and Residual Accuracy

For simplicity, I present the definition of linear accuracy and residual accu-
racy for the case in which there are no replicates. In this case, the prediction of
judge j regarding profile i could be expressed as yij � ij � �ij, where ij is as
defined earlier and �ij is the residual from the linear model (note that in terms
of the earlier notations, �ij � 
i � �i � ∈ij). If �i is the value of the criterion as-
sociated with profile i, then the linear accuracy of judge j is the correlation be-
tween �i and ij, and the residual accuracy of judge j is the correlation between
�i and �ij.

δij

def
E yijl   λij–   θi–[ ]≡ ,

∈ijl

def
yijl El yijl ][–≡

yijl λij θi δij ,–––=

θ̂ij ′ M j# j ′Ml yijl   λ̂ij–[ ]= ,

λ̂ij

λij

θi δij

θ̂ij ′ Mj# j ′ yij   λ̂ij–[ ]= .


