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We consider here two problems of major recent interest in mesoscopic physics. We
first review the adiabalic (slowly varying confining walls) approximation to the quan-
tized conductance. We show that the corrections to this approximation are exponen-
tially small in the smoothness parameter of the constriction. A condition for accurate
quantization is given, based on the result that the reflections due to the sudden widen-
ing of the constriction (existing in real devices) would be highly suppressed if a small
adiabatic widening and/or a potential barrier should precede the sudden widening.
An interesting collimation effect associated with the adiabatic picture is briefly dis-
cussed. Next, we consider the problem of quantum interference in the presence of an
environment, employing two approaches. One treats the problem from the point of
view of the trace left by the interfering particle on its environment. The other regards
the phase accumulation of the interfering waves as a statistical process, and explains
the loss of interference in terms of uncertainty in the relative phase. The equivalence
of the two approaches is proven for the general case. Some applications are discussed:
Dephasing by coupling to a local spin, by photon modes in a cavity, including the
difference between coherent and thermal states, and by electromagnetic fluctuations

in metals.
§1. Introduction
Mesoscopic systems that are on the

borderline between the microscopic and
macroscopic domains have recently proven to
be an ideal laboratory for testing some fun-
damental quantum mechanics issues. For a
review, including the Aharonov-Bohm effect
and conductance fluctuations, see ref. 1. Here
we first consider a recent interesting experimen-
tal finding in narrow wires, explain it and
predict how its accuracy can be increased
substantially. We then discuss the connection
between ‘‘dephasing’’ and ‘‘leaving a trace in
the environment’’. We prove their general
equivalence and discuss examples, including
those of current experimental relevance.

We first review the theory behind the quan-
tization of the conductance of ballistic point
contacts>® that was recently found experimen-
tally. The two-terminal conductance of a nar-
row constriction is quantized in integer
multiples of e?/ nh (including spin degeneracy).
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The experiments were done on a two dimen-
sional electron gas (2DEG) in a GaAs-Al,
Ga;_.As heterostructures for which the length
of the constriction was smaller than the elastic
and inelastic mean free paths., The constric-
tion is regarded as a narrow strip, having its
own # modes or ‘‘conduction channels’’, con-
necting two wide regions that in turn are con-
nected with negligible resistance to electron
reservoirs. It has been pointed out” that such a
quantization follows from the two-terminal
Landauer? formula G=(e*/nh) %, T, for
full transmission (3; 7;;=1) in the conducting
channels, i.e., for a ballistic constriction. In
addition, to satisfy the assumptions of the Lan-
dauer formula, one needs? a reflectionless
transmission between the constriction and the
wide regions. Thus, an important condition
for accurate quantization of G is that a wave
moving along the constriction in one of the
relevant » modes will be fully transmitted into
the wide regions. There are two ways to obtain
this condition:
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(a) As pointed out by Glazman et al.,”
such reflectionless transmission follows for an
adiabatic constriction (smoothly varying con-
fining walis). Landauer” remarked earlier that
a tapered, adiabatic opening of the constric-
tion to the wide regions might help the feeding
of channels in the constriction (see also ref. 8).

(b) Here, we point out, based on the
results of Szafer and Stone® (see also refs. 10-
16), that approximately reflectionless transmis-
sion from the constriction to the wide regions
can also be obtained for a sudden opening of
the constriction. The condition for this to oc-
cur will be shown to be that the mode number
n under consideration will be smaller than the
maximum available mode number, #n,, at the
sudden opening. For an opening of width 2d,
n, is the integral part of (2dkr/ n). Since it will
be shown that condition (a) is hard to satisfy
globally,'” i.e., for wide variations of d along
the constriction, we propose two practical
ways to achieve accurate quantization in prac-
tice:

(1) Adiabatic opening of the constriction
from a minimum, d,, to d, where further prop-
agation is not adiabatic, but for d/d,
— 1> 0(1/n), the reflections will be small.

(2) Alternatively, a smooth potential bar-
rier along the constriction will select a value of
n which, when smaller than n.(d), will
guarantee small reflections.

