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Abstract

We discuss the dephasing of quantum interference due to the interaction of
the interfering particle with its environment. We interpret this dephasing using two
descriptions. One examines the way the interfering waves change their environment,
and the other examines the quantum uncertainty in the phase shift induced by the
environment. We demonstrate the equivalence of the two descriptions, and focus
on the case in which the potential exerted by the environment on the interfering
particle depends on the history of that particle.

1. Introduction

The two slit interference experiment is often used as a starting point in the
description of quantum mechanics (). When the path of the interfering particle is
not measured, says the moral of that experiment, an interference pattern is seen
on the screen. In principle, such an experiment can use interfering objects of all
scales, from microscopic electrons to macroscopic billiard balls. Yet, in practice,
the first is experimentally observed, while the latter is not. The disappereance of
quantum interference in the macroscopic scale is believed to be due to two reasons.
First, the de-Broglie wave length of macroscopic objects is very small, and second,
the interaction of those objects with their environment supresses interference effects
(2)(3), In this work, and in earlier works on the subject (#), we investigate the second
reason. We do not discuss the first reason here, but only comment that recent
experiments in mesoscopic systems have allowed the observation of interference

effects even when the relevant wavelengths are very short (%),
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In our previous works, we have used two descriptions of the way the interaction
of an interfering particle with its environment might supress quantum interference.
The first regards the environment as measuring the path of the interfering particle.
When the environment has the information on that path, no interference is seen.
The second description answers the question naturally raised by the first: How does
the interfering papticle ”}now”, when it reaches the screen, that the environment has
identified its path? We have proven that the two descriptions are equivalent. In the
present work, we will review those two descriptions, and dwell on some subtleties
arising when the interaction of the particle with its environment depends om its
history, i.e., it is non-local in time.

As a guiding example, we consider an Aharonov-Bohm (A-B) interference ex-
periment on a ring (see Fig. 1). The A-B effect has been proven to be a convenient
way to observe interference patterns in mesoscopic samples, because it provides an
experimentally easy way of shifting the interference pattern. This experiment starts
by a construction of two electron wave packets, {(z) and r(z) (I, stand for left,
right), crossing the ring along two opposite sides. We assume that the two wave
packets follow well defined classical paths, z;(t),z.(t). The interference is exam-
ined after each of the two wave packets traverses half of the ring’s circumference.
Therefore, the initial wave function of the electron (whose coordinate is z) and the

environment (whose set of coordinates is denoted by 7) is:

P(t = 0) = [I(=z) +7(z)] @ xo(n) (1.1)

At time 7o, when the interference is examined, the wave function is, in general,

P(70) = Uz, 70) ® xi(n) + 7(z,70) D x+(n) (1.2)

and the interference term 1is,

2 Re [1(@,m)r(e,m) [ dnxi(m ()] (13)

Had there been no environment present in the experiment, the interference term
would have been just 2Re[l*(z,To)r(z,7o)]. So the effect of the interaction 1s to
multiply the interference term by [ dnx;(n)x-(n). The first way to understand this
effect is seen directly from this expression, which is the scalar product of the two
environment’s states coupled to the two partial waves. At ¢ = 0 these two states
are identical. During the time of the experiment, each partial wave has its own

interaction with the environment, and therefore the two states become different.
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Since the environment is not observed in the interference experiment, its coordinate
is integrated upon, i.e. the scalar product of the two states is takes. When the two
states do not overlap at all, the final state of the environment identifies the path
the electron took. Quantum interference, which is the result of an uncertainty in
this path, is then lost. Thus, interference is lost when the two interfering partial
waves shift the environment into states orthogonal to each other, i.e., when the
environment has the information on the path the electron takes.

