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Nonlinear Models of Clinical Judgment: Meehl’s Data Revisited

Yoav Ganzach
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Previous attempts to detect nonlinearity in clinical judgments have not succeeded because of a lack
of good nonlinear models. Much research in this area was based on data collected by Paul Meehl,
which include clinicians’ judgments of mental disorder on the basis of Minnesota Multiphasic Per-
sonality Inventory profiles. In this article, Meehl’s data are reanalyzed using several versions of the
scatter model in which nonlinearity is represented by the within profile scatter(s) of the cues. The
author finds that these versions give a better fit to the data than the linear model. He also finds
systematic patterns of nonlinearity that lend themselves to psychological interpretation.

Are clinical judgments nonlinear? That is, are the rules gov-
erning these judgments different from rules in which judgment
is a linear combination of cue values? Although both process
tracing studies (e.g., E. J. Johnson, 1988; P. E. Johnson, Hasse-
brock, Duran, & Moller, 1982) and clinician intuition about
their judgments (e.g., Meehl, 1954) suggest that clinical judg-
ments are nonlinear, statistical analyses of these judgments (see
Hoffman, 1960, for a pioneering treatment of such analyses; see
Brehmer & Brehmer, 1988, for a recent review) and, in partic-
ular analyses of judgments that are representative of the envi-
ronment, have generally not found such nonlinearity (Slovic &
Lichtenstein, 1971). Linear regression models usually give at
least as good a fit to clinical judgment as nonlinear regression
models which are designed to capture the nonlinearity in the
judgment process.

The fact that linear models give a good fit to clinical judg-
ments does not mean, of course, that the judgment process is
linear. It is well known that linear models give a good fit to judg-
ment even if the underlying process is highly nonlinear (e.g.,
Dawes & Corrigan, 1974). However, the lack of regression
models that are capable of capturing nonlinearity in the judg-
ment process is troublesome because it makes the study of clin-
ical judgment all the more difficult.!

Two of the most well-known studies that led to the pessimistic
view about the ability to model nonlinearity in clinical judg-
ment were based on data collected by Paul Meehl in the 1950s.
These data included evaluations of 861 patients, diagnosed as
either neurotic or psychotic on the basis of their Minnesota
Multiphasic Personality Inventory (MMPI; Meehl, 1959) pro-
files—their scores on eight clinical scales and three validity
scales of the MMPI. The evaluations were made on an 11-step
forced normal distribution from least psychotic (1) to most
psychotic (11). They were obtained from 13 clinical psycholo-
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gists and 16 clinical psychology trainees (see Meehl, 1959, for a
detailed description of the data).

In one of these two studies, Wiggins and Hoffman (1968) ex-
amined the fit of two nonlinear models: the quadratic model,
which included, in addition to the linear components, 66 terms
composed of the squares and products of the cues; and the sign
model, which included, in addition to the linear components,
59 signs (nonlinear combinations of scales). The authors’ find-
ings did not show any consistent differences between the linear
model and the nonlinear models. In the second study, Goldberg
(1971) examined four nonlinear models, including Einhorn’s
(1970) hyperbolic and parabolic models, and found that, for 26
out of the 29 judges, the linear model gave the best fit for the
data.? ‘

That this previous work did not detect consistent reliance on
nonlinear strategies is particularly troubling because there are
indications that nonlinear elements do exist in the clinicians’
Judgments. For example, Goldberg (1971 ) reported that a num-
ber of nonlinear signs had a significant correlation with the re-
siduals (from a linear model) of the judgments. The problem is
that these indications for nonlinearity do not constitute a mean-
ingful and generalizable pattern that allow for the development
of a general model for nonlinearity in clinical judgment.

One reason for the previous failures in modeling nonlinearity
in Meeh!’s data is the models’ lack of statistical power (see Gan-
zach & Czaczkes, in press, for further discussion of this issue).
The lack of statistical power is especially problematic because,
as is typical for representative data, the cues of MMPI profiles
are highly correlated (high-intercue correlations decrease the
difference between the fit of various alternative models). An-
other reason for these failures may be an incorrect specification
of the nonlinear processes underlying judgment. Thus, for ex-

! Note that models other than regression models were also used in
studying nonlinearity. In particular, many computer models represent
judgment and decision as nonlinear process (e.g., Ben-David & Mandel,
in press; Kleinmuntz, 1963).

2 In addition to studies that attempted to examine for nonlinearity in
judgment, there were a number of studies that attempted to examine
for nonlinearity in the criterion (e.g., Meehl, 1959; Meehl & Dahlstrom,
1960). The focus of the current article is, however, solely on nonlinear-
ity in judgment,
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ample, the nonlinear process in Wiggins and Hoffman’s (1968)
guadratic model presupposes nonlinear relationships between
all pairs of the MMPI scales, which is highly unlikely given peo-
ple’s limited processing capacities.