This lack of reflections will also serve as the
theoretical explanation for the non-observabil-
ity of resonances in the above-mentioned ex-
periments. The lack of resonances (see also
Escapa and Garcia'?) is quite surprising in
view of recent theoretical work done by Szafer
and Stone,” Kirczenow,"’ and Tekman and
Ciraci.'®

Glazman et al.® showed that in the
adiabatic limit there is no interchannel scatter-
ing, therefore 7;,=3; (for transmitted chan-
nels), and the leading corrections to the reflec-
tions within each channel are exponentially
small in some smoothness parameter. In this
paper we also show that the leading correc-
tions to the interchannel reflections are ex-
ponentially small in, basically, the same
smoothness parameter as well.

Next, we discuss the loss of quantum in-
terference. This is probably the most promi-
nent example for the suppression of quantum

phenomena in the macroscopic world. It is
commonly explained as caused either by the in-
terfering particle failing to keep a definite
phase along its trajectory or by the interfering
particle changing the state of its environ-
ment.'®' In the present work we clarify the
two explanations and show their equivalence.
We show that the interference of two paths
is destroyed when the environment contains
information on the specific path the particle
took, and that the relative phase of the two
partial waves becomes completely uncertain
at that time. The general principle is
demonstrated in the case of an Aharonov-
Bohm ¢lectron interference experiment. We ex-
amine two examples of electron-environment
interactions — the interaction of the electron
with well localized spins, and the interaction
of the electron with the photon field in
vacuum. We have been able to show that the
above point of view 1is also valid for the
dephasing caused by electromagnetic fluctua-
tions in metals.??Y We explore the type of
dephasing each of these interactions yield.

§2. The Adiabatic Picture

Let us begin by describing the quantized con-
ductance in the adiabatic picture introduced
by Glazman ef al. Imagine a ballistic
(disorder-free) 2D wire, or electronic
waveguide, confining the electrons to the
region |yl <d(x), yielding a smooth constric-
tion. This is obtained by taking d(x) to be a
symmetric smooth function with limy-+:0=4d,
d(0)=dy< d and changing slowly from d to d,
over a scale L>»d, dy, A (A being the electron
wavelength). One now makes a Born-Op-
penheimer type separation of the ‘‘slow”’
longitudinal variable x and the ‘‘fast”
transverse one y. The y-problem is just a
square well having energies

E —ﬁ( ) I
n(x)_zm Zd(x))s ()

and wave functions

nn

1
Qﬁ(y)“—“*—r——d o 240

(y—d(x)=1n(y)>,
(2)

which satisfy the boundary condition
¢(y=td(x))=0vx. For soft walls, d(x) is



Observations on Conductance Quantization and Dephasing in Mesoscale Systems 203

(half) the effective width of the wave function,
including penetration beyond the classical turn-
ing points. As is familiar from the usual
separation, E,(x) plays the role of an addi-
tional potential for the mode »n. This potential
depends on »n and has the shape of a barrier
with a maximum proportional to (n/d,)*. For
a given Er, a finite number of modes will have
their energy above the barrier. This number,
Mumas, 18 the integral part of (2krdo/n). In the
adiabatic limit, tunneling below the barrier
and reflections above it are negligible and the
x-problem is well approximated by the WKB
method. It follows that .., modes have
T,,=49; and all the others have zero transmis-
sion, hence G=(e*/nh)nm... This establishes
quantization of G in this limit.

§3. Corrections to the Adiabatic
Approximation

In order to discuss the corrections,”® we
shall use the scaled variable u=x/L. Thus for
lul >1, d is a constant. Let us introduce the
adiabatic basis by considering eq. (2) for every
n. This basis spans the set of all relevant wave
functions at every u. A general wave function
w can be written as Y,=, C,(«)!n{(u)) which is
written to emphasize the ¥ dependence of the
transverse wave functions. Inserting y into the
Schrodinger equation, in terms of %, and pro-
jecting on mode m yields

) 0
,’,{,"‘2 C,'; ‘— " -3
C ; <m ™ n>+;C<m P™e n>
, ) 22mE .
—L CQO"l-L h2 Cm'—O, (3)

where ¢.=(mn/2d) and {m|A|n)> means in-
tegration over y only. Grouping all the
diagonal terms to the LHS and noting that
{ml(8/u) I m>=0 gives:

d

d
C:;’; +(kmL)2Cm= - Z (ZC,‘; <m ! 5{'

n#EmM
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+ C, <m 5;“2 n>), 4
with
62
2mE <m 5;;_2 m>

