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Is there a preferred canonical quantum gauge?
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The interaction between a long solenoid and a charged particle in the field free region outside it is studied treating both systems
quantum mechanically. This leads to a paradox which suggests that when the electromagnetic field is quantized, there may be a
preferred quantum gauge for the vector potential. This paradox is resolved by canonically quantizing the system in a different
gauge in which the classical Lagrangian or Hamiltonian contains an acceleration dependent term.

It was shown by Aharonov and Bohm (AB) [1]
that there is a phase shift in the interference of two
coherent charged particle beams given by the phase
factor

uy=exp<_;—‘;§A,, dx“), (1)
Y

even when the particle beams are in a region in which
the field strength F,,=3,4,—03,4,=0, where 4, is
the four-vector potential and v is a closed curve that
goes through the interfering beams. On the basis of
this effect, Wu and Yang [2] stated that an intrinsic
and complete description of the classical electro-
magnetic field is provided by the phase factor (1) *'.
The field strength F,, underdescribes the electro-
magnetic field in a multiply connected region. But
A, overdescribes the field because of its gauge free-
dom. Therefore, the AB effect demonstrates the real-
ity of the gauge invariant holonomy transformation
(1) and not 4,.

In this Letter we consider an effect involving the
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For this statement, e should be the charge of the smallest unit
of charge, which at present is believed to be one third of the
electron charge, and the charges of all physical systems are as-
sumed to be an integer multiple of this fundamental unit of
charge.
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quantized electromagnetic field which raises the
question of whether there is a preferred gauge for ca-
nonically quantizing the electromagnetic field, which
would give reality to 4,. We show, however, how to
describe this effect in different gauges. But in doing
s0, we quantize a system for which the Lagrangian
contains a term that depends on the acceleration of
a canonical coordinate, by imposing canonical com-
mutation relations which are different from the usual
ones.

Throughout this Letter we neglect terms of O(v?/
¢?). Consider the example of an infinitely long
charged circular cylinder rotating about its fixed axis,
which produces a magnetic field analogous to a long
solenoid, and a particle with charge e outside it. For
simplicity, the electrostatic interaction is removed
by putting a uniform stationary line charge inside the
cylinder with its linear charge density opposite to that
of the cylinder so that the electromagnetic field
strength is zero everywhere outside the cylinder. This
model, which was studied by Peshkin, Talmi and
Tassie {3], incorporates the dynamics of the source
of the magnetic field as well as the particle, and we
shall later quantize the degrees of freedom of both.

Let (r, 8, z) be the cylindrical coordinates of the
particle with the z-axis along the axis of the cylinder
and f is the angular velocity of the cylinder whose
moment of inertia is I, where the overdot denotes
differentiation with respect to time. Throughout this
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Letter we shall neglect the radiation due to any an-
gular acceleration . The Lagrangian for the com-
bined system is

L=im(i2+22+r%0%) + 4 Ip2+ %c/?é- 2)

The interaction term in (2) can be justified on the
grounds that it gives the correct equations of motion
for 8 and f as determined by the forces acting on the
system. It can also be expressed as (e/c)A-v where
A= (k/r)/}e(,, with e, being a unit vector in the di-
rection of increasing . Then divA4A=0 and curl 4=0
outside the cylinder. But a gauge transformation can
be made by adding a total time derivative of a suit-
able function to L which does not affect the equa-
tions of motion. The canonical momenta

. ek . .
po=mr29+fc—ﬂ, pﬁ=%<9+1/3, p-=mz

are constants of motion. Therefore, eliminating f,

ek

= j— 2’: —
S=[1—-e(r)mr0=p, I

Dy (3)
is also a constant of motion, where €(r)=e%k>/
mc?Ir?. The Hamiltonian [3]

1 1
H=— (p}+p3)+ = p3
m (p;i+p:)+ 7 P%

1 ek \
*atizg (7)) @)

Clearly,
cl c

is a constant of motion and the Poisson bracket
{S, a}=0. (5)

Now, take the limit of large /. The initial conditions
at time ¢; are chosen so that « is finite, i.e. (¢/ek)f
is O(1/I). Then, because «is conserved, it remains
finite. In this limit, since r# 0 for the particle outside
the cylinder, e—0. Then S is the kinetic angular mo-
mentum of the particle, B—»p,,/] is a constant, and
A— (k/Ir)pges.