The second explanation for the loss of quantum interference regards it from the
point of view of how the environment affecis the partial waves, rather than how the
waves affect the environment. It is well known that when a static potential V(z)
is exerted on one of the partial waves, this wave accumulates a phase (A system of
units where h = 1 is applied.):

6= [Via)a (1.4)

and the interference term is multiplied by . "A static potential” here, and
throughout this paper, is a potential which is a function of the particle’s coor-
dinate and momentum oaly, and does not invelve any other degrees of freedom. For
a given parlicle’s path, the value of 2 static potential is well defined. When V is not
stalic, but created by environment degree(s) of freedom, its value is not well defined
any more. The uncertainty in its value results from the quantum uncertainty in the
state of the environment, Therefore, ¢ is not definite, too. In fact, ¢ becomes a
statistical variable, described by a distribution function P(4). (For the details of
this description see ref. [4].) The eflect of the environment on the interference is
then to multiply the interference term by the average value of €%, i.e.,

wﬂ=]mmﬂw (1.5)

The averaging is done on the interference screen that shows a sum of many interfer-
ence patterns, corresponding to different environment states. Since e is perindic
in ¢, (¢!} tends to zero when P(¢) is slowly varying over a region much larger
than one period, i.e., 2n. Hence, when the uncertainty in the phase becomes of the
order of the interference pattern, interference is lost. In the Feynman—Vernon ter-
minology, {e*#) is the influence functional of the two paths taken by the two partial
waves. This is, then, the second explanation for the loss of quantum interference.

Our statentent of equivalence between the two explanations is then put into an
equation,

«%=]@ﬁMnm (1.6)
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When the environment measures the path taken by the particle, it induces a phase
shift whose uncertainty is of the order of 2.

2. Two examples of dephasing

We will nowiemonsh'ate the equivalence of the two descriptions on two simple
examples, before we proceed to the more complicated case of an history—-dependent
interaction with the environment. First, we consider an environment composed of
one heavy free particle. Initially, this particle is localized somewhere along the right
arm of the ring, and its average momentum is zero. The coordinate and momentum
of this particle are denoted by n and p,, respectively (see Fig. 2). The particle’s
mass, M, is large enough so that %5’-1'0 & &én, where 7y is the duration of the
experiment. Consequently, the particle’s wave function does not change appreciably
during the experiment, and its kinetic energy plays no role in its time evolution.
So, our environment is composed now of one degree of freedom, with no significant
dynamics of its own, but with an infinite dimensional Hilbert space. The interaction

between the interfering electron and the environment is assumed to have the form
Hine =V(z —n) (2.1)

where V is non zero within some short range of interaction. z here is the position of
the interfering electron on the ring, while 7 is, e.g., the position of the environment
particle on the plane of the ring (see Fig. 2) .

As before, the experiment starts with the initial state

(=) +7(2)) © xo(m) (2:2)

The left partial wave does not interact with the environment, so that its propagation
does not affect the latter. The right partial wave interacts with the environment,
and this interaction results in a momentum exchange between the right wave packet
and the environment particle. When this momentum transfer is larger than the
momentum uncertainty of the environment particle, this particle measures the path
the electron traverses, and quantum interference can no longer be seen. On the
other hand, the uncertainty in the environment particle position, én, makes the
potential V(z — 1) uncertain, and then the shift in the right partial wave phase
becomes uncertain, too. As the following paragraphs show, when the phase of

the right partial wave becomes completely uncertain, and the interference pattern
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becomes a sum of mutually canceling terms, the environment particle measures the
electron’s path.

