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A generic local quantum spin hamiltonian is introduced that preserves the topological structure of the states it acts upon. 
Some simple examples are discussed. It is shown that in one dimension the model is capable of producing galilean invariance 
and confinement. It is further shown in one dimension that the generic QTD hamiltonian can produce relativistic dynamics of 
massless particles. In any number of dimensions the model is capable also of producing relativistic massive bosons obeying the 
Klein-Gordon equation as its elementary excitations. 

In recent years we have witnessed the growing role 
of  topological  excitations in explaining various natural 

phenomena [1 2 ] .  
In this letter we introduce a new set o f  local quan- 

tum spin systems where the topology dominates the 
dynamics. Namely,  the topological structure asso- 
ciated to the physical states is preserved b y  the dy- 
namics. 

After  introducing the quantum topo-dynamics 
(QTD) generic hamiltonian and showing that  it can be 
writ ten in terms o f  local interactions,  we produce 
some simple bu t  interesting results. We show in 1D 
that these systems can produce galilean invariance 
and confinement.  We show in 1D that  an inner mo- 
t ion o f  an elementary excitat ion is producible that  
resembles a massless quantum relativistic particle 

hitting an impenetrable barrier. We show in any num- 
ber  o f  dimensions that the models are capable of  pro- 
ducing elementary excitat ions obeying the K l e i n -  
Gordon equation and described b y  a scalar field. 

These examples serve to illustrate the richness o f  
the QTD systems. We hope to deal with some of  the 
more intricate aspects o f  QTD in the very near future. 
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Consider a system of  spin 1/2 degrees o f  freedom 
located on the sites o f  a d-dimensional lattice. The 
eigenfunctions of  all the offi span the Hilbert space. 
Each such function may be described by  the set of  
sites on which the ~ are negative. 

We employ the following definitions: 
(1) I f  two Wigner-Sei tz  cells centered around two 

lattice sites have at least one common point  we say 
that the corresponding sites are neighbours. 

(2) A cluster o f  positive spins {G) is connected 
either if  it consists only of  one site or i f  for any site 
belonging to  {G) at least one of  its neighbours be- 
longs also to (G}. 

(3) A connected cluster o f  negative spins is de- 
fined in a similar manner,  bu t  with nearest neighbours 
replacing neighbours in definition (2). 

The topological  properties of  a ~ basis function 
are the properties of  the clusters o f  negative spins de- 
scribing it. 

Our aim is to construct a local hamiltonian,  that 
on one hand changes the clusters but  on the other 
hand preserves the topological  properties of  the state. 

Consider the following d-dimensional generic 
hamiltonian 

i H = ~7[o z )  + g  . ~  T/p [n(1 - o x)  + (1 - n ) o f ]  T p ,  

' ( 1 )  
where n is either one or zero and T~ is a topology 
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preserving projector, that will enable the flipping of 
a spin, due to the action of o x or crY, only when this 
operation does not change the topological properties 
of the state. 

i is that The important observation concerning Tp 
it is a local operator depending on spin operators in 
the near vicinity of the site i. This property may be 
verified by inspection. The global topological prop- 
erties of a state are unaltered by the flipping of a 
given spin if that operation does not change the 
topological property of the system restricted to the 
site of  the flipped spin and some of its neighbours. 
(The actual number of neighbour shells depends on 
the lattice. For example, the relevant shells for the 
2D square lattice are the nearest-neighbour shell 
and the next-nearest-neighbour shell, while for the 
triangular lattice the nearest-neighbour shell suf- 
fices.) 

i Let us write down some explicit examples for Tp. 
For the one.dimensional lattice it is easily seen that 

Tpi = ~I [(1 + crz+ 1)(1 _ criz__ 1) + (1 - crz+ 1)(1 + crz 1)] 
(2) 

Consider the two-dimensional triangular lattice. Let 
{k(i)) be the set of nearest neighbours of the site i, 
enumerated in anticlockwise direction. It may be veri- 
fied by inspection, that the topological structure is 
unchanged by flipping the spin i, when two local con- 
ditions are met: (a) The number M(i) of  neighbours of 
i where the spin is already negative obeys 1 <M(i )  <~ 
5. (b) The neighbouring sires on which the spin is 
negative form a connected cluster (by themselves). 

The following projection operator represents the 
above conditions. 

6 k+4  m kO 1 
i = ~  ~ I-I l+cr/. H 1 - ° 1  

Tp k=l m=k ]=k 2 l=m • 1 2 ' (3) 

where • and e are addition and subtraction rood 6 
(in fact all the integers are defined mod 6). 

For the two-dimensional square lattice, let {k(i)} 
be the set of nearest neighbours enumerated in anti- 
clockwise direction and {k'(i)} the set of  next-nearest 
neighbours such that k'(i) follows k(i) in anticlock- 
wise direction. The corresponding projection operator 
is given in this case by 

4 k ~ 2  m m ' ~  1 k@l 1 - - o  I 
i = ~  ~ I-I 1 +o /  U 1+°i '  [ I  

Tp 2 2 k=l m=k [=k 2 i'=k' l=m~l 

4 4 4 
+ ~ 1-] 1 + o  I, [ I  1 + o  l l - o  k , (4) 

k'=l l '~k '  2 l=l 2 2 

We find that T i p. commutes with o x and o/y, implying 
that only one T~ is really needed in the definition of H. 

