
1. Phys. A: Math. Gen. 24 (1991) 2315-2328. Printed in the UK 

Complete description of a quantum system at a given time 

Yakir Aharonov and Lev Vaidman 
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, 
Tel Aviv University, Tel Aviv 69978, Israel and Physics Department, University of South 
Carolina, Columbia, SC 29208, USA 

Received 9 October 1990, in final form 18 January 1991 

Abstract. A generalization of the description of a quantum system in the time interval 
between two measurements is presented. A new concept of a generalized state is introduced. 
Generalized states yield a complete description of a quantum system when information 
about the system is available both from the past snd from the future. The formalism of 
generalized states provides a natural language for describing many peculiar situations. In 
particular, situations in which one can ascertain the result of a measurement of any one 
of several non-commuting variables are analysed. 'Weak measurements on quantum 
systems described by generalized states are discussed. The relation belween 'weak' and 
'strong' measurements is investigated. 

1. Introduction 

In the standard quantum theory the most complete description of a quantum system 
at a given time is given by its state vector or, when the system is correlated to some 
other systems, by its density matrix. This is the maximal information about the system 
based on the results of the experiments performed in the past. In this work we introduce 
a formalism for a complete description of a quantum system at a given time based on 
the results of experiments performed both before and after this time. Our description 
provides the maximal possible information about the quantum system. The formalism 
presented here is a generalization of the approach pioneered by Aharonov, Bergman 
and Lebowitz [ I ]  and employed by us for developing the concept of weak measurements 
[2]. We have described a quantum system between two measurements by two state 
vectors: the usual one, evolving from the time of the latest complete measurement in 
the past, and the other one evolving backward in time from the time of the earliest 
complete measurement in the future. We generalize, here, this description to the 
interesting situation in which these two state vectors, the one from the past and the 
other from the future, are correlated. We introduce a new concept--the generalized 
s-tak-a superposition of the pairs of the above state vectors. We discuss quantum 
systems described by generalized states in peculiar situations such as a spin-f particle 
which can be found with probability one in the state U* = 1 for several directions i, 
or a single particle which can be found with probability one in seueral separate boxes, 
etc. The concept of weak values of quantum variables, which was defined for the 
systems described by the pair of states, is extended here to the systems described by 
generalized states. This makes possible the analysis of the connection between 'weak' 
and 'strong' (conventional) measurements. 
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To avoid possible misinterpretations we want to stress from the outset that our 
work neither contradicts ordinary quantum theory nor extends it in the sense of new 
physical laws. It is possible, in principle, to obtain all the results presented in this 
work using the standard formalism. However, using only quantum states evolving 
towards the future, it is more difficult to prove these results, and in some cases it is 
almost impossible to foresee them. 

The plan of this paper is as follows. In section 2 we derive the formula for the 
probability of results of a measurement performed between two other measurements. 
In section 3 we develop the concept of a generalized state. In section 4 we analyse 
quantum systems described by  generalized states for which, at a certain time, several 
non-commuting variables have definite values. In particular we obtain the maximal 
set of directions for which we can ascertain the spin components of a spin-f particle. 
Section 5 is devoted to the concept of 'weak values' [2] of quantum variables for 
systems described by generalized states. In section 6 we prove some theorems about 
the connection between 'weak' and 'strong' (conventional) values of quantum variables. 
Section 7 concludes the paper with some remarks regarding the meaning and the 
significance of the results which have been derived. 

