221

TOWARDS A TWO VECTOR FORMULATION OF
QUANTUM MECHANICS

Y. AHARONOV
Department of Physics & Astronomy, The University of South Carolina
Columbia, South Carolina 29208
USA
and Physics Department, Tel Aviv University
Tel Aviv
Isracl 69978

and

D. Rohrlich

Physics Department
Jerusalem University
Jerusalem Israel

Abstract
A two-vector formulation of Quantum Mechanics is proposed. The new formalism permits a covariant
description of the “collapse” of the wave function. A number of surprising predictions of the new
formalism arc discussed.

Quantum systems are generally described via wave-functions, or states. The state
is supposed to represent all our knowledge about a quantum system; form the state we
predict its behavior. However, this standard description via states has serious
shortcomings. Indeed, the standard formulation fails to accommodated basic symmetries
of spacetime: Lorentz covariance and time-reversal symmetry at the microscopic level.
These flaws are usually glossed over, but efforts to deal with them are gradually yielding
clues how quantum mechanics might better be formulated. We find that a description of
quantum systems in terms of two state vectors is needed. One state evolves forward from
initial conditions, as usually, while the second evolves backwards in time from future
boundary conditions. Such a formulation generates all the results of standard quantum
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mechanics, and in addition leads to surprising new results that are hard to obtain using the
conventional description. We will present the two vector formulation here, and also
summarize the research that has inspired it.

1. The standard formulation of quantum mechanics is not time-symmetric even
at the microscopic level. The breakdown of time symmetry reflects our habit of predicting
future events on the basis of initial conditions; the latter have occurred and are given data,
the former have not occurred and fully depend on the initial conditions. We inherit this
habit of thinking from classical mechanics. There, it entails no violation of time symmetry,
because classical physics is deterministic. But quantum physics is not deterministic, and
indeed the usual dichotomy of initial conditions vs. equations of motion is not particularly
natural there, for quantum mechanics sets strict limits to what we can know about initial
conditions. We have the additional problem of inferring, from given data, what values
dynamical variables took at earlier times. When such retrodictions are considered, along
with predictions, time symmetry is restored, as the following example shows.

Consider a sequence of measurements, at successive time tj, t;, and t3 _on a
quantum system . At time t; we measure the operator A so the system is prepared in an
eigenstate which we will denote la>. At time t3 we measure the operator B and find the
system in the state Ib>. (A4 and B need not commute.) In between, at time t2, the operator
C is measured; we are informed of this measurement but not told the result. Nevertheless,
we can make a good prediction about the outcome of the measurement. We know that the
probability of an outcome Icj> for the measurement C, given the initial state la>, is

|< C,-IU (rz,t1)|a >|2

where U(ty,t7) is the unitary operator for time evolution from tj to t5. Likewise the
probability of the outcome Ib> given an initial state lc;> is

|< U (13,1,)|c; >I2

These are the only quantum mechanics results we need to know. It now follows! from
classical laws of probability that the probability that the state Ic;> was found at t; is

__1<blU @, t)le, >PI< clU(t,, t)la >
©OY I BUt )l SP< e U, tla >
J

(1)

Why? Suppose we begin with an ensemble of N identical systems. Each system begins in
the state la>, but we do not always end up in the state Ib>; that only happens in

N - Zp(blc j)p(c ,—la) cases, on the average. (We use the notation p (flg) to denote the probability

of f given g.) In this smaller sample that remains, the outcome lc;> is found Np (blci) p (cila)
times on average. Hence the probability pj is given by Eq. (1).
With a slight rewriting, Eq. (1) becomes manifestly time-symmetric:
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< cJUCty,tlb SP1< U (1, 1)la >
Y 1< U (Lt b >P1< ¢ JU (1, 1) a >
J

P=
(19

where U(t;, tj) = U'l(tj,ti) = UT(tj, ti). Eq. (1") suggests the following description: the
outcome of a measurement of C at t7 can be calculated in terms of two vectors la> and 1b>,
which represent initial and final boundary conditions, respectively. Evolving la> forwards
in time from tj to 2, and Ib> backwards in time from t3 to t3, we project Ici> onto these
two vectors to find the amplitude for the outcome Ic;> (up to a normalization). Such an
interpretation 2 is just as tenable as the conventional one, at least in the present example,
and has the added virtue of being time -symmetric.

