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We derive the effective Lagrangian which describes the interaction between a charged par-
ticle and a magnetic moment in the nonrelativistic limit. It is shown that neutral particles
with a magnetic moment will exhibit the Aharonov-Bohm effect in certain circumstances.

We suggest several types of experiments.

PACS numbers: 03.65.Bz

Topological effects in quantum mechanical sys-
tems are manifested through the generation of rela-
tive phases which accumulate on the wave function
of a particle moving through a non-simply-con-
nected force-free region. The generic phenomenon
of this type is the Aharonov-Bohm (A-B) effect!
which is due to the presence of a vector potential in
the Lagrangian of the particle:

=i Mvi+eA-v, 1)

which leads to an interference effect due to the
phase:

expiS = expi¢x -Vdt = expi¢x -dX. )

The Lagrangian (1) is that of a charged particle in
an external electromagnetic vector potential. Is it
possible to generate a situation in which a neutral
particle exhibits the A-B effect? We will show that
this is indeed possible and is actually a necessary
consequence of the physics described by Eq. (1). _

Consider first a solenoid located at the point R
(in a plane) which interacts with a charged particle
at T. Since the solenoid is electrically neutral it

would seem that the Lagrangian of the system is
? - -
L=+mv?+5sMV?+eA(T—R):-V. (3)

Equation (3) is wrong since it leads to a nonzero
force on the charged particle

miJj=ev,-(3,-A,~—8jA,-)—eV,-a,»Aj.

The first term on the right-hand side is the ordinary
magnetic Lorentz force and vanishes outside the
solenoid. The second term, however, is proportion-
al to the velocity of the solenoid and is moreover
not gauge invariant and nonzero. Thus we propose
to correct the Lagrangian (3) by an extra term:

L=3mvi+5sMV?
+eA(FT—R)- (V-V). 4)

It is readily checked that Eq. (4) leads to a gauge-

invariant force which vanishes with the magnetic
field:

mvV=e(V—V)xB= —M;’V;
_ _ _ (%)
B=V xA(T—R).

Note that Egs. (4) and (5) are Galilean and transla-
tion invariant and lead to conservation of the
momentum:

P+P=(P—cA)+ (P+eA)
=mV+MV. (6)

We shall now prove that Eq. (4) actually follows
from electrodynamics and correctly describes the
interaction between a charged particle and a neutral
source of a magnetic field. A solenoid may be
viewed as a line of magnetic moments. Consider a
magnetic moment & moving in an external static
electric field. We work in the radiation gauge
V-A=0. A magnetic moment is generated by a
current distribution:

T=vxa; [w=g. ™

Lorentz invariance decrees that (to order v/c) a
moving magnetic moment generates a charge densi-
ty? (our units aref=c =1):

p=V-7. (8)
The Lagrangian of our magnetic moment is thus

L=3+MV?~ [pao=+MV?~ [4V -V x 7

=sMV?-V-Exf, 9)

where E= —V 4 o is the electric field. If, however,

E is the Coulomb field of a charged point particle
then

Exl;j:L_(R——r)xs&:eK(r_ﬁ), (10)
4 |R—r|

where A is the vector potential at the point T
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whose source is the magnetic moment w at R! Ad-
ding the Lagrangian of the charged particle we thus
recover Eq. (4). Note that a gauge transformation
A A +V f(r—R) changes L by the total time
derivative f. Before we turn to some applications of
Eq. (4) we pause to reinterpret the momentum con-
servation equation (6). In fact, using Eq. (10) and
the fact that inside the solenoid B= &’ we easily find
that Eq. (6) is

P+P=mv+P+ [ExE. a1

Hence, the correction which restores the momen-
tum conservation is the field momentum carried
along with the solenoid. We also record here the
generalization of Eq. (4) for a system of charged
particles interacting with magnetic multipoles:

L=% eve2+%szV"2r
+3(V.~V,) eA(T,—R,). (12)
em

(Purely electric-electric terms were left out.)

Let us turn now to the application of the La-
grangian (12) to quantum mechanics. Because of
the dependence of 4 on (T —R), the system
possesses a kind of duality when the roles of T,
and ﬁm are reversed. In particular, a magnetic mo-
ment moving in the field of a straight homogene-
ously charged line feels no force and undergoes an
A-B effect; the A-B phase is

Sup=— ex(?—ﬁ)'d§=uk (13)

where N is the charge per unit length on the line
and w the projection of the magnetic moment along
the line. It is convenient to express A and w in
terms of the relevant length and mass scales:

A=e/¢é u=ge/2m. (14)
We thus have (restoring# and c):
Sap=2magk/mcé. 15)

Here « is the fine-structure constant and 7%/mc is
the Compton wave length associated with m;
g=0(1) is the g factor. For a neutron %/mc
=2x10"'"* c¢m, while for an atom #/mc is con-
trolled by the electron mass and is ~4x 10~ ! cm.
Thus, in order to get observable A-B phases
(S ag— m/2) we need linear charge densities

—15C

neutron: A ~e/10 m,

(16)
atom: A~e/2x107 12 cm.