The wave function at time 7y is,

$(ro) = lU(n0)) ® xo(n) + |r(70)) ® exp( — [ V(zo(t),m)dt)xo(m)  (2:3)
The interference term then becomes

2Re [I*(z,70)r(z,70) (xo(m)le ™ Jo" V(e Omty o ()] (2:4)

Hence, the whole effect of the environment on the interference term shows up in the

expression,

(xo(m)le ™" Jo” ViE@mdty oy (2.5)

As before, this expression can be interpreted in terms of the effect of the electron on
the environment, or in terms of the effect of the environment on the electron. The
first follows from looking at eq. (2.5) as a scalar product of two environment states,
one coupled to the left partial wave, and the other coupled to the right partial wave.
The second is a bit more subtle. For a givenn, ¢(n) = [;° V(z-(t),n)dt is the phase
shift the electron would have experienced, had the environment particle been in a
position 1. Eq. (2.5) is then just

fxﬁ(n)e‘qb(”)Xo(n) dn

9

The limits of the last integral depend on the function ¢(n), and are not relevant

(2.6)
2 ., dn
e _dda do

X0 (U(‘Ib))

for our present discussion. (In cases where several values of 7 lead to the same ¢,
the right hand side of this equation has to include a summation over these values
of 7.) The last integral leads us to the second interpretation: this integral is the
average value of e'?, averaged over a probability distribution for the phase shift ¢.
This distribution function, as seen in (2.6) , is

2 dn
do

The effect of the environment on the electron, which would have been a well de-

P(¢) = |xo(n(¢)) (2.7)

termined phase shift for a "classical” environment, becomes the average value of
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all possible phase shifts when the quantum nature of the environment is taken into
account.

When does the environment destroy the interference pattern 7 Again, there are
two ways to answer this question, corresponding to the two interpretations discussed
above. The interference term reduces to zero when the environment’s state coupled
to the right partial wave is orthogonal to the one coupled to the left partial wave, or,
alternatively, the interference term reduces to zero when its average value, averaged
over all possible states of the environment, is zero. By further inspection of (2.6) ,
the second condition can be rephrased in terms of the phase distribution function

P(¢). The environment multiplies the interference term by the factor given by (2.6)
, and this factor s,

(e) = / P($)e®dp = ¥ ] P($)e = dg (2.8)

where (¢) = [ ¢ P(¢) d¢ is the average phase shift. If P(¢) is a narrow distribution
function, that is, if (§¢?) < 1, equation (2.8) can be approximated,

. . . To
(€9) ~ ®) = ¢ [0 Vi (1))dt (2.9)

The environment induces then a phase shift proportional to the expectation value of
the potential. Hence, as far as the interfering particle is concerned the environment
potential can, in this limit, be replaced by a static potential V(z).

On the other hand, when P(¢) is very broad, i.e. (6§¢%) > 1, there is an
appreciable probability for various values of phase shifts, extending over a range
much larger than 2. Then, excluding pathological cases of extremely non-smooth
distribution functions, the intensity of the interference pattern tends to zero. In this
limit, the environment’s potential cannot be approximated by a static potential, and
the analysis of the experiment has to be done in terms of the system + environment.
The experiment involves then a transition of the interfering electron from a pure
state to a mixed state.

The equivalence between the two descriptions discussed above can also be un-
derstood in terms of the uncertainty principle. Suppose that the free particle’s state
is initially a minimal wave packet, i.e., §76p, ~ 1. Suppose also that the interaction
between the free particle and the interfering particle is smooth enough so that it

can be expanded as,

V(zn(t)yn) = V(en(t)yn = 0) + V,V(z.(t))- 7 (2.10)
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where n = 0 is chosen to be the center of the minimal wave packet. The zeroth
order contribution to the expansion is just a static potential, which induces a well

defined phase shift. By (2.3) , the state of the environment (i.e., the free particle)

after the interaction is

e—ifo V,,V(zr(t))dt-erD(n) (2.11)

so that the interaction shifts the free particle’s momentum by [ V,V(z.(t))dt.
When this momentum shift is larger than the uncertainty in the free particle’s
momentum, ép,, the environment is shifted into a state orthogonal to its original

one and the interference is destroyed. The condition for this destruction is, therefore,

f UV V()i > bpy (2.12)

On the other hand, by looking at this loss of interference from the point of view of

phase uncertainty, we find that the condition for this loss is,

(647%)3 =/0T° Vo V(z(2)dt 67 > 1 (2.13)