Eq. (1) suggests something more. (For simplicity let the operators U(tj, tj) equal 1
here.) Note that if the operator C had been chosen to be A, the outcome la> would have
been certain at tg; whereas if the operator B had been chosen for C, the outcome Ib> would
have been certain. Even if A and B are non-commuting observables, we seem to be able to
assign a definite value to both these operators at the intermediate times. Could there be
some sense in which both have simultaneous reality? That question will be explored
below. However, we are so far dealing with the special case where a measurement was
definitely made between t; and t3, only we do not know what the measurement was. Egs.

(1) and (1”) do not entitle us to talk about values of an operator C at t2 if no measurement
was made then. As long as only particular operator was measured, we cannot say much
about values of other operators, for the measurement of C represents a disturbance of the
system. But can the time-symmetric description be extended to a broader class of
interactions that do not disturb the system between initial and final states? We will see that
an extension is indeed possible. But we defer the question and focus on another
shortcoming of the conventional description.

2. The problem of relativistic covariance in quantum mechanics3 arises as
soon as we consider as simple a system as two spin-1/2 particles prepared in a spin-0 state:

35 —|J, =7

= %[IT >4 T :>,]

for particles located to points r and s, spacelike separated. Since the total angular
momentum is zero, a measurement of any component of spin on either of them represents a
measurement of that component on both of them. Therefore the conventional
(Copenhagen) interpretation of quantum mechanics asserts that a measurement on either
particle instantly reduces their combined state X to a direct product of one-particle states,
regardless of how far apart the particles may be. We are led directly into a paradox, for
what is simultaneous in one Lorentz frame is not simultaneous in another; while a
measurement of the spin of either particle acts locally and so is covariant. Thus it seems
each Lorentz frame implies a different version of when the two particles decouple, and we
are left without any covariant state definition.

More formally, the paradox is this: on the one hand, we have different assertions
about what is the actual quantum state for these two particles, by different observers; on
the other hand these different assertions correspond to physically different worlds. What
makes these worlds physically different? It is the fact that, in principle, we have ways to

measure non-local properties.3 For example, the state X is characterized by J = 0, where J
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1s the spin quantum number for the spin-correlated two -particle system. This property of
X 1s non-local: it belongs to neither particle alone. A verification that J = Q constitutes a
non-local measurement. And it can be accomplished by means of two local devices, on atr
and the other at s. Consider an interaction Hamiltonian

H, ==-g(t) Y (0] q/+ 0 q).

i=x,y,2

Here g(t) 1s a function with support only in a short interval (ty, tp); its integral over the
. . . r . . .
interval 1s one. The matrices o; represent the i-th component of spin for a particle located at

. r . . . .
r, etc. The variables g; belong to the measuring device located at r, etc.; their conjugate

variables, ; correspond to actual pointer or indicator positions on the device. Now choose
the initial state of the two devices to be as follows:

q;—q; =0, n;+m; =0. (2)

. . . . . r S r S .
This choice is always available since [q; - qi , Tj + ©] ] = 0. After completion of the
measurement, we have

(change in ]) = ijdf[Hima 7;‘,']: o;, (3)

and similarly for the change in n;. So imagine that immediate after t, each local device

. r S . . .
records the final value of mj and t{ for posterity. Even without any further lapse of time

(necessary for comparing the results at r and s) a measurement that J = 0 is essentially
complete. From Egs. (2-3) we deduce that

(change in 7 + 7)) =[n] + 7}] =0]+07=0, if] =0

(4)

Conversely, if Eq. (4) is found true when the measurements at r and s are compared, we
have verified (in retrospect) that the two particles were in the combined state J = 0. The
interval (t1,t2) can in principle be made arbitrarily short, so the verification of J=0 can be
practically instantaneous. Furthermore, if in the initial state J = O then the measurement

r S . .
leaves the state unchanged: qj + q; =0 remains true throughout the measurements and so is
true at all tmes as well, for all components i.

When one observer, say in the lab frame, measures one particle of a pair, he

concludes that the state of both reduces instantly, The reduced state must be | T>, 11> or

11>, 1 T>s after a measurement of either 0; or 0;. Furthermore, he could have
determined, an instant earlier, that the pair was in the non-local state X. For an observer in
a rocket frame, neither of these conclusions is acceptable. The first conclusion fails
because state reduction of the two systems cannot be simultaneous to both observers. The
second conclusion fails because in the rocket frame, the non-local measurement of the state
X 1s not instantaneous: the devices at r and s act during different time intervals. These
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actions thus disturb the state of the system from the point of view of the rocket frame.
Either observer alone can verify the state of an extended system in his own Lorentz frame;
but if both want to verify their independent descriptions, they will interfere with each other.
There is no covariant description of the state that can be confirmed by experiment on both
frames. the state is not something covariant: two observers cannot both verify their
independent versions of the state history.