(a) 1D galilean continuum limit. Two years ago 
we considered a special form of the generic hamil- 
tonian (1) [3] 

1-o,.2., 1+4+1 
u=h2(1-o )+gB (l+4) 2 

i i 

1 + ° 2  1 1 02 
- -  i + 1  

+ + of)  2 (5) 

Defining H = hd and g = G/d 2 where H and G are 
finite constants and d the lattice distance, we obtain- 
ed in the continuum limit a Schr6dinger equation for 
the elementary excitations. The elementary excita- 
tions are connected regions of negative spin defined 
by their end points R 1 and R 2 and the equation de- 
scribing the amplitude ~(R 1, R2) for such a region is 
given by 

a_l, 2 
E t ~ ( R I ' R 2 ) =  - 4 ~---~S', +HIR1 - R 2 I ~  • \~R 2 (6) 
The particle-like solutions of eq. (6) obey galilean in- 
variance. (The boundary condition is ~ ~/a(R 1 - 

R2)[ R t=R2 = 0.) 
(b) 1D massless relativistic particles. Another in- 

teresting continuum limit is obtained for the QTD 
hamiltonian in ode dimension by cQnsidering n = 0 
and J£ = 0. Let ~k(n 1 , n2) be the amplitude of obtain- 
ing a region of negative spins with end points n 1 , n 2. 
It is easily shown that 

H¢(n  1 , n2) = - ig  sign(n 2 - n l )  

X [~(n 1,n 2 + l ) - ~ ( n  1,n 2 - 1 )  

+ ~(n 1 - 1 , n 2 ) - ~ ( n  I + 1,n2) ] 

with the boundary condition ¢(n, n) = 0. Let g = 
G/d, where G is a finite constant and d the lattice 
constant. In the limit d -+ 0, eq. (7) becomes 

(7) 
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H ~ ( x  1, x2) = - i  (G/2) sign(x 2 - x 1) 

× [O~b(x 1, x2)/Ox 2 -- a~(x 1 , X2)/DXl]. (8) 

Separating variables we obtain in the difference vari- 

able x = x  2 - x 1 

E~(x )  = - i G  sign(x)O¢ /ax . (9) 

The solution is 

¢(x) = sign(x) exp [i sign(x)Px], (10) 

and the corresponding energy is 

E(p) = G e .  (11) 

The internal motion of  the reversed spin region is 
similar to the motion of  a massless quantum relati- 
vistic particle scattered off  a wai l  

(c) d-dimensional massive relativistic bosons. Let 
us consider now a different limit o f  the generic QTD 
hamiltonian that produces massive bosons obeying 
the Kle in-Gordon equation as the elementary 
equations. 

We choose again n = 0 and we take the o z depen- 
dent part J f{o  z} to be 

t (i,j)n.n. 

- k  ~ ozo/zcrzk, (12) 
( i,j ,k ) 

where ( i , j )n.n is a next nearest pair, (i , j ,  k) a con- 
nected cluster of  three sites, the coupling h, J and k 
are positive and the lattice is assumed to be a d-dimen- 
sional cubic lattice. 

Let 

h = 2dA + A '  (13) 

and 

J = A  + J ' .  

We consider the case A -> oo and k -+ oo. It is straight- 
forward to show that the finite energy states are in 
this limit linear combinations of  states of  d + 1 types 

only. Define ~b(i) as the amplitude for a single-site 
cluster at the point i and ff/(i, i + Aj) as the amplitude 
of  having a nearest-neighbour-pair cluster at the point 
i and i + @ along the j axis, where A! is a lattice con- 
stant along the/'  axis. 

HO(i) = [ -h  + 2d J] O(i) 

- i g  ~. ~j ( i , i  + A])+ A / ( i , - A ] , i )  (14) 
1 

and 

H~i(i ,  i + Aj) = 2 [ - h  + 2d J] ff/(i, i + Aj) 

+ ig[ (0 + + (15 )  

Define 

~(i,  t) = x( i) exp(i~At)¢(i, t) 

and 

~kl.(i, i + AI, t) = x(i)exp(i~ At)ffj(i, i + A/., t ) ,  (16) 

where t is the time, ~ i ,  t) and @(i, i + A], t) are the 
time dependent amplitudes, A = - h  + 2dJ remains 
finite in the limit A -+ oo and ×(i) is +1 on the even 
sublattice and - 1  on the odd sublattice. I f g  = G/d 
where G remains finite in the limit d -+ 0, we obtain 
the time dependent equations 

i~-~ ¢(x, t) + ~-A~-(x, t) = - i G  
a 

J  j(x,t) (17) 

and 

A j(x,t)= (18) 

The above equations lead to the Klein-Gordon equa- 
tion for the scalar field ~ 

G272~ _ a2~/i~t2 + ~A2~-= 0 .  (19) 
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