We now quantize this theory in the usual way.
Sometimes, for the sake of emphasis or if the mean-
ing is not clear from the context, we shall notation-
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ally distinguish a quantum observable from the cor-
responding classical observable by a caret. Then (5)
is replaced by

(S, a]=0, (6)

and the Heisenberg observables S and & are con-
stants of motion. Let |¥) be the state of the com-
bined system. A particle is said to be confined to a
certain region if (r|¥), (8| ¥> and {z|¥) can be
non-zero only inside this region. The set of states for
which the particle is outside the cylinder forms a Hil-
bert space #. When the Hamiltonian acts on .#,
A= (k/Ir)pgey, which is minimally coupled to the
particle, may be regarded as the quantized vector po-
tential experienced by the particle. This has been
quantized in the gauge in which div4=0. The re-
quirement that A4, is zero at infinity then uniquely
determines 4, as a function of the charge density p
if charges are present. Therefore our quantized po-
tentials satisfy, in the present low energy limit,

ﬁ(xlal) 3xr

divd=0 and A,= x|

(7)
Since in the present case A, experienced by the par-
ticle is 0, the Coulomb gauge condition (7) is con-
sistent with the Lorentz gauge condition 3,4#=0,
which has the advantage of being Lorentz covariant.

But a different gauge can be chosen in which the
vector potential is 4’ (x, t) =A(x, t) —VA(x, t) is zero
in a simply connected region U outside the cylinder.
The corresponding quantized potential A’ (x, f) must
also vanish in U. Then S is replaced by 8" =py— (e/
c)A,. In U, the vanishing of A} implies [$', &]=
—1iA whose classical limit is {S, a}=1, if the usual
canonical commutation relations are assumed. But
this is in conflict with (5), if & has the same physical
meaning in both gauges.

The physical meaning of (5) or (6) is as follows:
the time dependent magnetic field due to the particle
inside the cylinder exerts a torque on the cylinder by
means of the corresponding electromotive force.
Therefore 8 and B become correlated which is the
meaning of « being a constant of motion. But the
velocity of the charged particle is constant for large
I because no forces act on it. Therefore it should be
possible to specify, independently, « and the kinetic
angular momentum S. The fact that this physical re-
quirement does not seem to be satisfied in some
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gauges, as discussed above, leads to a paradox, be-
cause we know that the electromagnetic theory can
be quantized using the Feynman path integral for-
malism in a manner which treats all gauges on an
equal footing since the action is the same in all gauges.

Of course, the theory is invariant under a c-gauge
transformation of the form A/(x, ()=A,(x,1)—
d ,A(x, t), where A is a real valued function of space-
time. The question raised here is whether the theory
is invariant under a q-gauge transformation for which
A depends on observables that do not commute with
the canonical coordinates. The above paradox sug-
gests that we are justified in quantizing the theory by
the usual canonical commutation relations in the
Coulomb gauge but not in other gauges, in general.

To understand this effect in other gauges, and to
resolve this paradox, we consider a specific gauge
namely an axial gauge in which 4’ =0 everywhere.
The vector potential in this gauge 4’ =0 everywhere
in the simply connected region U that is now defined
as follows: suppose that the cylinder has radius a and
its axis is at x=0, y=0; then U is the region outside
the cylinder excluding the region between y=a and
y= —awith x<0. In the latter region, 4, =0=A4" and

/ k (a>=y?)'/?
ay=at =)y,

But in this gauge the scalar potential in U is Ay = (k/
¢)f36. This can be derived by eliminating A in the
gauge  transformations: A4'=4—-VA=0 and

o=—c~'94/9t. Physically, 4§ is the potential for
the electric field produced when the cylinder is given
an angular acceleration f. Therefore the correspond-
ing Lagrangian

L=ym(2+ 22416 + 415~ % o (8)

contains a term proportional to the acceleration p.
Therefore, if § is to be treated as an independent dy-
namical degree of freedom, instead of a fixed exter-
nally specified parameter, we cannot canonically
quantize the theory by means of the usual procedure.