The two-vector formulation offers a way out of the paradox. We have two vectors,
one propagating forwards in time from an experiment in the past, and a second propagating
backward in time from an experiment in the future. The only reduction takes place locally,
when an experiment is made. Therefore, in the example of the two correlated spins, we
can always appeal to future measurement of the second particle which will complete the
definition of the future boundary conditions. If the initial state was X and experimenters
later find the particle at r polarized along the positive z-axis and the particle at s polarized
along the positive x-axis, then the final boundary condition for the system is

IT > +

:/%IT > [ A >,].

But even without knowing the result of the measurement a s, we know that any
measurement of the z-component of spin at s will find it polarized along the negative z-axis.
The boundary condition at r enforces this correlation, without our needing to specify a
moment when it becomes true as a result of non-local state reduction. It is easy to check,

from Eq. (1%), that between these boundary values the state |l>g has probability 1. And

since the past and future boundary values the state | 1> has probability 1. And since the
past and future vectors used in this description are determined by events (local experiments)
in spacetime, the two-vector formulation 1s automatically covariant: the two vectors
transform covariantly along with the events that define them.

Here we begin to see how the language of two vectors may actually be more
consistent that the conventional language. In non-relativistic quantum mechanics, the state
is a useful tool for calculating all possible outcomes--not only of actual experiments, but
also of experiments that could be or could have been performed. It transforms covariantly
under the appropriate group, the group of Galilean transformation. When we consider
Lorentz transformations, we find that the state does not exist at all in a covariant way. The
two-vector formulation restores covariance and at the same time answers the same need: it
allows us to predict what will result, or what would result, or what would have resulted,
from an experiment in between the initial and final boundary conditions. These predictions
will in general be uncertain, and they will agree in every respect with predictions of the
conventional formulation. The advantage is simply that the two-vector description will
itself be covariant, not just its predictions.

The reader may object: predictions for actual or potential experiments can be made
using the two vectors, but if these experiments are performed, they will in general change
the evolution of the system. Since the future boundary condition depends on this
evolution, the analogy with the conventional formulation does not work! Let us consider
this objection in relation to the two-spin system described above. There, we saw that once
the spin of one of the particles had been measured, the two-vector formalism predicts the
other to have the opposite spin (if the same component is measured); this result holds no
matter what the future boundary condition on the second particle may be. True, if the
measurement is actually performed, it disturbs the two vectors that previously described the
system, by inserting new intermediate conditions. But these intermediate conditions do not
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destroy the original two vectors; they only limit their propagation. Thus, if we are given
boundary conditions at t] and t3 and insert an experiment at tp, the state at t3 still propagates
forwards and backwards, but it only propagates backwards as far as t2, not to t;. Similarly
the state at t] propagates to t2 and not to t3. The experiment at tp now propagates forwards
and backwards. However, the post selection of the ensemble at t3 may look different now,
because the future boundary condition is being applied to a disturbed ensemble. In contrast
with conventional quantum mechanics, the ensemble depends on the experiment chosen. A
departure from the conventional notion of an ensemble is apparent, but the ensemble of the

two-vector formulation is in many cases the natural one, e.g. for any experiment that is
described by an S-matrix.

3. Another objection may be raised: Perhaps the two-vector formulation
provides a more flexible language in cases where the conventional formulation has
problems. But does it justify introduction of a new formalism? Is it not just a matter of
taste, how a theory is best stated? This point is well taken. The introduction of the two
vectors in place of one is a big step, and it is not obvious that it leads to a useful formalism.
In particular, we have the following question. Conventional quantum mechanics defines
expectation values of operators in states via

(vlAw)

<A = (vlw)

where <A> is the expected value of the operator A in the state y. In a two-vector
formalism, this expression would naturally generalize to 4

ca> =¥V
(Wzl W1)

in a interval between states ] and yo. But conventional quantum mechanics does not
assign any particular meaning to this expression.