It turns out that %,, is the local wave number

along the wire. We can see that the term g3,
and the matrix element serve as a potential bar-
rier that each mode encounters, but this bar-
rier is different for each mode. Thus we can
define an A mode (Above barrier) as a mode
for which k,, is real for all #, and a B mode
(Below barrier) as a mode for which k,, is also
imaginary in a certain interval of u#. The
asymptotic solutions to (4) are the well known
WKB solutions that, far from the turning
points (k,,=0), take the form

¥, (u)=C (1) m(u)>

: exp (:’LS k,,,du) lm(u)). (6)
Vo -
It is seen that the different modes decouple
and therefore the adiabatic limit is obtained.
The lowest order corrections to the asym-
ptotic solution are obtained by iterating (4)
once and give interchannel scattering. Let us
assume an incident mode s from the right that
is A type. The leading corrections will couple
this mode to all other modes including the B
type ones. The coupling to the B type modes
is much more complicated and will be
demonstrated elsewhere?® to give similar
results. The transmission and refiection
amplitudes from the incident mode s to mode
m take the following form

1 S‘ 1 ( S“ ) 1
bps=— exp |iL\ k,du|—
L) Vi, P, Jk,

m

X exp (—iLS ksdu)ffg)(u)du, (7)
1

1 S' 1 ( 5‘” ) 1
Fins=—" - X —iL km du | —
L -1 Vkm P 1 ‘/7{—5

X exp (—:'LS ksdu)ffg)(u)du, (8)
1
32

Y S> + <m e S>) (9)
(here both m and s are A type). In the large L
limit, the integrands have quickly varying
phases and analyzing them by steepest descent
and stationary phase methods, one arrives at
the result that all the corrections to ¢, and 7,

are exponentially small in L. The details of the
calculation for both types of modes will be

with
0

fO= ( —2iLks<m
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presented in ref, 22,

The qualitative reason for the smallness of
the corrections is the strong cancellation in the
integrals due to the varying phases. We note
that there is no qualitative difference between
the interchannel reflections (m #s) and the in-
trachannel ones (m=s). This follows from eq.
(8) where the phase term in the expression for
rms depends on the sum of the two wave
numbers k,,+ k.

§4. Conditions for Accurate Quantization

We now demonstrate, based on the results
of Szafer and Stone,” (see also refs. 10-16)
that with a modest adiabatic widening of the
constriction from dy to d(x), X being the point
where a sudden opening occurs, is enough to
yield rather small reflections at x. Szafer and
Stone” have calculated the transmission and
reflection probabilities in the sudden geometry
numerically and showed that the exact
numerical results can be very well approx-
imated by a Mean Field Approximation
(MFA) which they have introduced. In this
approximation it turns out that the total
transmission probability from mode s i1s given
by:

T,=3 Ti= hafis 10
s - :'s_(KS_l_ks)z_'_J%: ( )
where
d(x) {4+
KS+U’=3(_7;_)S dgvki—q*. (11)
g1

The momenta k;, gs—) and g+, are calculated
at d(X)= (Nmax+ 1/ Noan)do, J5 in (11) is zero
and (10) takes the form:
4Kk 1
(Ks_kS)z .
4Kk,

T=2. Ti= (12)

i Ks+ks 2=
( ) 1+

At d(x), due to the adiabatic transport up to
X, the electrons will occupy only s« channels
out of the n, available ones. The difference
K;—k; can be approximated by the second
derivative (1/4)(d*k;/ds?) and after some
algebra we obtain the total reflections from
channel s by:

(13)

which is valid for n,=nn.+ 1. If, for exam-
ple, nm.=10 and d(x)=1.2d, it follows that
N.=nmax+2 and the reflections for s=#npax
(which are the largest) are O(107%). Thus, one
may say that in order to get accuracy in the
quantization of the constriction conductance,
one needs that it will open adiabatically to a
large enough (but still rather modest) width,
so that the sudden opening beyond that width
would not cause appreciable reflections.