Although the modeling of nonlinearity in clinical judgments
that are based on representative stimuli was rather disappoint-
ing, there was somewhat more success in the modeling of judg-
ments elicited in laboratory settings and based on “artificial”
stimuli {e.g., stimuli in which cues are orthogonal or even neg-
atively correlated). Early examples are Einhorn (1971, 1972);
Einhorn, Komorita, and Rosen (1972); and Wright (1974).
These studies used Einhorn’s hyperbolic and parabolic models.
In later studies, Brannick and Brannick (1989) and Ganzach
(1993, 1994b) used a new model labeled the scatzer model to
detect nonlinearity in judgment. Recently, Ganzach and Czac-
zkes (in press) showed that this model outperformed Einhorn’s
models in a number of data sets obtained from laboratory ex-
periments. Because the detection of nonlinearity in Meehl’s
data appears to be the benchmark for any model aimed at de-
tecting nonlinearity in representative judgment in general, and
in clinical judgment in particular, this article shows results con-
cerning the ability of the scatter model to detect nonlinearity in
Meehl’s data. In addition, the article develops this model be-
yond the simple version that was used in Brannick and Bran-
nick’s and Ganzach’s studies by introducing versions of this
model that better capture nonlinearity in nonorthogonal, real-
life stimuli.

Disjunctive Strategy, Conjunctive Strategy, and Scatter

Two important types of nonlinear strategies are the disjunc-
tive strategy and the conjunctive strategy (e.g., Dawes, 1964). In
these strategies, the impact of a cue depends on its rank relative
to the other cues. In the disjunctive strategy, judgment is based
primarily on the higher cue(s). In the conjunctive strategy,
judgment is based primarily on the lower cue(s).? Note that
high-low cues do not necessarily reflect a value judgment (i.e.,
they do not mean favorable or unfavorable) but are defined vis-
a-vis the judgment. The convention used in this article, which
is implicitly implied in previous articles (e.g., Einhorn, 1971;
Goldberg, 1965, 1971; Ogilvie & Schmitt, 1979), is that cue
values are scaled to have a positive correlation with judgments.*

Disjunctive and conjunctive strategies are associated with the
scatter, or gap, between cue values. To illustrate, consider the
evaluation of the severity of the disorder of two mental patients
on the basis of two equally important test scores. The two pa-
tients have the same mean score, but whereas one has two mod-
erate scores, the other has one high score (a score indicative of
severe disorder) and one low score. If decisions follow a linear
compensatory strategy, the evaluations of the two patients
would be about the same. If decisions follow a disjunctive strat-
egy, the candidate with the higher scatter receives a higher (more
severe ) evaluation. If decisions follow a conjunctive strategy, the
candidate with the higher scatter receives a lower evaluation.’

The Simple Version of the Scatter Model

The simple version of the scatter model represents judgment
by two elements: (a) the elevation of each profile, which is a

weighted average of the cue values; and (b) the internal scatter
of the profile, defined by the variability of the (standardized)
cue values around the profile’s mean (see Cronbach & Gleser,
1953, for an early treatment of the concepts of elevation and
scatter). The influence of the profile’s scatter on judgment is
indicative of reliance on disjunctive or conjunctive rules. If a
disjunctive rule is used, scatter is positively related to judgment;
whereas if a conjunctive rule is used, it is negatively related to
judgment.
Mathematically, the scatter model is expressed as

Y =+ 2 8:X; +88XT, (1

i=t

where Y is the judgment, the X;s are the cues, and SXT is the
scatter, defined as

3 Note that this description of disjunctive (conjunctive) strategies
need not be viewed as a description of the process of the judgment. It
can also be viewed as a description of the outcome of the judgment. For
example, consider a case in which the stimulus scale is nonlinear, so at
low (high) values of the cues, small changes in cue value have a large
(small) impact on judgments. In this case, a linear integration process
would lead to conjunctive relationships between cues and judgment.
Similarly, if at high (low) values of the cues, small changes in cue value
have a large (small) impact on judgments, a linear integration process
would lead to a disjunctive relationships between cues and judgment
(Einhom) 1970).

4 These representations of conjunctive and disjunctive rules do not
use the concepts of logical inclusive or and logical and, which are com-
monly used in defining disjunctive and conjunctive choice strategies.
These concepts are somewhat problematic in the context of judgment
because they imply that in a conjunctive (disjunctive) strategy, increase
(decrease) in cue value above (below) a certain cutoff value does not
influence judgment at all. The description of conjunctive and disjunc-
tive strategies allows for changes in cue values to influence judgment
across the entire range of possible values, although still retaining the
essence of what is meant by conjunction (disjunction ) in choice because
it suggests that the cues with low (high) values play a major role in
the decision. In choice, this is due to the existence of a cutoff value; in
judgment, it is due to the dominance of the cue(s) with the lowest
(highest) value(s).