2. The probability of results of a measurement performed between two other 
measurements 

At time f between two measurements (performed at times t ,  and f,,  1 ,  < t < f 2 )  we 
propose to describe a quantum system using two state vectors. Let us assume that the 
measurement at time f ,  created a non-degenerate eigenstate t , ) ) .  This state has the 
standard time evolution so that at time f: 

where U is the time evolution operator. Similarly, the measurement at time f,, whose 
outcome corresponds to the non-degenerate eigenstate / $ 2 ( t 2 ) ) .  yields at the time f a 
backward evolving state vector ( $ 2 ( f Z ) I  (we denote it by 'bra', instead of 'ket'): 

(J l l (~ ) l= (Jr , ( t2 ) lu( f ,  tz). (2) 

According to our proposal, the system at any time t, f ,  < f < t 2 ,  is described by the 
pair of state vectors (1) and (2). We shall call this pair of state vectors the generalized 
stafe, and write it as 

We shall discuss the concept of the generalized state further in the next section. 
Now we address the problem of finding the probability of a result of a quantum 
measurement performed between two other measurements. This was first discussed by 
Aharonov, Leibowitz and Bergman in 1964 [ 11. They proved that in the above situation 
the measurement at time t of a non-degenerate operator C yields the eigenvalue c. 
with the probability 

We shall now generalize this formula for an operator C which has degenerate 
eigenstates. We shall show that for this case the probability for the outcome c, is given 
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by 

where P,=, is the projection operator on the space of eigenstates with eigenvalue c,: 

pc= ,  =x l4t.m)(4rA ( 6 )  
01 

Here {14,,*)} is a complete set of eigenstates with eigenvalue c,. 
The desired probability of finding C = c, is a conditional probability. Using the 

Bayes theorem we can express it as a function of conditional probabilities for events 
depending only on earlier events. These last conditional probabilities can be calculated 
using only the forward evolving state vectors. The left-hand side of equation (9, 
nrohlr  = c,,),  is. r---\- 

prob[C(t)=c"l$,"=$,(t~),$,=$~(t~)l 

Two types of probabilities appear on the right-hand side of equation (7). The first is 
given by 

prob[C(t)=c,/$,, = $ 3 ( t i ) l =  I l P c - c ,  u(ti, t) I$i(t !))I12=I I ( 4 c , m I $ i ( f ) ) 1 2  (8) 

where we used definitions (1) and (6). The second conditional probability is prob[$,= 
$i!!2)lC!!! = c,, $," = $,(f i ) j .  We EO!P !hit when the octcome of the meascrement a! 
time f is c,, the state vector of the system changes from / ( r l ( t ) )  to I$:), which is given 
by 

Substituting equations (8) and (10) into equation (7) yields, finally, equation ( 5 ) .  
Note that equation ( 5 )  yields the probability of the result C = c. for the preselected 

andpostselected ensemble, i.e. only systems which were prepared at time f ,  in !he state 
I$,([,)) and were found at time t 2  in the state 192(t2)) are taken into account. 

and ( $ 2 ( t ) I  are sufficient 
to calculate the probability for any outcome of all possible measurements at an 
intermediate time 1. The state vector evolving toward the past ( # 2 ( t ) )  does not exist in 
the standard approach. If, following the standard approach, we limit ourselves only 
to forward evolving state vectors then, in order to find proh[C(r) = c,I$;. = J l l ( t l ) ,  
$, = g2( t2)], we have to perform a more complicated calculation. Specifically, for each 
outcome ci we have to calculate prob[$,,= $2(t2)1C = cj]. The calculation includes the 
time evolution of all possible states from time t to time t2 .  This is to be contrasted 

The above discussion shows that the state vectors 
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with our approach where we have to calculate the evolution in the time period (1, t2 )  
of only one (backward evolving) state vector ( + * ( f ) l .  Therefore, introducing ($r2( 1 ) 1  
through the definition (2)  is certainly preferable for this type of problem. 

As an example, we shall analyse a curious situation in which one particle can be 
found with certainty in N (!) separate boxes [3]. Let us consider N+1 boxes. We 
denote the state of the particle when it is in the box number i by li). At time 1, the 
particle is measured to be in the state 
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1 N+I 

I J r l ( t d ) = m  ;=, E l i ) .  (11) 

At time f2 the particle is measured to be in the state 

If in the time interval [ f,, f2] the Hamiltonian is zero, then for any intermediate time 
f ( t l  < f < f 2 )  the generalized state (3) is: 

By opening the box i we perform a measurement with two possible outcomes; we 
denote them by 'in i' when the particle is found in the box, and 'out of i' when the 
box is found to be empty. These outcomes correspond to the following projection 
operators: 

The generalized state (13), as we shall now show, describes a situation for which if 
we open any one of the first N boxes we certainly find the particle there. Indeed, the 
formula ( 5 )  for the probability to find the particle in the box i, i # N + 1 yields 

(The second term in the denominator 1(+2(t)lP(ou, j l l+,(r))12 vanishes when we sub- 
stitute in it equations (13) and (15).) 