The assertion 6nép, ~ 1 yields the agreement of the two conditions. When the
uncertainty in momentum is large, it takes a large momentum shift, i.e., a long
interaction time, in order to shift the environment to a state orthogonal to its initial
one. On the other hand, large momentum uncertainty yields small uncertainty in
position. This, in turn, yields a well defined potenial, and again, a long interaction
time is needed for the phase to become uncertain. Thus, the equivalence between
the two descriptions is a consequence of the momentum — position uncertainty in
the minimal wave packet.

The above example of an environment lacks an important feature, commonly
found in real situations, namely, the independent dynamics of the environment.
These dynamics exist in the following example. The interference of two electron’s
trajectories z.(t) and z;(¢) is examined in a cavity at zero temperature. The
electron interacts with the electromagneic vector potential. It is well known that
such an interaction causes a relative phase shift of 2% [(A(z.(t),t)-2.(t)—A(z:(2),1):
£i(t)) dt. The average value of the vector potential in vacuum is zero, therefore the
mean phase shift is also zero. However, there are quantum fluctuations of the vector

potential in the vacuum, and those will cause an uncertainty in the phase shift. The

uncertainty will be,

66) = (o) [ at [ar

Alze(8), 1) 5,(t) ~ Alzi(t),1) - £i(0)]

8 [ff(zr(t’),t') Zo(t) — Azi(t), 1) - ff(t')]
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Now, let us look at the simple case in which the two partial waves follow a 1D

harmonic oscillator trajectory in two opposite directions (%), i.e.,
(1) = —z;(t) = Rsinwgt (2.15)

Then, the phase uncertainty is,

(5¢2) — (hi)2 /dtwoR coswot( Az (Rsinwpt,t) + A-(Rsinwet,t))
¢ (2.16)
X /dt'ngcoswot'(A,,(Rsinwgt',t') + A:(Rsinwet',t')) .

The correlation function (A.(z,?)A.(z't’)) in vacuum is

— Y hc? (ko (2—%')—iwa(t—t')) (kat)z
(A2(Z,1)A.(, 1)) = Y | 5—eltke - (1-"—5) (2.17)
~ Quw,, k|
where wo = cko, and  is the cavity’s volume.

Substituting this expression into the expression for (§¢?), equation (2.14) we
obtain,

2 2 p2 - he " 1 iclk|t z k2
(6¢*) = dws R dkm dt cos[-ikz(ml(i) — z2(t))] coswete (1- BE
0
(2.18)

Most of the contribution to this integral comes from |k| =~ =2 + . Since wo R << ¢,
the dipole approximation is valid, i.e., k;(z.(t) — zi(¢)) << 1. The expression for
(§4?) is then exactly the probability of a photon field at T=0 to absorb a photon
from an oscillating dipole of frequency wy. Since the photon field is at T=0, the
most effective way to leave a trace on it is to emit a photon. The time it takes for the
phase to be completely uncertain is exactly the time it takes for the electron to emit
a photon. Since the accelerations of the two partial waves are exactly opposite, the
radiation emitted from each of them is in a phase shift of 7 relative to the other. The
phase of the radiation contains the information about the path taken by the electron.
Therefore, although the two partial waves emit the same amount of radiation ( and
they necessarily do, since in the dipole approximation they both feel the same
potential fluctuations), the trace they leave on the environment must be different.
This is seen in terms of the environment’s wave function. The environment’s wave

function is, up to first order in the potential,

|vac) + iZ |ax| {1 photon in k mode) , (2.19)
ke
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where the + sign refers to the environment state coupled to the first and second
partial waves. The difference in sign reflects the phase difference in the radiation.