For a more formal treatment, consider the two attribute cases. Ac-
cording to the definitions of disjunctive and conjunctive strategy, the
relationship between judgment (YY) and cues ( X, and X;) could be rep-
resented, respectively, as Y = a + 8, X; + 8,X; + fzmax(X,, X,) and
Y = a + 8;X, + 8,X, + 8smin(X,, X,), where Y is the judgment
and X, and X, are the attributes’ values. (As a matter of fact, only one
equation is necessary to represent both strategies, e.g., the first equation
represents a disjunctive strategy if 8; > 0 and a conjunctive strategy if 85
< 0.) The similarity between the description of disjunctive~conjunctive
judgment strategies and the standard definition disjunctive-conjunctive
choice strategies becomes apparent by setting 8, = 8, = 0.

3 Note that in the two cue cases the relationship between disjunctive—
conjunctive strategies and scatter is evident because the two equations
of Footnote 4 can also be writtenas Y = a + 3,X, + 8,X; + 8;:ABS(X,
— X,), where 8; is positive for a disjunctive strategy and negative for a
conjunctive strategy. [ See Ganzach & Czaczkes, in press, for a proof.
Nate that in the two cue cases ABS(X,; — X, ) is the scatter and that this
expression of scatter is related to the way scatter is expressed in
Equations 1, 3, and 5 by a multiplicative constant.]
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m
[2(X: —X)?'72,
i-1
where X is the mean X; within each profile,

X= éxi/n.

=

The X;;s are standardized and scaled so that higher values of X;
imply higher Y.

The last term of the equation is a measure of the profile scat-
ter. The value of §, the scatter coefficient, is indicative of whether
conjunctive or disjunctive rules are used. A positive value of &
is indicative of a disjunctive rule, whereas a negative value is
indicative of a conjunctive rule. Note that standardization of
the cues is necessary so that the value of the scatter does not
depend on the scales of the cues. The previous discussion also
suggests that to obtain a meaningful scatter term, all cues must
be linearly rescaled, if necessary, so their correlations with the
judgment would have the same sign.

The simple version of the scatter model was previously used
by Brannick and Brannick (1989) to examine conjunction in
judgment and by Ganzach (1993, 1994b) to analyze both dis-
junction and conjunction. It has two advantages over earlier
methods of estimating disjunctive and conjunctive strategies
(i.e., examination of Einhorn’s, 1970, hyperbolic and parabolic
models against the linear model). First, it treats judgment strat-
egies as located on a continuum, ranging from conjunctive
through linear to disjunctive. This facilitates aggregation of in-
dividual strategies for the purpose of examining hypotheses
about groups by calculating the average 6 (computed for each
judge individually) over judges. Second, this model produces
a better fit than Einhorn’s (1970) models when strategies are
“purely” disjunctive or conjunctive (see Brannick & Brannick,
1989; Ganzach & Czaczkes, 1995).

The Multiple-Scatter Version

The simple version of the scatter model does not take into
account the structure of the cue information and, in particular,
the dimensional structure of this information. No knowledge
about the nature of the judgment task is needed to examine
for nonlinearity; a simple cookbook approach is used in which
scatter information is aggregated and represented by a single,
general scatter term.

However, when cues are (perceived to be) organized in di-
mensions, the nonlinear impact of a cue belonging to a certain
dimension may be determined more by its position relative to
cues belonging to this dimension than by its position relative to
cues belonging to other dimensions. Thus, nonlinearity may be
associated more with intradimension scatters than with a gen-
eral scatter. In addition, nonlinearity may also be associated
with interdimension scatter, which represents the scatter be-
tween the dimensions. For example, Ganzach (1994a) studied
ability judgments based on two dimensions (motivation and
intelligence ), each characterized by two scores, and showed that
the nonlinear intradimension relationships (the gap between
the scores) were different from the nonlinear interdimension
relationships. These results suggest that the study of nonlinear-

ity may be improved by incorporating information about cue
dimensionality.

The version of the scatter model that takes into account the
impact of the dimension structure on nonlinearity is labeled the
multiple-scatter version. This version is expressed as

m n
Y=a+ 2 8:X;+ 2 v,SF; + 6SFT, (2)
i=1 i=1
where m is the number of cues, » is the number of dimensions,
SF; is the intradimension scatter of dimension j, and SFT is the
interdimension scatter.
SF;, the intradimension scatter, is defined as

9
SF; = [ 2 (Xi — F)*1'72, (3)
k=1

where g; is the number of cues associated with dimension j (the
summation is on the cues associated with dimension j). F;, the
value of dimension j, is derived from an equal weighing average
of the attributes associated with the dimension:

1Y
Fi== 3 X (4)
4 k=1
SFT, the interdimension scatter, is defined by
SFT =[Z (F, - F)*]'7, (5)
=1

where F is the mean of the dimensions and is defined as

F=-3F,. (6)
J=1

X =

In Equations 5 and 6, the F;s are standardized, and if they
have a negative correlation with the judgment, they are rescaled
to have a positive correlation.