So, in spite of the fact that we have only one particle in the above situation, we 
find this particle with probability one in any one of the first N boxes. If we find the 
particle in one of the boxes, we shall not find it later (after time 1, but before f2) in 
any other. Indeed, the generalized state for the time period (1, f 2 )  becomes 

where i is the number of the box which was opened first. Equation ( 5 )  shows that for 
generalized state (17) the probability to find the particle in a box j, j # i, vanishes. 

No contradiction arises if we open all boxes simultaneously. This corresponds to 
a measurement of a non-degenerate operator whose eigenvalues correspond to N + 1 
projection operators P,i. ;), i = 1 , 2 , .  . . , N +  1,  given by equation (14). Now equation 
(5 )  (or (4)) yields, for generalized state (13), the probability 1 / [ ( N - 1 I 4 + N ]  
for finding the particle in any of the boxes from 1 to N and the probability 
( N - 1 ) 4 / [ ( N - 1 ) 4 + N ]  for finding the particle in the box N + l .  
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3. Generalized states 

We named the pair of state vectors in equation (3) a ‘generalized state’. However, 
equation (3) corresponds only to a particular (‘product’) type of generalized states. 
The true justification for introducing this new concept comes from the possibility of 
superposing such pairs of states, i.e. creating the generalized state of the (‘superposi- 
tion’) type: 

Situations in which the system at time t cannot be described by generalized state 
( 3 )  arise when at times 1 ,  and t2 ( 1 ,  < t < t 2 )  certain measurements were performed on 
a composite system which includes our system as well as some external system. Then, 
the composite system is described by the generalized state of the ’product’ type (3 ) ,  
but our system by itself is not. If during the time interval ( I , ,  t 2 )  there is no interaction 
with the extemal part of the composite system, then at any time t, t l  < t c t 2 ,  our system 
can be described by the superposition state (18) .  

We shall next describe the operational definition of such generalized states. To this 
end we need to perform measurements on a composite system which includes our 
system as well as an extemal system. The external system has a set of orthogonal states 
l i )ex and we assume for simplicity that the Hamiltonian for the external system is zerot. 
Specifically, consider the situation in which at time t ,  we have prepared the state 

N 

and at time f2 we have found the state 

N 

Iq2 ( t2 ) )=  1 b;Ii)&). 
< = I  

The generalized state (Y2(t)llvl,(t)) of the composite system then corresponds to the 
generalized state (18) for our system with coefficients ai given in terms of ai and bi by 

Na<bt = ai (21) 

where A‘“ is a normalization factor. Its value does not affect the results presented in 
this paper. We shall use the normalization condition 

Generalized states are closely connected with the two-time states, which have been 
introduced by Aharonov and Albert 141. Two-time measurements which prepare two- 
time states also create generalized states. For the two-time states it is fruitful to define 
a scalar product [ 5 ] .  The same definition is applicable for generalized states and the 
normalization condition (22) corresponds to the natural requirement that the scalar 
product of a generalized state with itself is equal to one. 

t If the Hamiltonian of the external system is not zero, the only modification is that at time l2 i n  the slate 
(13) we have to use a different set of onhogonal states: l i ( t , j j=  U ( t , ,  l i ) l i ( l l ) ) .  
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Equation (5) gives the probability for the results of a measurement performed 
between two other measurements. It applies to any measurement on a system which 
is described by the special 'product'-type generalized state (3). Our next task is to find 
the corresponding formula for quantum systems described by the generalized state 
(18). A natural generalization of equation ( 5 )  is 