We now turn to discuss the conditions for
the breakdown of adiabaticity at some d(x)
>d,, for gradually increasing d(x) but with
no sudden opening. This is relevant for
realistic experimental devices. Let us consider
the case where d(x) far from the narrowest
part do is very large. Obviously, for given
values of m and s and length L, (k,,— k)L will
become very small, for large enough d, and
therefore the phase in (6) will not oscillate rap-
idly and the previous results will not be valid.
In order to obtain some quantitative results on
tms and rys in this large d(x) regime we will first
calculate the indefinite integrals, denoted by
tws(1) and r.s(#). We then obtain the transmis-
sion and refiection amplitudes for a given inter-
val (uo, u) by taus(u)—tus(uo) and rps(u)
—rms(t), respectively. We also make the
assumption that k., ks, and f are approx-
imately constant over the interval (up, u). It
follows from the above considerations that:

y | 16 2dkrd’  ms
ms(x) - - - (m2_52)2 ’

(14)

and

4 nd’ ms
|rms(x)l =

n 2dkr (m*—s?)’
where m#s and d’ is the derivative of d with
respect to x, the non scaled variable. For
dk,>1, |r.! is much smaller than |¢,]. The
largest value x, x., for this approximation to
be valid is such that max,|f.| =0O(1) and
since the transmission is maximum for modes
m=s=+1 we obtain the condition

(15)

n n
4 2d(x)kr

Note that already for x <x, adiabaticity 1s lost
since we have strong interchannel scattering
but at x. the perturbative treatment used
becomes invalid. This condition can also be ob-

d'(x.)= (16)
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tained by geometrical considerations. At a
given d(x) the electron has a determined
transverse and longitudinal momentum and
therefore can be viewed as moving at an angle
O.(x)=tan"' (g;/ k). This angle depends only
on d(x) and since in the adiabatic limit the
transverse quantum number s is conserved the
electron adjusts its angle continuously as it
propagates along the waveguide. The motion
between the confining walls is ballistic and
therefore in order to have a definite angle for
every d(x), the distance, Ax, the electron
passes without changing its angle (i.e., the
distance along the x direction the electron
passes from the point it hits the lower wall to
the point it hits the upper wall) must be such
that d changes very little over that range. If we
now consider deviations from the adiabatic
limit and ask what is ¢’ such that 6;(x) will
correspond to d(x+4dx) with quantum
number s+ 1, we obtain (16). Using condition
(16) we obtain the total reflection probability,
at x., from mode s to all other modes:

— . 2
RS—Z |fms|2'~" |rs+l,sl +lrs—l,s|2

m . ]
“(sat%)
2d(x)kr

—( dO )4 SZ

d(xc)) Miax’
where we have used the relation, kr= (N7 /
2dy). Note that although the (interchannel)
transmission probability is large, the reflec-
tions are small even for the maximum mode
number s=nu.. If the consriction continues
to open up to larger d’, the electrons will
reach the point X where the geometrical-optics
rays will be parallel to the confining walls and
obviously from that point on the electrons will
not be affected by the constriction any more.
Therefore we expect that the above constric-
tion wiil be equivalent to a consriction that is
suddenly removed at x. The condition for the
local rays to be parallel to the constriction is

qs(X)
kr
Although eq. (7) is not valid at X, eq. (8) is,

and we obtain the following dependence of R,
on the physical parameters at x:

(17)

d’ = (18)

R oc( d \ s 19
*‘ d(f)) Mo 4
Note that the reflections at x,. are smaller than
the reflections at x by more than an order of
magnitude (i.e., for n,..= 10 the reflections at
X are smaller by two orders of magnitude),
although adiabaticity at x. is already lost. Let
us write egs. (17) and (19) in a slightly different
manner. At every x> x, (assuming adiabaticity
for xo<x<Xx.), the €lectrons occupy only #ax
channels out of the n,(x) available ones.
Therefore

2 4

S

Ri(x.)x and R,(x)oc (20)

na(xe)* n.(x)*

To achieve a reflectionless transmission,
even for a constriction with constant width, d,
it is clearly necessary to populate less channels
than the maximal allowed number
n.=(kr2d/ ). This can obviously be achieved
also by a potential barrier along the channel.
This barrier should be long enough to be
either fully transmitting or fully refiecting and
somewhat smooth to avoid resonances. A
smooth saddle-point potential, for example, is
satisfactory. Due to coulomb effects, potential
variations practically always exist in narrow
channels.