The Deviation Versions: Representing Scatter by
Individual Cue Deviations

In the deviation versions, scatter information is represented
by individual cue deviations rather than by the average of these
deviations. This representation allows for each deviation to have
its own weight, instead of assigning the same weight for all
deviations.

In the first of the two deviation versions analyzed in this arti-
cle (labeled the simple deviation version), the deviations of the
cues are from the mean cue value:

Y=a+ 2 8X;+ 2 vD;, (7)

i=1 i=1

where D; = ABS(X; — X). (Again, cues are scaled to have a
positive correlation with judgment and are standardized.)

This deviation version is associated with the simple version of
the scatter model. Whereas in the simple version of the scatter
model the deviations are averaged, represented as SXT, and
share the same weight, in this deviation version each deviation
is allowed to have its own weight. This may be consequential
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when the deviation of one cue (e.g., an important cue) has a
stronger effect on judgment than the deviation of another cue
(e.g., an unimportant cue).

The second deviation version is associated with the multiple-
scatter version. In this deviation version, the deviations of the
individual cues from the mean of the dimension replace the in-
tradimension scatters, and the deviations of the dimensions
from the mean of the dimensions replace the interdimension
scatter. This deviation version is expressed as

Y=a+ 28X+ Z viDi+ 2 §DF, (8)

i=1 i=1 i=1

where D = ABS(X; — F;) and DF; = ABS(F; — F). Thus, in
this version, both the deviations of various cues within each di-
mension and the deviations of the dimensions from the mean of
the dimensions are allowed to have different weights.

Results
The Simple Version of the Scatter Model

The scatter model of Equation 1 was estimated for each of the
29 judges. Prior to the analysis, the two necessary transforma-
tions previously described were performed. First, for each judge
the correlations between cues and judgment were computed,
and the cues whose correlation with the judgment was negative
were rescaled by multiplying them by — 1. Second, the cues were
standardized. Furthermore, for the sake of comparability be-
tween various analyses, not only the cues but also the scatter
term of each judge were standardized across profiles.

Columns 2 and 6 of Table 1 present the cross-validated
multiple correlation (CVMC) of the linear model and of the
simple version of the scatter model, respectively. These corre-
lations were obtained by splitting the 861 profiles into two sets
through an odd-even split, calculating the CVMC of each of the
sets and averaging the two correlations. For 24 out of the 29
judges, the CVMC of the scatter model exceeded the CVMC of
the linear model. The hypothesis that the means of the CVMCs
of the two models are equal is rejected at p = .0001, ¢ = 5.2.
Thus, it is clear from these data, that the scatter model gives a
better fit to the data than the linear model.

Column 10 of Table 1 presents the value of the scatter co-
efficient (the coefficient of SXT) of each of the judges. It is clear
from the table, that for all judges this value is positive. Further-
more, for 25 out of the 29 judges, this value is significantly
different than zero (p < .0001). These data suggest a consistent
use of nonlinear strategy in these clinical judgments—a dis-
junctive judgment strategy. That is, the data suggest that clini-
cians assign more weight to the more pathological cues. Thus,
not only does the scatter model reveal that judgments are non-
linear, but it also reveals the type of nonlinearity underlying
these judgments.

Some alternative linear models. Because a large number of
attributes may lead to a degradation in the cross-validated fit of
a linear model, I also examined the cross-validated fit of two
additional linear models. One was based on the first five MMPI
scales entering into each of the stepwise regressions of the
Jjudges, and the other was based on the first three scales in such
stepwise regressions. The CVMC of these two models are pre-
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sented, respectively, in columns 3 and 4 of Table 1. These data
indicate that the CVMC of the two models was lower than not
only the CVMC of the scatter model but also the CVMC of the
(11 scales) linear model. The null hypothesis that the CVMC of
this latter model is equal to the CVMC of the five- and three-
scales linear models was rejected (¢ = 3.3, p< .005and ¢ = 7.6,
p <.0001, respectively).

Normalization. Some concern was raised in the literature
regarding the impact of the skewness of the cue distributions on
the validity of multiple regression analysis of judgment
(Goldberg, 1976). Because the cue distributions in Meehl’s
data are somewhat skewed, I also examined the impact of scat-
ter on judgment after rescaling the cues by a normalizing trans-
formation ( Blom, 1958).

To compare the impact of the transformation, I calculated for
each of the judges the partial correlation between the scatter
and the judgment (controlling for the linear variance associated
with the 11 scales) both before the normalization and after the
normalization. The two partial correlations appear, respec-
tively, in columns 15 and 16 of Table 1. It is clear from the table
that the partial correlation is lower before the normalization
than after the normalization. The difference between the two is
significant when p = .0001, ¢ = 15.0. Thus, normalizing the cues
only makes the effect of scatter on judgment more pronounced.’