We proceed to show that equation (23) is indeed correct. The generalized state 
(18) arises from a product type state (3), V=(TlllY2), when (T,i and IT2) refer to 
the composite system described above. For example, 

Since the operator C acts only on the variables of the system itself, it corresponds to 
a degenerate operator of the composite system: C = { C ) *  x {l}ex. Recalling that the 
Hamiltonian for the external system is assumed to vanish in the time interval ( t , ,  t 2 ) ,  

we can substitute equation (24) in equation (5):  

Thus, we have completed the derivation of equation (23). 
In the definition of the generalized state (18) {($,I} and {I$,)) could be arbitrary 

sets oistates. Equation (23) is correct even when {(@,I] and {I@,)] are not orthonormai 
bases. if we take the same orthogonal bases for both state vectors, {IC,)) and {(CJ), 
then the generalized state (18) takes the form 

in ihis case the formula (25) For the probabiiiiy of the resuii C = c, wiii be ofihe form 

We can find the orthogonal bases {I$;)] and {($;I] in which 3 takes the canonical 
form [6] 

T h e  set of absolute values of the coefficients {\a:[) is defined uniquely by the generalized 
state (18). In this basis the normalization condition (22) obtains the simpler form 

(20) 

The normalization condition (22) also has a simple form when the generalized state 

t i  pp'= I. (30) 

is represented by the matrix p of equation (26). It reads as 
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4. Quantum systems described by a generalized state for which several non-commuting 
variables have definite values 

In the standard approach to quantum theory, operators with no common eigenstates 
cannot have definite values simultaneously. For example, there is no state vector of a 
spin-f particle for which we can predict with certainty the result of measuring ux and 
the result of measuring U? when one of these measurements is performed. In our 
approach, where we are allowed to have information both from the fctgre and from 
the past, this is no longer the case. There are situations in which we can ascertain the 
result of measurement of any one of two non-commuting operators. This is simply 
achieved as foliows: before the time in question we measure one operator and after 
this time, the other. Thus, measuring at time f ,  ux and at time t2 uy, we can ascertain 
the outcome of the spin component measurement performed at any intermediate time 
t, 1 ,  < f < 1 , .  provided the Hamiltonian is zero: if U,? were measured, the result has to 
be the same as the result of our first measurement, and if U,, were measured, the result 
has to be the same as the result of the second measurement. 

There are situations in which we can ascertain the results of the measurements of 
even more than two non-commuting operators. For example, we have shown how to 
ascertain the values of ux, 0; and U> of a spin-f particle [7]. In fact, there are situations 
in which we can ascertain the results of measurements of an infinite number of different 
operators. We next describe a situation in which the result of measuring the spin 
component of a spin-f particle is ‘up’ with probability one for a continuum ofdirections. 
For this to be the case the spin-f particle has to be described by a specific generalized 
state as we proceed to show. 

To this end we first consider the generalized state for which the result of a spin 
component measurement is ‘up’ for at least three different directions. The generalized 
state of a spin-i particle is given by 

(31) 

where we used the basis in which uz is diagonal. The unitary transformation of the 
usual, forward-evolving state vector I ) under a rotation parametrized by the Euler 
angles n, p ,  y, is given in the above ‘2’ representation by the following matrix: 

@ = attd.1 If2)+ ardf.l I L J +  a ~ ~ ( L l l ? ~ ) +  a d L I I J , )  

( 3 2 )  

The generalized state for which the measurement of U, yields the result U, = 1 with 
probability one, is given by  @ of equation (31)  with all = 0, a r t  # 0. Let us assume 
that @ is such a generalized state. Then, in the basis which is rotated by the angles n 
and /3, we obtain 

I cos p j 2  e i l a + y ) / 2  sin p j 2  e--i(o-r)/2 

U = [  -sin p j 2  ei(a-?)/2 cos p j 2  e - - i ( o + ~ ) / 2  ’ 

(33) 
a i l = a r r s i n  2 P  --sin-cos-(aIl  P P e-’- ta l7e’*) .  