This may be part of the reason for the
observability of conductance quantization in
the existing experiments. Examining the quan-
tization by mode selection with a potential bar-
rier should therefore have the additional ad-
vantage of accurate quantization for adiabatic
barriers. An interesting feature of the channel
selection is the possibility*® of focussed emis-
sion of electrons from the sudden termination.
Corrections to the adiabatic approximation
are also relevant for the series addition of con-
striction conductances.**"

The corrections to the adiabatic approxima-
tion have very recently been considered by
Payne.?® He obtains the result (as in eq. (18))
that the adiabatic approximation always
breaks down for large enough width for any
rate of change of the latter. His discussion of
quantization does not emphasize the lack of
reflections, and the reversibility in space is in-
voked to explain quantization with more than
one constriction. We argue, however, that the
lack of reflection is crucial in this picture. Elec-
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trons that are relected and absorbed by a reser-
voir, are reemitted with a random phase and
reversibility is lost.

§5. A Spin Model for Dephasing,
Generalization

We will start by examining an interference
experiment done in an ideal Aharonov-Bohm
(A-B) ring. This experiment starts at /=0 with
an electron wave packet formed at the en-
trance point 4 with 2 components, one
heading to the right, and the other one to the
left. We will denote them by |r(¢=0)) and
| {(t=0)), respectively. Both of these com-
ponents have the same momentum magnitude,
P. After a time T=nR/(P/m) has passed the
two components reach the exit point B, dia-
metrically opposite to A. T is short enough so
that the spreading of the two wave packets can
be ignored. Then, the probability of finding
the electron at the point B is:

| W(B, t=T)*>=|r(B, T)+I(B, T)I|*
=\|r(B, T)I*+1I(B, T)|?
+2 Re [r*(B, T)I(B, T)}.
21)

The result of dephasing is a reduction of the
ratio between the interference term (the third
one) and the classical terms (the first two
ones.)

To illustrate the nature of that dephasing let
us look at such an A-B ring with one scatterer.
This scatterer plays the role of an environ-
ment, i.e., a degree of freedom which is not ex-
amined in the interference experiment. The
scatterer wiil be a spin 1/2 which is coupled to
the electron by the interaction (o is the scat-
terer spin):

J Voo, when the electron is in the region of
interaction,
0 outside this region.

The scatterer is located somewhere along the
left arm, so that the left partial wave interacts
with it along a region /« R, while the right
partial wave does not interact with it. (The in-
teraction may be thought of as an Ising-like
interaction with the fixed z component of the
electron’s spin.)

Now, if at f=0 the spin, o, is in an
eigenstate of o, then the scattering is elastic. It

causes the left component of the electron a
phase shift, which multiplies the interference
term by a phase factor. However, this phase
shift can be cancelled by applying an A-B flux
¢ inside the ring; it will not affect the A/e
oscillations of the conductance.

But if at =0 the spin is, e.g., in the state
|e.= + 1), the scattering is inelastic, and it
causes dephasing. This dephasing cannot, as
we shall shortly see, be cancelled by an A-B
flux, and it reduces the 4 /e oscillations. Let us
analyze such a situation in detail:

At {=0 the system’s (electron and spin)
wave function is

(lr(t=0+ (=00 R(g.=+1)

+lo,=—1). (22)

Under the semi-classical approximation, to
first order in V, the wave function evolves in
time to

V() (la,=+1) exp (—iVor)
+lo.=—1>exp (iVy1))
+lr(t (o, =+1)+o,=—1)), (23)

where [r(£)>, |{(¢)) describe the evolution in
time of the right/left partial waves in the
absence of the scatterer and T=//(P/m) is the
time the left partial wave spends in the region
of interaction. The probability of finding the
electron at the point B will then be:

| ¥(B, T)I1*=1|r(B, T)I*+ |I(B, T)|?
+cos (Vo1)2 Re [r¥(B, T)I(B,T)]1,

i.e., the interference term is reduced by the fac-
tor cos (Vo). An A-B flux, which multiplies
r*(B, TY(B, T) by exp(i2n¢/¢o) cannot
compensate for this reduction.