Remarkable, a physical meaning can indeed be given to the expression in Eq. (5).
This kind of expectation value, measured between two different states, will be referred to

as the weak value of an operator A. (Of course, when Yo =y the weak value becomes
strong.) It turns out that by ‘weakening’ the measurement of A, we can strengthen the
claim that the two vectors actually describe a system during the intervening period. To
‘weaken’ in this context means to diminish interference with the system, at the cost of
deceased accuracy. This notion of a ‘weak measurement’ complements the two-vector
formalism by introducing a broad class of measurements that can be made without
significantly disturbing boundary conditions. It sounds paradoxical, and leads to
apparently paradoxical behavior, but in fact accords with conventional quantum mechanics.
Let us take an example:

We want to measure the orientation of a ferromagnet made of N spins.> To do this
we use a measuring device which interacts with the ferromagnet according to a Hamiltonian
of the von Neumann type:

H_ =—g(1)gA.
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A is an operator which we wish to measure; in this case, a spin component. As before, g is

canonically conjugate to =, the pointer setting, and g(t) is a normalized function with
compact support. But this time we choose the initial state of the device to be a gaussian in

q, with spread equal to 1/4/N/2. In the n-representation the initial state will also be a

gaussian, with spread equal to YN/2. We select for an ensemble in which all the spins
were initially polarized along the positive x-axis, and finally polarized along the positive
y-axis. Naturally, for large N this is an unlikely set of boundary conditions, but there is no
limit to how many tries we can make until we get the ensemble, so let us assume we have
1it. Because we have chosen a diffuse initial state for the measuring device, a measurement
of Ly induces a change in Ly of magnitude

e
YN/2 2

which is of order VN/2, or less. Similarly, a measurement of Ly entails a disturbance in
the magnitude of Ly of this order. Given the initial and final boundary conditions, we are

justified in taking the value of both Lx and Ly to be N/2 (up to corrections of order YN/2)
throughout the entire period.

However, we can draw from these results another one which looks quite
paradoxical: Let us measure the component of spin along the line bisecting the two axes, i.
e. choose the interaction Hamiltonian to be

AL,=—~i[dt g(t)q[L, L,|= gL, <

H, =—g()g(L,+L)/2;

then the state of the system after the measurement is
explig(L,+ L)) /VZ}|L, = i"f>|n=0),

where |1t = 0) represents the gaussian in ® centered about zero. Including the post-
selection of states with Ly = N/2, the state of the apparatus after the measurement is

L,=-’g->1t=0>

=g N % ==0)
up to a term of order 1 in the exponent, which is otherwise of order YN. (The exponential
of Ly + Ly has been written as a product of exponential, using the Baker-Campbell-
Hausdorf relation and estimates of the size of q.) The result, then, is that the gaussian in p
has been shifted by approximately N/V2, exactly as if Lx and Ly added classically to yield a
vector Y2 times larger than possible!

Thus, by ‘weakening’ the disturbance induced by successive measurements of Ly
and Ly, we have shown that the weak value

_ N| ia(L+L )2
(L:v - ?Ie ,
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L+L,

L =Y L —N/2>
<L,+L> _\ 7 el N2 _N
V2, (L,=n/L, = N]2) V2

corresponds to a genuine (and surprising) physical process, albeit an infrequent one.
Clearly, we are just getting started; this is just one of many possible phenomena. To
exhibit a similar result involving.a single spin, we consider a weak measurement of a z-

component of spin, G, between an initial state
]
O, = —-2'->

and a final state polarized along the positive x-axis. The expected weak value of G, 1s then
arbitrarily large:
olt)

§> =tan—‘;—.

Such a result looks far removed from anything physical. Nevertheless, an experiment
designed to measure 6, under these conditions will indeed yield this ‘impossible’ value!

The result can be derived rigorously,? but it may be more enlightening to follow what
happens intuitively: A beam of spin-1/2 particles passes through a stern-Gerlach device
which polarizes them alone the z-axis, splitting the up and down components which then
impinge on a screen. However, the polarization is so weak that the width of the beam 1s
much larger than the separation induced by the polarizer. The wave function near the
screen, for the variable z, would look like two very broad gaussian peaks slightly separated
one from the other. But the effect of the boundary conditions is to give those two peaks a
relative phase that makes them cancel almost every where, except for a tiny peak far from
either of the original peaks, at a deflection corresponding to the predicted absurd value of

o : : :
tan5. Of course, to get these results requires a large beam population, since many of the