Had the two partial waves propagated with equal velocities in part of their
trajectory, then for that part the dipole radiation would have caused uncertainty in
each of the partial waves’ phase, but not in their relative phase. The relative phase
uncertainty would then have been accumulated by the gnadrepole interaction (next
order in k - r). Then, the cus[%b,(::l(t) — z3(1))] in {2.14) should be replaced by
[ka(z1(t) — z2(1)))* , yielding

(6¢2)=4w332jdklkllf dt{ka(zs(t) — 22(2))] coswpte ™ (1 — Ikl‘ . (2:20)

In both cases, we conclude that the time it takes for the phase to get uncertain
is just the time ii takes the partial waves to emit photons that will identify them.
By suitably placed reflecting mirrors one can isolate the photions of each path from

that of the other path, thus creating a situation where any photon identifies its
path.

3. Dephasing by a back reacting environment

As demonstrated above, the potential the environment exerts on the interfering
partial waves might induce a shift and/or a reduction of the interference pattern.
However, we haven't discussed yet what determines this potential. In particular, is
the potential exerted by the environment on the interfeing particle affected by the
presence of that pasticle? Classically, the answer is negative for a "test particle”,
while it might be positive for a real particle. The formal generalization of the exam-
ples we have considered, given below, opens a way to discuss this question quantum
mechanically. Consider a dynamical environment interacting with an interfering
particle. The hamiltonian of the environment will be denoted by H....(n, p,), while
the interaction term is ¥(2.(t),n). For simplicity, we restrict ourselves to the case
where only the right wave interacts with its environment.

Starting with the initial wave function, eq. (1.1) , the wave function at time 1y
is,

$(ro) = fro)e~HensTonln) 4 rlza)Be™ " Ferrt Vi) (3.)

where T' is the time ordering operator. It is useful at this point to write () in
terms of Vi(t) = e'FentV(z(¢),5)e " Hews e, the potential V in the interaction
picture. Note that Vi(z,t) is an operator in the eavironment Hilbert space, with
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parameters (z,t). Its time evolution is not affected by the presence of the particle.
Therefore, Vi(z,t) repersents the local potential exerted by the environment at

(z,t), in the absence of the interfering particle. Using Vy, %(79) can be written as

—iHnyT —iHonyrorfr, —1 [0 Vi(ze(1),1)d
P(ro) =l(mo)®e HenvToyi(n) + (1) @ e HenvToTe TNRACHOR th(Tl) (3.2)
Hence, the interference term is multiplied by

. -~ .2 To
<X0|61chvT0T6 lfO (chv+V)dt|x0>

. 3.3
=(X0|Te_i J5? VI(:'(t)'t)dt|Xo> -

Obviously, this is the scalar product of the two environment state coupled to the
two partial waves. The description in terms of the statistical properties of the
phase stems from the observation that equation (3.3) is the expectation value of
the time evolution operator, which is a unitary transformation. Being a umtary
transformation, the time evolution operator can be represnted as ei‘is, where ng,
naturally defined as the phase operator, is hermitian.

Hence, the expression in equation (3.3) becomes,

(Xo|€i$|Xo> (3.4)

and ¢ is implicitly defined by,
et — Te—'.foro dt Vi(z- (1)) (3.5)

The time ordering operator in the implicit definition suggests an investigation of

the commutation relation

Vi(en(t),t) 5 Vilen(t), )] (3.6)

An immediate mathematical observation is that when this commutation relation is
zero for all 0 < ¢,t' < 7g, i.e., during the interference experiment, the time ordering
operator can be ignored, and equation (3.5) is easily translated into an explicit

expression for the phase. This expression is,

¢ = -——/dt Vi(z(t),1) (3.7)

i.e., the instantaneous rate at which a partial wave accumulates its phase is given

by the local potential the environment exerts on it at that instant. When the
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commutation relation in equation (3.6) is non—zero for parts of the right path, the

translation of equation (3.5) into an explicit definition of the phase is not trivial.
In particular,