This result can be interpreted in two alter-
native ways:

(24)

a. The left partial wave changed the state of
the spin
This can be seen by noting that in (23) the
left partial wave rotated the spin by an angle
2V, as expected for a spin put for a time 7 in
a magnetic field V,. In the case of Vir=n/2
the wave function is

IH(TYlo=+1+1I(THlo=—1>, (25)

and the interference is completely destroyed.
In this case the spin acts like a measuring
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device — it measures the arm of the ring the
electron went through. Since the origin of this
gquantum interference is the uncertainty about
the path of the electron, this measurement
destroys it.

b. The left partial wave accumulated a
‘‘phase uncertainty’’ of = V,t
In this interpretation, we look only at the
electron and write its wave function as:

e Plr(TY+e* | (T)), (26)

where ¢, the electron’s phase, is now a
statistical variable whose distribution function
is

0.5 for the phase to be — Vyr,
P(phase)= 27)
0.5 for the phase to be + V.

When the interference term is calculated, it is
obtained as a function of the phase, and then
averaged over the phase distribution function.
The maximum phase uncertainty is *n/2,
and it is exactly this value of V7 which
destroys the interference.

One conclusion is, therefore, that the
physical process of dephasing by one scatterer
can be described by either of the two alter-
native and equivalent descriptions: (a) by
different electron partial waves leaving the en-
vironment in states different from each other,
or (b) by one (or some) of the electron’s par-
tial waves accumulating phase uncertainty. By
looking at another experiment in the same
system we will see that the important phase
uncertainty in our second interpretation is the
uncertainty in the relative phase of the two par-
tial waves at the time of interference. In that
experiment, interference is examined at the
point A after a time 27=2nR/(P/m), when
each partial wave completes a full circle. (This
type of interference gives rise to h/2e oscilla-
tions of the conductance). In our system, each
of these partial waves interacts once with the
spin scatterer. Hence, the wave function at
t=2T is (assuming Vor=n/2, for brevity):

(rRTY+ 1RT) g=—1D, (28)

i.e., the two partial waves leave an identical
trace on the environment, and the interference
is not affected. The phase of each partial wave
has a distribution function as in (27) but the

two phases are correlated. The |o,= + 1) com-
ponent induces a phase shift of —n/2 in both
of the partial waves, and the | g,= — 1) compo-
nent induces a phase shift of +z/2 in both
waves. The relative phase has no uncertainty
at all.

The foregoing example can be generalized
to the following statement: When an in-
terference pattern of a particle is examined
after the particle has interacted with an en-
vironment, then:

a. The effect of this interaction on the in-
terference term can be described by either one
of the two equivalent descriptions:

1. The interference term is multiplied by the
scalar product of the two environment states
that are coupled to the two partial waves.

2. The relative phase of the partial waves, ¢,
becomes a statistical variable, described by a
probability distribution, and the interference
term is multiplied by the average value of e*.
b. Thus, the interference is lost when,

1. The two partial waves shift the environ-
ment into states orthogonal to each other.
or, equivalently,

2. The average value of e” is zero, excluding
pathological cases, which happen when the
uncertainty in the phase, i.e., <4¢?*> is much
larger than 1.

c. When {A4¢?>« 1, the environment’s poten-
tial can be approximated by a single particle
(possibly time dependent) effective potential
V{x, t). Obviously, such a potential cannot
dephase the interference. This has been amply
confirmed by recent works on mesoscopic con-
densed matter systems.>” When the changes in-
duced by the interfering particle in the state of
the environment do not significantly change
the potential exerted by the environment on
the particle (i.e., when the interfering particle
does not feel a ‘‘back reaction’’ of the environ-
ment), this static potential is,

Vix, t)=jd{n}x*({r7}, OWVix, {nHxUnt, )
(29)

where x is the particle’s coordinate, {5} are
the environment’s coordinates and ¥ ({n}, ¢) is
the environment’s state as it evolves in the
absence of the particle.

This is usually the case when the environ-
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ment is a many body environment.??