I"j) = cos%

1 - o
0’1—5>+sm—2—

trials will not pass the boundary conditions. However, the experiment can proceed as
slowly as desired, so that at any moment only one particle is present in the apparatus, and
thus this is really an effect belonging to the particles in the deflected peak as individuals.
This effect may be regarded as a quantum stunt, a straightforward if unanticipated
consequence of standard quantum mechanics, or it may be that we are seeing a qualitatively
new aspect of quantum behavior that was never understood before. In either case, the
weak measurement supplied by the two-vector description proves itself physically
meaningful, and the tow vector formulation makes it easier to discover such effects. A
number of other examples provide further reason to accept these effects as physically
meaningful and not just quantum stunts. As a final example, let us consider a particle
trapped in a finite potential well. As is well known, such a particle can ‘tunnel’ to a
classically forbidden region where its total energy is necessarily less than its potential
energy V. We ask in what sense we can observe that such tunneling takes place. If we
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measure the position well enough to localize the particle strictly outside the well, it will be
in a superposition of energy eigenstates, some with energies greater than V. On the other
hand, if the particle is in a definite eigenstate of energy with E < V, and a measurement of
position is made, the particle may tumn up either in the well or in the forbidden region. A
genuine tunneling situation has the particle in the forbidden region with energy E < V, but
quantum mechanics apparently forbids us from observing such tunneling.

Now let us consider an ensemble of particles pre-selected to an energy eigenstate
and post-selected by a measurement of position. In the intermediate time we make a

measurement of the kinetic energy. The measurement proceeds via an interaction
Hamiltonian

2

H,= —S(I)QL
2m

where the canonical conjugate of q is &, a pointer setting on the device. In an ideal

measurement the initial and final settings would be free of error, but any realistic
experiment contains errors. Thus we can take the initial state of the pointer to be

Pin= cxP(—nzf 62)

introducing errors of order & in the kinetic energy. The pre-selected state of the particle

will be, by assumption, IEy). The post-selected state will be a position eigenstate Ixo) deep
inside the classically forbidden region., Realistically, this will also be a gaussian centered

around x, with dispersion A. The final state of the apparatus will thus be (taking into
account the interaction Hamiltonian):

¢fu 2 (I = x‘leiqul2MIE = E0>¢in'

Now comes the logic of the weak measurement. We would like to choose and xg so far
from the potential well that the particle must have been outside the potential well before the
measurement of kinetic energy. An explicit calculation shows that the probability of
finding particles inside the potential well becomes negligible when

Xy >> L.
m A

When the precision of the kinetic energy measurement is increased (6—0), the post-

selected position must be ever farther out (xo — =2). We now ask what is the final state of
the pointer p for particles satisfying this condition. Another explicit calculation shows that
the final state is again a gaussian with the same spread, but with the peak at the value E- V,
a negative value, Thus precisely in the case of particles found so far from the well that they
could not have been there before the kinetic energy measurement we find the ‘impossible’
negative values for the kinetic energy.

From the point of view of standard quantum mechanics all this is a game of errors
of measurement. An ideal measurement of kinetic energy can yield only positive values,
since the eigenvalues of p2/2m are positive. Realistic measurements, however, have errors
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and thus negative values are possible. They also disturb particle positions, but the
disturbance is bounded along with the accuracy of the measurement. Hence it is possible to
localize a tunneling particle far enough from the well while getting negative readings for the
kinetic energy. But this fantastic conspiracy of cancellations seems to be telling us, in
straight forward language, that genuine tunneling can be observed if we design subtle
experiments, as prescribed by a two-vector formalism involving weak measurements.

To conclude, this paper has pointed out some shortcomings of the conventional
formulation of quantum mechanics, relating to Lorentz covariance of states and time
symmetry of predictions and measurements.

A new approach, based on pairs of vectors evolving forwards and backwards in
time, has been offered to remove these shortcomings. But the two-vector description
offers much more than a reformulation of familiar results. As a formalism of
recalculations, it introduces a host of unexpected and peculiar phenomena. We have seen
examples of spins vectors adding classically, ‘impossible’ values of spin projections and
observable negative kinetic energy. The new formalism paints an entirely new picture of
quantum reality for us. This new picture of quantum reality is not yet fully clear to us, but
we may hope it will involve a new understanding of time, since in this formalism quantum
states propagate in both time directions.
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