In order to see how this theory can be quantized
in the present gauge, we perform a unitary transfor-
mation V from the Coulomb gauge to the present
gauge which in the region U is
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ek
V= —1—8, .
exp( 1 Al p,;)
This has no explicit time dependence and therefore

it does not introduce an 4,. The new Hamiltonian in
this region is

1 1
" —1_ _— (pn2 2 — p2
H =VHV —Zm(pr+p:)+21pﬁ
_
2mr3(1—¢)

where p' = f— (ek/cl)0 is the transform of f in this
region, whereas 6 is transformed to ¢ =0. Then
pp = —1hd /3B =py by the chain rule. Also,

.. ihek
[Po,ﬂ]=7, (10)

i, (9)

with the other commutation relations which are in-
dependent of (10) being the same as the usual ones.

We now take the angular coordinate of the cylin-
der to be #’ and not 8, while 8 still retains its original
meaning. Then (9) is a new Hamiltonian which is
no longer related to the old Hamiltonian (4) by a
unitary transformation, because the commutation
relations have been changed. It corresponds to a
gauge in which there is no vector potential in U. Then
D, the canonical momentum conjugate to 8, has the
same physical meaning as what was denoted by S'in
the Coulomb gauge. It follows that we should quan-
tize in this gauge by imposing the commutation re-
lation (10). This is unlike in the usual canonical
quantization scheme, which we used in the Coulomb
gauge, in which the canonical momentum of the par-
ticle commutes with the canonical coordinate of the
cylinder. This difference is due to the fact that there
is an acceleration dependent term in the Lagrangian
(8), whose effect in the quantum theory is obtained
from (10). The non-commutativity of ps and £’ in
(10) can also be physically understood as being due
to the fact that a measurement of 8’ results in the
angular acceleration §° of the cylinder which pro-
duces an electric field which changes py which has
the meaning of the kinetic angular momentum of the
particle. Therefore, p, cannot commute with 8 which
is consistent with (10). With this new commutation
relation and the new physical meanings assigned to
pe and B, all physical consequences are the same in
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the present gauge and the Coulomb gauge.

We shall now justify the above quantization, which
we did using physical arguments, by means of a rig-
orous procedure for quantizing a Lagrangian with an
acceleration dependent term. First substitute w=p
and modify the Lagrangian (8) by adding to it the
term l(/?—w). The new Lagrangian in U,

L=im(*+:2+r%6%)

k .
+ Iwz—%cb6+/1(,8—w), (11)

Nlm—

gives the same equations of motion as the old La-
grangian on varying r, z, 6, w and the Lagrange mul-
tiplier 4. Therefore it represents the same physics.
But it has the advantage that it does not contain any
acceleration. Here A=p, and the Hamiltonian is

H——(pr+p )+ 3 i

+p,,w—-'1w- (12)

where the new canonical momenta are obtained by
taking the derivatives of L with respect to the cor-
responding velocities.

But p,, obtained this way satisfies the primary con-
straint equation

X' =pu+ 020, (13)

where ~ represents weak equality meaning that y!
should be set to zero in the equations of motion after
the Poisson brackets are all evaluated. We follow now
the general procedure given by Dirac [4] for quan-
tizing systems with constraints, i.e. relations among
the canonical coordinates and momenta. The total
Hamiltonian is of the form

H =H+uy", (14)

where the coefficient v is to be determined. Also,
(13) must be valid for all times which implies the
constraint

s s . ek p
v=x'={x""H }=—-p,;+1w+———c-;’ﬁz0. (15)

Now the requirement that 2~ 0 can be used to ob-
tain u.