2 2 2  

We are searching for directions 2’ for which the outcome of the spin component 
measurement is ‘up’ with probability one, i.e. a i l  = 0. We can choose the overall phase 
in such a way that air is reai. Then, the requiremeni ai1 = 0 ieads IO 

(a r l  -a?,) e-‘“ = e”(a;,-alt). ( 3 4 )  

The direction 2’ is defined by 01 and p ;  therefore, in order to obtain more than two 
distinct directions, the requirement ai, = 0 should not fix n and p. Hence, we must 
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have a,, = aTt. We can show that in this case there is a direction 6 such that in the 7 
basis the generalized state 0 is 
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The direction 6 for which equation (35) holds is obtained by rotating the z axis by 
Euler angles a, p such that all  e-'= is real and tan p =2at l  e-"Jalr. 

Now, for any direction i at angle p' = 2 tan-'- with respect to the direction 
6. the measurement of the spin yields ut = 1 with probability one; Indeed, the ca!cx!ation 
of the coefficients of the decomposition of 0 in the .$ basis gives ail = 0. The additional 
requirement a;,  # 0 yields p '#  90". Therefore, our continua correspond to cones whose 
axis is the direction 6 and whose opening angles are 

The normalization of the generalized state (291, reduces the number of independent 
parameters to one: parameter x replaces b,, and b,, , 

x € (0, ;). (37) 

Thus, we showed that if there are three different directions for which we can 
ascertain that the result of the measurement of the spin is 'up' with probability one, 
then necessarily there is a continuum of such directions and the geometrical form of 
this continuum is a cone. The form of the corresponding generalized state is given by 
equation (37) where the direction lies along the internal axis of the cone. The opening 
angle of the cone in the new notation is 0 = 4 tan-'*. 

[8]: 'What is the maximal set of directions for which we can ascertain the value of the 
spin component using measurements before and after the time in question? More 
specifically, which measurements d o  we have to perform in order to be able to construct 
a table of statements such as: 'if the spin were measured in the direction i, then, with 
Frobability one, the result is 'up' (or 'down'); if the spin were measured in the direction 
& then, with probability one: the result i s . .  . ~ and so on'? Since we cannot ensure any 
specific result of our second verification measurement performed on the composite 
system, we have to be able to ascertain the values of the above spin components for 
all possible outcomes. We showed that if, for a certain outcome, we can ascertain the 
value of spin components for at least three different directions, then we can do it for 
a continuum of directions forming a cone. Thus, to achieve our goal, any outcome of 
the second measurement should correspond to a cone. The directions along which we 
can always ascertain the value of the spin projection have to he common to all these 
cones. More precisely, we consider the lines which are common to all the 'double' 
cones: the cones together with the continuation of their rays beyond the apext. 

In the special case discussed in the previous footnote in which we were able to 
ascertain the values of ux, up and uz, there were four possible outcomes for the second 
measurement which was performed on a composite system of two spin-f particles. 

Now we sha!! app!y this genmetrica! picture for rliscxssir?g thP fo!!owing proh!cm 

t If  the spin is 'up' with probability one in a certain direction it is 'down' with certainty in the opposite 
one. The cone of directions with the result 'up' together with the cone of directions with the result 'dawn' 
make the 'double' cone. One double cone corresponds to two generalized states depending On which half 
of the double cone has the result 'up' for the spin component measurement. 
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These outcomes corresponded to four double cones having tetrahedral symmetry: the 
angles between all pairs of axes of the cones were equal. The opening angles of the 
cones were also the same: 0 = 4 tan-'-. The cones intersect exactly in three 
mutually orthogonal lines which can be chosen as the x, y and z axes. 