Why does the effect of scatter on judgment increase after nor-
malization? Table 2 presents the correlations between the typi-
cal scatter term (in which only two of the MMPI scales, lie [ L]
and hysteria [ Hy], were multiplied by —1)® and the 11 cues. It
is clear from the table that the multicollinearity between cues
and scatter is high before the normalization and low after it.
Thus, the prominence of the scatter effect after normalization
is due to decreased multicollinearity.

The Multiple-Scatter Version

The stimuli in Meehl’s data are characterized by three clear
dimensions. These dimensions are apparent in Table 3, which
presents the results of a principle component analysis with a
varimax rotation on the 11 scales of Meehl’s data. One dimen-
sion (labeled F,) is associated with the scales hypochondriasis
(Hs), depression (D), Hy, and psychasthenia (Pt). Another di-

$ In this test, as in the other significant tests involving correlations,
the individual correlations were transformed prior to the analyses by
Fisher’s r-to-z transformation. In addition, all # values reported have 28
degrees of freedom.

7 Another way by which the effect of normalization can be demon-
strated is by comparing the difference in model fit between the scatter
model and the linear model before and after normalization. After nor-
malization, the difference between the two is .014 (the CYMC of the
scatter model is .762, and the CVMC of the linear model is .748). Be-
fore the normalization, the difference between the two is .09 (see Table
1). The null hypothesis of equality between these differences is rejected,
t=10.1, p <.0001.

8 Because the computation of the scatter term varies among judges,
depending on each judge’s cue—judgment correlations, in the typical
scatter term only the cues whose correlation with the judgment was neg-
ative for the majority of the judges was multiplied by —1. Note also that
the typical scatter term is equal to the scatter term of the composite
judge, a judge constructed by averaging the judgments of the 29 judges.



YOAV GANZACH

426

94} JO Io1IEIS UOISUSWIPEUT = LS ‘UOISUSWIP ISIY SY1 JO I3)IRIS UOISUSWIPRIUL =

I911DS UOISUSWIPIATUT = ] S “UOISUSWIIP PIIY} 34} JO 1311EOS UOISUSWIIPRIUL = €4S SUOISUSWIP PUODIS
'S {(uoisiaa syduwis ay) Jo 1911E0S A} JONILIS [[BINO = | XS {UOISUdWIP = “WIp dInquIle = ‘e IoN

8y Lol” 850" 200 S91I° 8v0— Ier (4:7% L 8LL 89L’ 4V ST £SL” 6SL° BN
LEr 60 1€0" 200 01" 880~ 190° 8L p8L 8L L LeL oeL LSL Ly 6T
SLT ¥60 Y00 SO0 €81°  L60'- 850 (4% 128 4% €08 99L’ 9L’ 6L P08 8¢
9T Sel” 670" £h0 801"  TTO- 960 €L ST viL €L 1oL (A L 61L L7
01T 1348 80" P10 e 910 vel 9L YL LSL 09L’ 969 (475 oL 6SL 9
Y44 ¥81° 1€0° 120~ #60°  LYO 901° we 6¢8° 1eg’ (423 eLL 618 1¢8° (14 §T
90T 891" 9TI”  €C0—  8E1IT BLO-  6TI L L8Y 0oL 69" £€9° 099 8LY 89 vT
00T 9T 670 100—  S¥1I°  00I'- 960’ 1445 9L (448 8cL 142 (4% 0tL 6Tl €T
00¢” 19T 950" 610— 061"  LEO o1 818’ L0’ 908" 008" aLL oL [4:74 S8l [44
S0t” SsT 190" €10 vo1° 90’ A48 6£8° 531 9¢8 923 008’ 1343 pes’ 9¢8’ 1T
1474 L81" 880" €00— S91° 010 Ier 6SL 8SL 99L’ 89L Lyl 6CL ISy 09L’ 14
€LT 574 60"  0T0— 6817 090~  6SI g S6L 008" 98L CEL 9sL’ Iy L 6l
10¢” oyT 050" T00 €61 800 1438 £98° LSY 198° 1233 sl 618 V8 ws 81
91 6L0 £00" 920" 0zl 960°— 950 v 47N LeL 8TL $69 £y £TL” 6Tl Ll
L4448 61’ &v0°  8T0—  TTT 880~ €11 658 098" 198 9¢8° aLL L6L 128 (1% 91
9eT L4l w0 000 L™ $OU'— L8O 9t8’ 98’ 9¢8 1443 6vL’ 1L ey i74:3 S1
901” 890 80" Y10 $80°  9¢1'— 860 729 LLS” 8¢¢” LES 9Ty 99¢° 896" 0s¢” 14
61T el 990" 800 6b1° 790~  OIT IeL IeL IeL YL 689 6L9 (VA LIr £l
LIe T £60° 100—- 87T 100° (418 bLL oLl 6LL 9L’ LY ¥89° [443 osL’ 4!
oLt £0T PO 00 oz 000 208 18 331 0p8’ 198 L [44:3 g8’ 9¢8° It
SOT 00T €0 800- 601" L¥O Wi oeL” SIL ne 9L ¥69° LoL” LIy 473 01
vie LTe ST €00'— s Lzo 00T LEg 0zs8 LY 878 L 99L’ 66L° 908 6
Pot” £0¢t” o TIO oarl" 860° €61° g 008’ LO8’ 918 8CL L8L L6L S6L 8
6t 66T ¥60"  pEO €0E"  ov0'-  SIT 88L 08L 8LL SSL oL’ 199° 169° STl L
£6¢” 60t £80° 100 061" 6L1'— 961 8E8° 334 678’ g el vl ELL oL 9
SET s8I 0e0" 00— OvT  8L0— ST 06L’ ToL 98L° 194° 9L STl IsL 9L’ ¢
oot” 65T 90" LOO° 861"  991'—  Zel ogL’ IeL 9eL’ L 189 6v9° 89 €0L” 4
4N LST 611 STor £0T 180°—  T61 IeL €L 9eL 8CL LS9 989 869° LOL’ €
6l LET wo T 861" L80'— 180° 3.8 3% o8’ 618 68L 6LL’ LO%" 618 4
[4%4 90T &0 60— VST £plI'—  LSD peL Iyl 8€L 669° 099 ¥8¢° S99 L8Y I
91 Sl 14 £l Cl I 0l 6 8 L 9 S v £ 4 !
UOHEZI[EWLION  UONeZI[BUWLIOU | ]S S (B 1S 'S LXS  zuoneaq [ uoneIAdq 1931828 opedg  wip g neg ue¢  neqq agpny
nRyy 210J3¢g aidumpy