¢(t) # VI(zr(t):t) (3.8)
Physically, we expect equation (3.8) to be true when the potential the environment
exerts on the interfering particle (say, an electron) differs from the local potential V7,
and the difference arises from to a back reaction of the environment to the presence
of the interfering electron. The local potential V, being local in time, does not allow
present electron — environment interaction to modify the potential the electron will
feel in the future. Hence, it does not allow a back reaction of the environment to

the presence of the interfering electron. We will therefore demonstrate now the
equivalence between the condition

[Vf(zr(t),t) , fG(m,(t'),t')] = 0 forall0 < ¢t,t' <7 (3.9)

and the statement that the potential exerted on the electron is not affected
by the presence of the electron. We will demonstrate this equivalence for an

electromagnetic-type electron-environment interactions, such as interactions with
photons, phonons and other electrons.

Consider an interfering electron interacting with the (not necessarily free) elec-
tromagnetic field, A(x,t). The potential in the interaction picture is then

—%a‘:,.(t) - Ar(z(2),1) (3.10)

where the time evolution of Aj(z.(t),t) is determined by the independent dynamics
of the field (independent of the presence of the interfering particle). The commu-

tation relation in equation (3.9) is then proportional to the commutation relation
[Ar(z,t) , Ar(2’,t')] (3.11)

at ¢ = z,.(t),2' = z.(t'). This commutation relation satisfies the same equation of

motion as does Aj(z,1), i.e., a wave equation, with the initial conditions,
[A1(z,1), Ar(z',t)] =0 for all z,2’ (3.12)

[Ar(z,1), AI(:B,,t)] x 1§(z — :c') (3.13)

Therefore, the value of the commutation relation in equation (3.11) is just the

amplitude of an electromagnetic excitation created at z',# to be present at z,1.
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When this amplitude is zero for all points (z,(t),t) and (z.(¢'),t') the local potential
expression for the phase (equation (3.7) ) is exact. But, when that amplitude is
zero there is also no way the potential exerted on the electron at (z.(%),t) can be
affected by the electromagnetic interaction the electron has experienced before, at
previous points along its path. Therefore, there can be no back reaction. Such
is, e.g., the case of a free electromagnetic field. For a free electromagnetic field,
the commutation relation in equation (3.11) is non-zero only when (z,%) is on the
light cone of (z',t'), while the motion of the partial wave is, of course, inside the
light cone. Hence, the phase accumulated by the right partial wave is given by the
integrated local potential (equation (3.7) ). And, indeed, the potential exerted by
a free electromagnetic field on the interfering partial wave is not affected by the
partial wave’s history. The interfering electron might emit photons along its path,
thus changing the state of the field, but these photons travel faster than the partial
wave, so that it can never re-encounter them. Hence, the potential it feels along its
path is independent of the existence of those photons. On the other hand, if the
field is not free, e.g., in the presence of mirrors or electric charges, photons emitted
by the electron might be reflected, re-encounter the electron, and thus change the
potential it feels.

Our conclusion at this point is then that if the potential exerted on a partial
wave along its path is independent of its history, then the phase accumulated by that
partial wave is given by the integrated local potential (equation (3.7) ). This is an
important conclusion since it allows the use of equation (3.7) in many circumstances.
In particular, when the interfering electron is coupled to a thermal bath, the short
memory time of the bath usually justifies the no-back-reaction assumption. The
back reaction might be important when the interfering electron shifts the bath
significantlly out of equilibrium for a long enough time scale.