Returning to the more general case when the above-mentioned table is to be 
constructed we note that the complete set of outcomes of the second measurement in 
the procedure for creation of the generalized state may correspond just to three, 
geometrically different, double cones. While four distinct double cones may have at 
most three common lines, three double cones may have at most four distinct common 
lines. From the geometrical picture of three intersecting double cones it is clear that 
these four lines are not arbitrary. Three lines are arbitrary but the fourth line is fixed 
by the first three: it must have the same angles with respect to two out of the three 
lines as the remaining line has. This is equivalent to the requirement which was found 
by Ben-Menahem [8]: 

4 

n , = O  
< = I  

where nl are the unit vectors along our four lines. Ben-Menahem derived this result 
working in the framework of standard quantum mechanics. Our approach using 
generalized states explains it in a simpler and more direct way. Indeed, it has been 
this approach that led us to raise this kind of problem when we first realized that the 
values of more than two non-commuting observables at a given time can be ascertained 
using measurements before and after the time in question. 

5. Weak values of quantum variables for systems described by generalized states 

Recently we introduced [9 ]  and discussed [2] the concept of weak values of a quantum 
system at the time interval between two measurements. For a system, prepared in the 
state I$,) and then found in the state the weak value of a variable A in an 
intermediate time was defined as 

Now we can generalize the definition of weak values for systems described by the 
generalized state of the form (18), E:, .,($,I 14,). The above definition, equation (39), 
corresponds to the particular case of a generalized state of the product type given by 
equation (3). We recall that any generalized state which cannot be represented in the 
form of a product (3) for the system itself can still be represented as such product 
type state but for a composite system which includes also some external system. 
Considering the procedure which prepares the generalized state (18) and which uses 
the verification measurements of states described by equation (24): we obtain 

Equation (40) is then the appropriate generalization of the definition of the weak value 
(39) for an arbitrary generalized state. 
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The weak value A, is the effective value of A for any sufficiently weak coupling 
between our system and an external system which depends on A. The condition of 
weakness of the interaction is, roughly, that the generalized state does not change 
significantly at the period of time between the preparation and the verification measure- 
ments. To see this, consider the von Neumann [ 101 measurement-type coupling given 
by the Hamiltonian 

H=-g( t )qA (41) 

where g( t )  is a normalized function with compact time support and q is some canonical 
variable. The Hamiltonian (41) represents a 'weak' coupling if the initial state of the 
external system is, for example, a Gaussian with a spread which fulfils the 
following requirement [2]: 

(2A)"- r(n'2) l(A")w-(Aw)"l<< 1 for all n a 2. (42) ( n - 2 ) !  

Indeed, since the generalized state of the form (18) can be associated with the 
generalized state of the form (3 )  for the larger system, we can repeat, in order to derive 
equation (42), the argument of [2] where the product-type generalized state was 
considered. 

If the generalized state is of the form (261, V=X$, ps(5j115,), where identical 
bases were utilized for both state vectors evolving forward and backward in time, then 
the weak value has the following form: 

In general, there is no restriction (except for normalization) on the matrix pb which 
represents the generalized state. However, when the weak value is considered, we must 
have tr p # 0. Indeed, tr p represents the scalar product between the states of the 
composite system which are verified by the first and the second measurement creating 
the generalized state. Between these measurements the only coupling was that of the 
weak measurement. This measurement is characterized by the requirement that the 
state vector does not change significantly. Thus, the probability of the appropriate 
outcome of the second measurement is given, approximately, by the square of the 
scalar product, i.e. by Itrp1*. Therefore, in this situation the probability to create the 
generalized state with tr p = 0 is essentially 0. We can state it in a simpler, but more 
formal, way: if tr p = 0 then the weakness condition (42) cannot be fulfilled and, so, 
there is no reason to consider the weak value. 

6. The relation between 'weak' and 'strong' values of a quantum variable for a system 
described by a generalized state 

In this section we shall prove that if the outcome of a strong (i.e. precise) measurement 
is known with certainty, then it is equal to the outcome of a corresponding weak 
measurement. We shall show that for a class of dichotomic variables the inverse theorem 
is also true. Finally, we shall show how we can use these theorems to clarify the results 
presented in section 4. 
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Let us consider the generalized state (18), X E ,  af($jl[+j), such that the probability 
of finding the result A = a, in a strong measurement of A is one. Then equation ( 2 5 )  
becomes 

From this it follows that 

Now let us consider for this case the weak value of A.  We can calculate it by substituting 
the decompositions of the operator A and the identity operator, 

A = 2 a k P A = . ,  (46a)  
k 

I = z PAmak (46b)  
k 

into equation (40) .  Thus, taking into account equation (451, we obtain 

The above result means that whenever a strong measurement yields a given outcome with 
probability one, the weak measurement yields the same outcome. 