SUONR[ALIO) [RIRg

sadors uotssardoy

SUOISIOA JONEDS 11y [PPON

S[opous Jeaury 1y [SPON

SJPPOJN 2a1DUII]Y 241 f0 UoSLpduio)
[ 9198l



NONLINEAR MODELS OF CLINICAL JUDGMENT 427

Table 2

Correlation Between the Typical Scatter and MMPI Scales

Scale Before normalization After normalization
L .03 -.03
F 25%* .09*
K —.04 -.06
Hs BV -.04
D .09* -.03
Hy .08* —.06
Pd D8 b -.02
Pa BT S -.02
Pt 1 —-.05
Sc 2 e .00
Ma d1** .00

Note.  MMPI = Minnesota Multiphasic Personality Inventory; L =
lie; F = eccentricity; K = defensiveness; Hs = hypochondriasis; D =
depression; Hy = hysteria; Pd = psychopathic deviate; Pa = paranoia;
Pt = psychasthenia; Sc = schizophrenia; Ma = hypomania.

*p<.0l. **p<.00l. ***p<.0001.

mension (F;) is associated with the scales eccentricity ( F), psy-
chopathic deviate (Pd), paranoia (Pa), schizophrenia (Sc),
and hypomania (Ma). The third dimension (F;) is associated
with the scales L and defensiveness (K). ( The eigenvalues of the
defensiveness three factors are 3.2, 2.7, and 1.6, respectively.)

To estimate the parameters of the multiple-scatter version,
the value of each of the three dimensions was determined by
averaging over the scales associated with it (Equation 4; actual
dimensions were used as a proxy for perceived dimensions), the
value of each intradimension scatter was determined from the
deviations of the dimension cues from their average (Equation
3), and the value of the interdimension scatter was determined
from the deviations of the dimensions’ values from their mean
(Equation 5). In the calculation of this latter scatter, the third
dimension was rescaled for 28 of the judges by multiplying it by
—1 because, except for one judge (Judge 20), the correlation
between F; and the judgment was negative.

Following these calculations, the multiple-scatter version of
Equation 2 was estimated for each judge. For the sake of com-
parability, the scatter terms were standardized across profiles.
Column 7 of Table 1 presents the CVMC of the multiple-scatter
model. It is clear from the results that the fit of the multiple-
scatter version exceeds the fit of the simple version. For 21 of
the judges, the CVMC of the multiple-scatter version was higher
than the CVMC of the simple version. The difference between
the two was significant when p = .0005, 1 = 4.1.