This general statement is valid regardless of
the particle-environment coupling strength.
Its full proof will be given in a subsequent
paper.2! The essential ingredient of the proof
is the observation that if the environment in-
teracts only with, say, the left partial wave
then the scalar product mentioned above is

() Teilo Vibato.narf (30)

where T is the time ordering operator, V;(x,(t),
t) is the particle-environment interaction in
the interaction picture, and x,(¢) is the left par-
tial wave’s trajectory. Equation (30) is just the
expectation value of the time evolution
operator of the environment, given that the in-
terfering particle takes the left path. Since the
time evolution operator is a unitary transfor-
mation, it can be represented as e, where ¢ is
an hermitian operator. Then, the scalar pro-
duct of the two environment states equals the
expectation value of e,

Therefore, the phase, ¢ is a statistical
variable whose distribution function is related
to |xI2. When the environment’s back reac-
tion is negligible, the phase is,

¢=S Vilxi(1), 1) dt. (31)
G

§6. Interaction with Cavity Modes

A second illustration to the general state-
ment is found in the following example. The
interference of two electron’s trajectories
x1(t) and x;(¢) is examined in a cavity at zero
temperature. The electron interacts with the
electromagnetic vector potential. It is well
known that such an interaction causes a rela-
tive phase shift of (e/khc) | {AQa(2), )
(i (1) —Aa(), 1) ve())}di. (v the
electron’s velocity). The average value of the
vector potential in vacuum is zero, therefore
the mean phase shift is also zero. However,
there are quantum fluctuations of the vector
potential in the vacuum, and those will cause
an uncertainty in the phase shift. The uncer-
tainty will be,

4 2>—(i)2§d Sd ‘14 :
@)= e tYde [AGa (), 1) v(xa(?))
—A((1), 1) v(x(1))]

XA (27), ) v(x (1))

—A(x:(t) v(xa(t'))].
Now, let us look at the simple case in which
the two partial waves follow a 1D harmonic

oscillator trajectory in two opposite direc-
tions,* i.e.,

(32)

xl(t)= —Xz([)zR sin wol,
v1(1)= —v2(t)=woR cos wol. (33)

Then, the phase uncertainty is,
e 2
(AP = (—) S dtwoR
hc
X cos wot {A(R sin wqt, t)
+ AR sin wot, 1)}
XS dt’woR cos wot ' {AL(R sin wot’, t')

+ A (R sin wpt’, t’)}. (34)

The correlation function <A.(x, H)A.(x't")>
in vacuum is

CA(x, DA(x’, ')
hic?
= Quw,

(ku)
| k|2
where w,=ck,, and  is the cavity’s volume.

Substituting this expression into the expres-
sion for {4¢* (32) we obtain,

eik,,-(x—x‘)—i(uu(t—r‘) (1

), (35)

h
<A¢2>=4w8R2§dkl—EC,—

T |
S d¢ cos {-2* k(1 ( f)—xz(f))}

2 k%

[1=7e7)
Most of the contribution to this integral comes
from |kl =~(wo/c)x(1/ct). Since woR<«<c,
the dipole approximation is valid, i.e.,
ko (x(t)—x3(2))<« 1. The expression for (4¢*>
is then exactly the probability of a photon field
at T=0to absorb a photon from an oscillating
dipole of frequency wy. Since the photon field
is at 7=0, the most effective way to leave a
trace on it is to emit a photon. The time it
takes for the phase to be completely uncertain
is exactly the time it takes for the electron to
emit a photon. Since the accelerations of the
two partial waves are exactly opposite, the

X COS wyl ek (36)
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radiation emitted from each of them is in a
phase shift of 7z relative to the other. The
phase of the radiation contains the informa-
tion about the path taken by the electron.
Therefore, although the two partial waves
emit the same amount of radiation (and they
necessarily do, since in the dipole approxima-
tion they both feel the same potential fluctua-
tions), the trace they leave on the environment
must be different. This is seen in terms of the
environment’s wave function. The en-
vironment’s wave function is, up to first order
in the potential,

{vac)xi > layl |1 photon in k mode, (37)
A,

where the * sign refers to the environment
state coupled to the first/second partial wave.
The difference in sign reflects the phase
difference in the radiation.

Had the two partial waves propagated with
equal velocities in part of their trajectory, then
for that part the dipole radiation would have
caused uncertainty in each of the partial
waves’ phase, but not in their relative phase.
The relative phase uncertainty would then
have been accumulated by the quadrupole
interaction (next order in k-r). Then, the
cos [(1/2)k(x1(1)—x2(1))] in (32) should be
replaced by [k.(x1(¢)—x:(1))}), yielding

v
0

X {kr(xl(t)—xz(t))} COS wp! efclk!r

ks
b4 _—
]

In both cases, we conclude that the time it
takes for the phase to get uncertain is just the
time it takes for the partial waves to emit
photons that will identify them. By suitably
placed reflecting mirrors one can isolate the
photons of each path from that of the other
path, thus creating a situation where any
photon identifies its path.