For the class of dichotomic variables (such as projection operators, spin component 
of a spin.; particle, etc.) we can prove the inverse theorem: if the weak value of a 
dichotomic variable equals to one of ifs  eigenvalues, then the outcome of a strong 
measurement of this variable is equal to that eigenvalue with probability one. Indeed, if 
a variable A has just two distinct eigenvalues a ,  and a 2 ,  and if for the generalized 
state (18), A, = a , ,  then equation (40)  becomes 

When the weak value is defined (i.e. the denominator in equation (48 )  does not vanish), 
we can, by simple algebraic manipulations of equation (48), find that 

This equation shows that the probability to find the value a2 vanishes, and therefore 
a strong measurement of A necessarily yields A = a , .  

We shall derive now the results of section 4, pertaining to the situation for which 
we can ascertain the value of the spin component of a spin.; particle for more than 
two directions, in yet another way. 

A +  E, allows a 
geometrical picture for the generalized states. The geometry is in the vector space of 
the complete set of quantum variables (operators) for our system. By the complete set 
we mean that every operator can be expressed in the unique way as a linear combination 
of operators from the set. Thus, the weak values of the operators from the complete 
set yield the weak values of all operators. 

For a spin-f particle the operators ur, uy and uz are such a set and we have a 
geometry in the familiar three-dimensional space. Each generalized state corresponds 

The 'linearity' property of weak values, C ,  = A,+ E ,  for C 
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to a vector in this three-dimensional space with components equal to the weak values 
of U=, uy and us. We shall call this vector a 'weak vector'. The weak value of a spin 
component in an arbitrary direction, then, is given by the projection of the weak vector 
on this direction. Recall that the weak value, in general, is a complex number. It is 
convenient to decompose the weak vector into the sum of two vectors: the 'real' and 
the 'imaginary' vectors: 
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o,=u,,+iu,, (50) 

where wlW and U,, are real. Recall also that there are no restrictions on the weak 
values of the spin component, thus ulw and u2, might have any direction and any 
valuet. 

The spin component of a spin-$particle is a dichotomicvariable with two eigenvalues 
of i l .  According to the theorems proved above, the weak value of a spin component 

this value with probability one. Thus, the direction for which we can ascertain the 
value of the spin component has t o  he such that it is perpendicular to u2,, and such 
that the projection of ulW on this direction is equal to i l .  

This geometrical picture helps us to classify all possible situations. If IulUl < 1, 
then there is no direction for which we can ascertain the value of the spin component. 
If lul,1 = 1 and u2, is perpendicular to U,,, then there is only one direction (the 
direction of U,,) for which we know the value of the spin component; and there is 
none if ut, is not perpendicular to U,,. If IulWl > 1, then we have a cone of directions 
for which the real part of the component of the weak vector has the value 1. (The 
opening angle is 0 = 2  cosCll/lu,,l.) If also lu2,1 =0, then these are the directions for 
which the spin is known; and if 1u2,1# 0, then the directions are the intersection of 

was derived in section 4 in a straightforward way: if we can ascertain the value of the 
spin component for more than two directions, then we can d o  it for a continuum of 
directions forming a cone. 