Columns 11, 12, 13, and 14 of Table 1 present the coefficients
of SF,, SF,, SF;, and SFT. The data indicate that the mean
coefficients of SF, and SFT are positive (1 = 17.1, p < .0001
and ¢ = 9.4, p < .0001, respectively). Thus, in regard to the
interdimension scatter and to SF,, the judgments are disjunc-
tive. However, the mean coefficient of SF, is significantly nega-
tive, t = 3.7, p < .001. Thus, in regard to SF,, the judgments are
conjunctive. This difference between the nonlinear relation-
ships associated with the scales of F; and the nonlinear relation-
ships associated with the scales of F; is an important reason for
the superior fit of the multiple-scatter version over the simple
version. The simple version does not take into account the di-

mension specificity of the nonlinear relationships between at-
tributes and judgment and “aggregate” over both disjunctive
and conjunctive relationships.’ As a result, the nonlinear vari-
ance extracted by this version is rather low. However, in the
multiple-scatter version, there is no aggregation over con-
flicting nonlinear relationships. In this version, the nonlinear
(conjunctive) variance associated with the scales of F; and the
nonlinear (disjunctive ) variance associated with the scales of F;
are extracted separately.

Finally, because the data contain three distinct dimensions,
an additional linear model, which is worth examining, is a lin-
ear model that includes only the three dimensions:

Y =a+ 2 BF. (9
=1

The potential advantage of this model is that, on the one hand,
it is associated with little degradation on cross validation, but
on the other hand it incorporates more information than the
three- and five-attribute linear models described earlier. How-
ever, the results of the cross-validation indicated that the CYMC
of this three-dimension linear model was lower, not only in com-
parison to the multiple-scatter model but also in comparison to
the 11-scale linear model, ¢ = 9.9, p < .0001. (Column 5 in
Table 1 presents this model’s CVMC.)

The Deviation Versions

The CVMC of the simple deviation version (associated with
the simple version of the scatter model) is presented in column
8 of Table 1, and the CYMC of the deviation version associated
with the multiple-scatter version is presented in column 9 of the
table. It is apparent from the data that the two deviation ver-
sions give a better fit to the data than the linear model.

To test whether the representation of scatter by individual de-
viations, rather than by the average of these deviations, im-
proves model fit, I compared each of the two deviation versions
with its control version. In both cases, the null hypothesis was
rejected. The difference between the simple version of the scat-
ter model and the simple deviation version was significant when
p=.0001(r = 6.1). The difference between the multiple-scatter
version and the deviation version associated with it was signifi-
cant when p = .003 (¢ = 3.3).

Discussion

The analyses presented in this article indicate that the various
versions of the scatter model can detect nonlinearity in clinical

? This aggregation results in an overall pattern of conjunctive rela-
tionships (the scatter coefficient in this version is negative ) because the
interdimension relationships are disjunctive and because the disjunctive
relationships associated with the scales of F, are stronger than the con-
junctive relationships associated with the scales of F; {the incremental
variance associated with the former dimension is smaller than the in-
cremental variance associated with the latter dimension).



428 YOAV GANZACH

Table 3

Factor Structure of the MMPI Scales

Scale Factor 1 Factor 2 Factor 3
L .08 .03 73
F .18 73 ~.28
K -.08 —-.15 .85
Hs 81 .06 17
D .85 10 -.25
Hy .85 .08 22
Pd .20 .70 15
Pa 45 .61 —. 11
Pt .76 .40 -.20
Sc .55 71 -.06
Ma -.20 71 -.04

Note. Entries are factor loadings. MMPI = Minnesota Multiphasic
Personality Inventory; L = lie; F = eccentricity; K = defensiveness; Hs
= hypochondriasis; D = depression; Hy = hysteria; Pd = psychopathic
deviate; Pa = paranoia; Pt = psychasthenia; Sc = schizophrenia; Ma =
hypomania.

Jjudgments that are based on representative stimuli. These re-
sults are in contrast to the failures of previous models, such as
the hyperbolic and the parabolic models ( Einhorn, 1970) or the
sign and the quadratic models (Wiggins & Hoffman, 1968), to
find systematic reliance on nonlinear strategies in the same
data.

In assessing the meaning of these results, remember that the
incremental fits over the linear model, although highly signifi-
cant, are quite small. Thus, for practical reasons, such as replac-
ing linear models by scatter models in “bootstrapping” expert
judgment, the implications of these findings are limited.'® How-
ever, these findings are quite relevant to the understanding of the
cognitive processes underlying judgment because (as a result of
the robustness of linear models) even small changes in fit may
reflect important changes in underlying processes. Thus, the re-
sults of the article not only reveal that MMPI-based clinical
Jjudgments are nonlinear but also reveal systematic patterns of
nonlinearity in regard to the interdimension information and
in regard to two categories of intradimension information. The
results also reveal that the analysis of nonlinearity by a model
in which scatter information is aggregated and represented by a
single, general scatter term (the analysis on the basis of the sim-
ple version of the scatter model) may obscure fine-grained non-
linear relationships that are revealed only in more detailed anal-
yses (e.g., the analysis on the basis of the multiple-scatter
version).

Why did the current attempt to find a systematic pattern of
nonlinearity in Meehl’s data succeed where previous work have
failed? There are two reasons for the success of the scatter model
in comparison with other nonlinear models: a statistical reason
and a psychological reason.