What happens when there is a significant back reaction of the environment? In
particular, do the fluctuations in the local potential, V1, have any relevance to the
dephasing of interference? We first give a positive, somewhat surprising, answer
to the second question, and then discuss the first. Regarding the dephasing of
interference in a back-reacting environment, we show that the fluctuations in the
local potential can be used for a determination of a lower limit to the intensity of

the interference term, i.e., a lower limit to

o 3 [7O T
(x0|1-|e fO VI( f(t)it)dtlx(]) (3.14)

A sufficient, though not necessary, condition for interference to be seen, is that this

lower limit is not too small, compared with unity.
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To obtain the lower limit, we write the environment state coupled to the right

wave as a superposition of the initial state |xo) and a state |¢) orthogonal to |xo),
with amplitudes A, A, , respectively:

- _‘ = £ ]
Peide TSR Yo dabeod b Awl) (3.15)

where |Aj|* + |42 = 1 and |x0),|€) are both normalized. Obviously, Ay =

(xo|Te™" A NRACHO? t)dtl 0) = (xu]eié’lxg). |Ay| is a measure for the intensity of
the interference term, so that as long as |4 | < 1 interference is observed.

On the other hand, the time ordered product can be broken into an ordered
product of infinitely many exponents,

N : N
Te-—-;f V;(z.-(t) t)dt H e—"';P'VI(zf(tk)!t't) = H e—‘.VIhSt (3.16)

k=1

where {1} = N‘Ta, and the limit of N — oo is taken. For each instantaneous operator
e~iVr'st we define instantaneous amplitudes a.",aﬁ_ such that,

V% xo) = aflxo) + af|e%) (3.17)
where again |¢¥) is a normalized state, orthogonal to |x0). Now, since |a."| < 1,and
(€%€¥')| < 1, equations (3.15) - (3.17) imply that

N
ALl < 3 (e (3.18)
k=1

In the limit of N — oo, a,ﬁ and a* can be expressed in terms of moments of VE.
Substituting the expression for a* in equation (3.18) , we get,

N
A< S (s s = /ﬂ dt (6Vi(z+(2),1)?)} (3.19)
k=1

Therefore, a sufficient condition for the observation of interference is that the fluctu-
ations in the local potential along the partial wave’s path do not sum up to unity. If
this condition is fulfilled, no additional fluctuations due to a back reaction potential
can dephase the interference.

An interesting application of this conclusion is given in the following problem.
A particle is located at the top of a symmetric potential *hill” (more quantitavely:
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The particle’s initial wave function ¥(z) is a minimal wave packet of width éz,
centered around z = 0, and symmetric, i.e., ¥(z) = ¥(—=z). The potential is, say,
V(z) = Voe‘(':')n, with @ >> 6z. See Fig. 3) An external force whose magnitude
is F, but its direction is unknown, is applied on the particle for a duration 7, in
which the particle’s wave function does not significantlly spread. For ¢ > 7, is there
any measurement that can identify the direction of F ? Classically, the answer
is, of course, positive, and it doesn’t matter if F is infinitesimal. The particle
falls down to the right or to the left, according to the direction of F. Quantum
mechanically, however, a measurement can distinguish between two states only if
they are orthogonal. And, as we have seen above, if the phase fluctuations induced
by the uncertainty in the applied potential are much smaller than unity, the particle
on the "hill” (corresponding to the ”environment” in the discussion above) is not
shifted to a state orthogonal to its initial state. This is true,even though the unstable

nature of the initial state tends to "amplify” the effect of the external force. The
applied potential is here,

V = —F:C (3.20)

so that the phase uncertainty it induces is,
6¢p = 8Vr = Féxr (3.21)

Thus, as long as F7 < 31;, no measurement, not even at ¢ — oo will identify the
direction of F.