An observable whole Poisson bracket with each
constraint weakly vanishes is said to be first class.
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Otherwise it is called second class. Here y' and x? are
second class because

' xy=—I1(1-¢) . (16)

In the present approximation of €0, which corre-
sponds to large I or large m, {x', x*} = —I. If the con-
straints were all first class then the theory can be
quantized by replacing the Poisson brackets between
the canonical variables by the usual commutators.
But since they are second class, we modify the Pois-
son bracket to the Dirac bracket, which is defined for
any two observables £ and ( to be

{éy C}Dz{éa C}—{é,)(”}cah{)(h» C} L] (17)
where ¢, is the inverse of the matrix ¢®*= {4, x*},
a, b=1,2 1e.

Cahcmv=5atl 5

and the summation convention is being used. The
Dirac bracket of y* with any observable is zero.
Therefore we can now put

Xu=05 a:lyza (18)

before working out the Poisson brackets, i.e. as strong
equations.
On using (18) the Hamiltonian (14) becomes

1 1—
H’——(p,+p )+2 + 2po (19)

I
Since ¢;,=¢5=0 and c¢p,=—c;=1/1(1—€), we
easily compute
_ ek o R
- CI(I—E)’ Ipflw D= l—f’

2e
- (l—e)r

while the remaining Dirac brackets between pairs of
canonical variables in (19) that are independent of
(20) are the same as the Poisson brackets. It can be
shown that the equations of motion expressed in
terms of 7, 6, z, B and their time derivatives which
are now obtained from (19) using the Dirac brack-
ets, instead of the Poisson brackets, are equivalent to
the equations of motion obtained from (2) or (4),
to all orders in e. This confirms that (19) and (20)
in the present gauge represents the same physical sit-
uation as (2) or (4) in the Coulomb gauge.

{p(h ﬂ}D

{Pe> Pr}D Do » (20)
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This theory is now quantized by regarding the ob-
servables as operators acting on the Hilbert space of
states, and replacing the Dirac brackets by the cor-
responding commutators as in the usual prescription
for replacing Poisson brackets.

Returning to the classical theory, on using (20),
we find 8=p,/mr? for the Hamiltonian (19). But
for the Hamiltonian (9), on using the usual Poisson
bracket relation between 6 and p,, we find §=p,/
(1—¢)mr? Hence to go from (19) to (9) we should
perform the transformation

Dy
pgzl—;—e(—;s. (21)

This is not a canonical transformation except of
course in the limit ¢é—0. However, if we take p, and
Do to have the physical meanings determined by 8,
as mentioned above, then under the transformation
(21) the physics will not change. On substituting
(21) in (19) and (20), we obtain (9) and the as-
sociated bracket relations on dropping the primes:

ek
c’

{Ps, pr}p=0. (22)

{pﬁs B}D= {17(), 6}D=—1,

In the quantum theory the latter relations are re-
placed by commutators which include (10). Thus
we have justified the non-commutativity of py and g
in a quantum gauge in which 4=0 in U, assumed
earlier on physical grounds. Also, the theory repre-
sented by (9) and (10) was shown to be physically
equivalent to (4) and its associated canonical com-
mutation relations in the Coulomb gauge. This com-
pletes the cycle which we began in the Coulomb
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gauge, showing again that the physics is the same in
all gauges considered here.

However, we find that a representation of observ-
ables which obey the commutation relations corre-
sponding to (20) in the Hilbert space of wave func-
tions is the same as the representation we would have
written down in the Coulomb gauge. Hence the Cou-
lomb gauge is preferred in the sense that it simplifies
the mathematics by avoiding the tedious procedure
used above for quantizing in a different gauge, and
it gives directly the Schrodinger representation which
is used for space-time description of quantum the-
ory. But the above procedure, which can be extended
to other gauges, shows that the theory can be quan-
tized in different gauges to obtain the same physics.

In conclusion, the present work shows an inter-
esting connection between the role of the vector po-
tential and the canonical commutation relations in
quantum theory. This work can be generalized to a
non-Abelian gauge field. Here also, a gauge trans-
formation from the Coulomb gauge will in general
result in a change in the canonical commutation re-
lations. This will be treated in a future work.
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