From a statistical point of view, the scatter mode! is more
desirable than Einhorn’s (1970) models, as well as the models
offered by Wiggins and Hoffman ( 1968), because its important
results (e.g., model fit) do not change under linear transforma-
tion of the scales. Einhorn’s models, and Wiggins and Hoff-
man’s models, lack this property and, therefore, lead to arbi-
trary findings (Goldberg, 1971).

From a psychological point of view, I believe that the success
of the various forms of the scatter model and, in particular, the
success of the multiple-scatter version is associated with the fact
that they capture important features of intuitive nonlinear
strategies. First, to a large extent, nonlinear strategies are asso-
ciated with intuitive theories concerning both inter- and intra-
dimension integration. Second, the conjunctive-disjunctive
rules are fundamental, or prototypical, nonlinear rules that
represent many features of nonlinear information processing.
Because the scatter model supplies a good mathematical repre-
sentation of these rules, it can successfully model task-specific
and even person-specific nonlinear strategies.

To demonstrate the prototypicality of disjunctive and con-
junctive strategies, consider some of the nonlinear signs rou-
tinely used in MMPI judgments, which are described by Gold-
berg (1965). Two of these signs are labeled the high point rules
(Signs 61 and 62 in Goldberg’s list). One of them suggests that
if a patient’s highest score is on a scale originally derived from
neurotic patients ( Hs, D, Hy, or Pt), the patient should be clas-
sified as neurotic; if the high point falls on any other scale, he or
she should be classified as psychotic. The other sign is a similar
classification system based on the profile’s low score. These
signs are clearly examples of disjunctive and conjunctive rules.
(Note, however, that the judgments in Meehl’s data are consis-
tent only with the first of these two rules). Other examples of
signs that represent conjunctive~disjunctive rules are those that
correspond to the relative elevation of the dimensions (Signs
25-30) and to the relative elevation within the dimension ( Signs
31-33).

The fundamental nature of the disjunctive—conjunctive rules
discussed in the article can also be demonstrated quantitatively
by comparing the predictive power of the commonly used non-
linear signs described by Goldberg ( 1965 ) against the predictive
power of the disjunctive—conjunctive signs used in this article
(the various forms of scatter). Goldberg correlated the MMPI
signs described in his earlier article (Goldberg, 1965) with the
residuals obtained from regressing the average judgments of the
29 clinicians on the 11 cues. He found a relatively small number
of significant correlations, the largest of them equaling .23.!' I
repeated Goldberg’s (197 1) procedure and correlated the resid-
uals with the basic five disjunctive-conjunctive signs analyzed
in the current article (i.e., SXT, SFT, SF,, SF;, and SF;'2). Out
of these five correlations, four were significant. Two of them, the
correlation between the residuals and SF, and the correlation

1% Keep in mind that Meehl’s data do not include replicates, so it is
impossible to estimate how much of the gap between the systematic
variance and the linear variance is explained by the nonlinear terms.
However, in this respect, the nonlinear variance is most likely not negli-
gible because (due to the robustness of the linear model) the systematic
variance and the linear variance are most likely quite close to each other
(see Brehmer & Brehmer, 1988).

'] was not able to determine the number of correlations Goldberg
(1971) considered. Thus, for example, from the 13 significant corre-
lations, only 6 appear in the table that describe the basic diagnostic signs
(Goldberg, 1965, p. 4). It is clear, however, that many such correlations
were considered.

12 Because SXT and SFT are defined individually for each judge,
the typical values of these scatters (see Footnote 8) were used in this
calculation.
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between the residuals and SXT, exceeded the highest correla-
tion found by Goldberg (1971). The former correlation was .39
and the latter .30.

One important feature of the various versions of the scatter
model is the representation of nonlinearity as a continuum
ranging from disjunctive to conjunctive. As a resuit, the model
allows for aggregating over individuals to arrive at conclusions
concerning the various types of nonlinearity in the population.
This advantage of the scatter model is demonstrated in the anal-
yses based on mean scatter coefficients. These analyses not only
show the existence of nonlinearity but also uncover distinct psy-
chological processes underlying this nonlinearity and, in partic-
ular, indicate that these processes are dimension specific. The
integration of the cues associated with one dimension follows a
disjunctive rule, whereas the integration of the cues associated
with the other dimension follows a conjunctive rule.

The psychological interpretation of the nonlinear rules asso-
ciated with these two dimensions is especially interesting be-
cause these dimensions have distinct characteristics: One di-
mension (F, ) is associated with the neurotic scales of the MMPI
and the other (F,) is associated with the psychotic scales. There-
fore, although the two nonlinear rules are statistically different,
they may be psychologically similar in that both are disjunctive
vis-d-vis the dimension. The high-value neurotic scales receive
relatively higher weight in judging the degree of neurosis,
whereas the high-value psychotic scales receive relatively high
values in judging the degree of psychosis.
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