We conclude our discussion of the back reaction of the environment with a
simple, exactly solvable, problem, in which the phase shift due to the back reaction
can be pointed out. We go back to the one dimensional interference experiment,
in which two electron partial waves follow two opposite harmonic oscillator’s tra-
jectories (Eq. (2.15) ). This oscillator’s frequency is wg. This time we turn off the
coupling to the electromagnetic potential, and consider an environment composed
of one phonon mode, whose frequency is £ > wg, and its coupling to the electron

is linear. The hamiltonian of the environment is the free hamiltonian of a phonon
mode, i.e.,

p2
Heno = 5 + ~Q%¢° (3.22)

V = Cqzr (3.23)
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In the above p, ¢ are the phonon’s momentum and position, respectively, and z is the

interfering particle’s position. The interaction can be represented in the interaction
picture as,

Vi(z,(t),t) = Cz.(2) (q cos 2t + %sin Qt) = Cz.(t)qr(t) (3.24)

Since the phonon mode is in the ground state, (¢) = 0, and g = (¢2)7 = %
The motion of the electron partial wave, being slow relative to the phonon mode’s
frequency, shifts adiabatically the equilibrium point of the phonon mode, without
exciting it. Thus, the mode’s wave function at time ¢ is the ground state of an

oscillator centered at -C—f{,(—tl. In the beginning and the end of the partial wave’s

Clz,.(t)

path, when & 71—, ie., |z,(t)] <€ %}—, the mode’s state overlaps with its

initial state. In the intermf::dja.te stage, the phonon mode’s state is nearly orthogonal
to1ts initial state. It has the information on the electron’s path, and this information
results in a back reaction potential. Therefore, we expect the interference pattern,
examined after the electron (and, essentially, also the phonon mode) has returned
to its initial point, to show an extra phase, accumulated during that intermediate

period. Using the commutation relation of potentials at two different points:

[Vi(z(2),1), Vi(z(#'),1')] = i%za:(t)m(t')sin Qt — ') (3.25)

we can derive an explicit expression for the phase ¢, out of the implicit definition
(equation (3.5) ). This expression is:

¢ = —fo OdtC:c,.(t)qI(t)— %/o Odtfu dt'%z,(t)z,.(t')sinn(t—t')

= ¢o + Por

(3.26)
The first term in equation (3.26) is the phase accumulated due to the local po-
tential. Its rate of accumulation is Q.Sg = Cz,(t)qr(t), the local potential. Be-
ing proportional to gy(¢), this rate has a zero average value, and an uncertainty
by = Cz.(t)bqr(t) = Ca:,.(t)715. The second term is the back reaction contri-
bution. As generally expected for a back reaction, this contribution is of second
order in the coupling constant, and it is non-local in time. In this special example,
the back reaction contribution is a C-number, so that it does not contribute to the

phase uncertainty, i.e., to dephasing. Substituting the right path, z,.(¢) = Rsinwyt
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(equation (2.15) ), and taking the adiabatic limit, ¥ — 0, we find that the back

reaction contribution to the phase is,

02 RZ To
bpr = — / dt sin® wyt (3.27)
202 J, ’

and the rate at which it 1s accumulated 1s,

CZRZ 02
Ty sin® wot = —ﬁzi(t) (3.28)

q.bbr =

This rate becomes larger as z2(%) increases, i.e., as the phonon mode is shifted

%i, this rate is higher

than the uncertainty in the local potential, which is Cz.(t){¢?)Z. As long as the

far from its equilibrium point. In particular, for z.(t) >

environment state significantly overlaps its initial state, q.bb.,.. & §¢y. Once the
environment state is orthogonal to its initial one, most of the phase accumulation
rate is due to the back reaction.

A generalization of the above picture to a general back reacting environmnet
should be done in a careful way, since some of the above conclusions originate in the
simple nature of the example. In general, back reaction of the environment might
contribute also to the phase uncertainty. It is only in our simple example that ¢,
is a C-number. However, while §¢¢ is of second order in the interaction potential,

6 is of higher order, since ¢;, by itself is of second order.
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Fig.1: Schematics of interference experimentsin A-B rings: Each partial
wave traverses half the ring, and the interference is examined at
the point B. This kind of interference gives rise to % oscillations
of the conductance.

Fig.2: The right path z.(t) interacts with an environment composed of
one heavy free particle, whose coordinate is 7.
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Vix)

Fig.3: A particle is initially localized on the top of a potential hill.