Let us consider again the example with one particle in N + 1 boxes discussed in 
section 2. We consider the same generalized state (13), but this time the number of 
r narticles ~~~-~ ~ ~ - -  in each box is measured weakly, In our situation the result of a strong 
measurement of the number of particles in the first N boxes is I with probability one. 
Therefore, the weak value of the number of particles in the first N boxes is also 1. 
But the total number of particles is just 1 (with probability one). Therefore, the weak 
value of the number of particles in the box N + 1 has to be 1 - N (it is a negative 
number!). Indeed, the number operator in the box N + 1 substituted in the formula 
for the weak value (41) with the generalized state (13) yields 1 - N. 

iii a iertaiii &iiei;ion is equa: io 1 (-1) if, if, ihe siiorig measuremeni yieid5 

the cone and the p!ane, perpendicu!ar to G z w .  we see, oncc again, the res.!! KhiCh' 

7. Conclusions 

In quantum mechanics, in contrast to classical mechanics, even if we have complete 
information about the past of a certain system, future measurements add information 
about the system at present. The maximum possible information about the quantum 

t The weak vector corresponding to the 'product'-lype generalized state ( 3 )  is, however, restricted. In the 
appropriate basis it has the form (see equation (18) of [Z]) w w =  (ljcos a/2,O,itano/Z).  Therefore. it has 
the following restriction: low[ = I .  We shall explain the necessity of this requirement from some general 
principles elsewhere. 
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system based on the results of experiments performed both in the past and in the 
future is described by the generalizedstate (18) introduced in this work. It is a complete 
description of a quantum system in the same sense that the quantum state in the 
standard approach is a complete description of a quantum system based on the results 
of experiments performed only in the past. 

The generalized state gives probabilities for different outcomes of a measurement 
of any quantum variable. The probabilities are given by equation (23) (or, if the 
generalized state is given by equation (26) ,  then the probabilities are given by equation 
(27)). The generalized state yields not only probabilities for the results of all possible 
conventional measurements, but also the outcomes of all possible ‘weak measurements’ 
(standard measurement procedures with ‘weak enough’ interaction). The weak value, 
the outcome of the weak measurement, is given by equation (40) (or by equation (43), 
i n  case the generalized state is given in the form ( 2 6 ) ) .  

Using generalized states we were able to analyse peculiar situations in which several 
non-commuting variables have definite values. The existence of some of these situations 
has been reported before [7], but the discovery of such cases was made using the 
approach presented in this work. Even when one knows where to look, it is a difficult 
task to see these results using the standard approach [8]. 

We have discussed the importance of the concept of the weak value in an earlier 
paper [2]. However, we considered only particular situations in which complete 
measurements were performed on the system before and after the time in question. 
This caused some restrictions on the possible weak values of sets of quantum variables. 
The extension of the concept of the weak value to systems described by generalized 
states made it possible, in some situations, to make inferences about strong (conven- 
tional) measurements from the knowledge of the weak values and vice versa. The 
description by the generalized state yields a geometrical picture of weak values in the 
vector space of the complete set of quantum variables. This geometrical picture, together 
with the theorems which relate strong and weak measurements, provide a powerful 
new tool for analysing situations in which several non-commuting variables have 
definite values, as well as for investigating related questions. 

The generalized state is the analogue of a pure quantum state for the case when 
the information is allowed about the future as well as about the past. One can define 
easily, following our formalism, the analogue of a density matrix. This corresponds to 
a system at time t, t ,  < t < t 2 ,  such that at time t ,  a complete measurement was performed 
on a composite system which included our system, and at time t2 a complete measure- 
ment was performed on another composite system, again including our system. This 
is also a complete description of a quantum system, the description of a system 
correlated to other systems. One can deal with this situation without defining a 
generalization of the density matrix by describing it as a mixture of generalized states. 
This is how one can immediately see that the theorems of section 6 are also valid in 
this case. 

What we have presented here is a novel approach to standard quantum theory. 
Our formalism is in complete agreement with the standard approach in all its experi- 
mental predictions. It has an advantage that it is symmetrical under time reversal. 
However, we believe that our approach has more than merely aesthetic value. It 
simplifies the analysis of the second in a series of three consecutive experiments, i.e. 
the analysis of the experiment performed on ensembles which are both preselected 
and postselected. And, most importantly, it suggests new experiments which yield 
interesting results [9, 11-13]. It seems to us that it is practically impossible to anticipate 
these results using the standard approach. 
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