An intersting issue is whether the dephasing
due to photons/phonons is different in a ther-
mal equilibrium vs. a coherent state. A calcula-
tion along the lines developed here shows that
a coherent state with any amplitude achieves
the same dephasing as a thermal state at zero
temperature. With increasing temperatures,

hc
<A¢2>=4w%R2S dk m

2

(38)

the thermal state dephasing becomes faster (in
distinction with the amplitude independence
in the coherent case). It is interesting that ex-
change of one oscillator quantum is enough to
effect dephasing in the thermal case, even
when the fluctuations in the number of
photons in the state are much larger than one
photon. This is due to the random phases of
the components of the wave function in this
case.

It is worth noting at this point that by replac-
ing the correlation function <A(x, t)A(x’, t’))
in vacuum (in (32)) by the corresponding cor-
relation function in metals and requiring
{A4¢X7)>=1 one immediately reproduces the
results obtained by Altshuler et al. for the
phase breaking time at low dimensions for
weak localisation.?2" Those results which
were obtained by solving the equation of mo-
tion of the cooperon have received convincing
experimental proof.®3% They have been
treated in the quasiclassical approximation in
ref. 31, in the weak localization centres.

§7. Discussion of Dephasing

The two examples given above, i.e., dephas-
ing by an interaction with a spin and dephas-
ing by an interaction with the photon field,
demonstrate different possible features of the
dephasing processes. First, and simplest, is the
question of a transfer of energy. As seen from
these examples, dephasing might involve an ex-
change of energy between the electron and the
environment (the photon field case), but it cer-
tainly does not have to (as in the spin case).
Second is the question of the range of interac-
tion. The interaction with the spin is limited in
range, whereas the interaction with the photon
field is extended. There are some interesting
questions concerning each of the two cases.

Let us first look at the local interaction case,
the spin example. In reality, the spin is coupl-
ed to many other degrees of freedom, i.e., a
bath. Once the interaction with the spin is
over, the spin relaxes to equilibrium with the
bath. Can this relaxation wipe out the trace
left (in our example) by the left partial wave
on the spin? The answer is no, and it is based
upon a general statement:

A trace left by an electron on the environ-
ment can be wiped out only by the same elec-
tron interacting again with the environment,
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Internal interactions of the environment can-
not wipe out this trace.

The proof of this statement follows simply
from unitarity. The scalar product of two
states that evolve in time under the same
hamiltonian does not change in time.
Therefore, if the state of the system (elec-
tron +environment) after the electron environ-
ment interaction is over is

rED @ x> FHED® I x oy (39)

then the scalar product {x'n () x5.(1)> does
not change in time, The only way to change it
is by another interaction of the electron with
the same environment. Such an interaction
keeps the product <y () x2.()>RLr(1)
|7(¢)> constant, but changes {xm ()1 x 2. (¢ ).
The interference will be retrieved only if the or-
thogonality is transferred from the environ-
ment wave functions to the electronic wave
functions, which are not traced in the experi-
ment,

The statement that was proved here is useful
in many interference experiments. For exam-
ple, in neutron Bragg scattering, the neutron
might flip the spins of the scattering nuclei in
the lattice. Those spins interact with the lattice
in a time scale 7, the spin lattice interaction
time. Our statement then shows that the ratio
between T, and the time of the experiment is
of no relevance to the experiment. It is only
the ratio of 7, to the neutron-nuclei interac-
tion time that matters.

The local interactions discussed above are,
in fact, scattering processes. As such, it is
sometimes simple to analyse the trace they
leave on the environment. For example, a ques-
tion has been recently raised*" about possible
dephasing by high frequency Einstein
oscillators in their ground states. Reference 31
considered conduction electrons in a metal
that do not have enough energy to excite such
an oscillator. Now, since scattering processes
conserve energy, and since the ground state of
a harmonic oscillator is nondegenerate, there
is no possible trace the electron can leave on
the oscillators. Therefore, those processes do
not dephase.

The situation is different in case the interac-
tion is still on when the interference is exam-
ined. A discussion of this case will be given in
a subsequent paper.2"
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