While these densities seem huge we remark that
320

there is no limitation of principle on the thickness
of the charged line so that experimental verification
with neutrons and/or atomic beams might become
feasible. Note also that the magnetic-moment
beam should be polarized and the effect is maximal
when the polarization is directed along the charged
line.

The e-u duality mentioned above means that a
charged line will act on a superfluid made of bosons
which have a magnetic moment in the same way
magnetic flux acts on an electric superconductor.
In particular, if such a line is passed through a su-
perfluid ring of radius R, Eq. (14) predicts that the
superfluid will rotate. The velocity is given by

v=(i/2MR)S /% for |S/7| < 1, an

where M is the mass of the boson. Note that v is a
periodic function of the linear charge density with a
period given by

Alee ™Y =2mc/p. (18)

Again the effect is maximized if the fluid is mag-
netically polarized along the direction of charged
line.

We return now to the Lagrangian (4). In order to
strengthen the foundation of Eq. (4) we shall
rederive it from the Dirac equation. The Dirac
Lagrangian of a purely magnetic neutral particle is

FL=ylig—m—FuFro,,ly. (19)
Choosing the representation
1 0 0 o
k=
0o -1 ¢ ok 0
and writing ¢ = (%) we easily find in the nonrela-

tivistic limit the effective Hamiltonian for a mag-
netic moment in an external electric field:

HNR
=(1/2m)&- (F—ipE)T- (F+iuE). (20)

y0=

Expanding the product of Pauli matrices we have
(F=pd):

Hyg=(1/2m)(F—Ex &)2— u2E¥m 21

The first term is precisely the Hamiltonian which
corresponds to Eq. (9). The second is a correction
due to the appearance of an induced electric dipole
moment and may be neglected so long as
nE << mv.

Finally we shall exhibit another aspect of the ef-
fect by deriving it in a special context. Consider a
(2+1)-dimensional Higgs system? (a relativistic su-
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perconductor) described by the Lagrangian
L =—%F2,
+1(8,—ied ) p|> =y (Ip[*—vD)2  (22)

As is well known, the U(1) gauge symmetry is
spontaneously broken and the photon gets a mass
M =~/2ev. This system has a soliton which
describes a localized quantized magnetic fluxon®*
whose field strength decreases exponentially out-
side the core:

e:\.cl(?’—i)
Ax _.._-" =
== fr~1§) +0(eMIT-Rh, (23)
|T—R]|
(T is a two-dimensional vector and 7 is the unit

vector perpendicular to the plane). Suppose we add
an external charge density J so that

L —L — [4d (24)

In order to find 4, we may neglect all the excita-
tions (photons of mass M and scalars of mass yv)
and keep only the collective center of mass coordi-
nates R. The charge-density operator p of the sys-
tem is

p=ie(¢p—iedyp)d*+H.c. (25)

Substituting ¢ ( T) = ¢4( T — R) and using the field
equations

—Vy=p (26)

— VA =ie(Voy—ieAgdy)dy+He.,, (27)
we find

L —L —R- [aTA(T~R)Jo(T) (28)

which is precisely Eq. (4). This is of course not
surprising since it is simply a realization of the pre-
vious derivation. Note, however, that if the exter-
nal charge is viewed as a source, the electric field it
generated must be screened by the system so that
the total electric field seen by the fluxon is

O(exp(—M|T—§|))._’ It is remarkable that the
only piece of the field E which actually enters the
effective Lagrangian is the unscreened Coulomb
field of the external charge. The consistency of this
result is explained by remarking that the term
V-Ex i generates no force and is only effective in
inducing an A-B phase. The particles of the medi-
um are, however, quantized in the proper unit per-
taining to the flux so that their share of the phase is
27rn and hence irrelevant. This phenomena may be
summarized by the statement that the superconduc-
tor screens all the moments of E but does not
screen the topological effect of exp_cﬁid?x z-E.
The above discussion suggests the possibility of
looking for the effect on fluxons in two-dimen-
sional superconductors.

We end by remarking that for magnetic mono-
poles the Lagrangian of Egs. (4) and (12) may be
derived>® by using the dual form of Maxwell’s
equations.
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