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Abstract

It is shown that the Schridinger idea that considers a particle as an extended
wave function is not wrong as is usually thought. The argument relies on a
new method of measurement — the protective measurement — which
measures the Schrédinger wave without disturbing it. However, to avoid
paradoxes we have also to accept a new formulation of quantum mechanics
which is based on two state vectors instead of one, the usual (history) state
evolving toward the future and a second backward evolving (destiny) state.

I. The Standard Interpretation of Quantum Theory

When Schrédinger proposed his wave equation, there was much argument
about the physical meaning of the wave function. While Schriodinger believed
that the wave function for a single particle represents an extended object that
was really moving in space, Born suggested that the wave function of a single
particle has only a probabilistic meaning. That is, any experiment looking at
a single particle will find that particle at only one location, but will never see
it as an extended object. Only if we have an ensemble of particles, can we see
the full implication of the wave function. For an ensemble the quantity
y*(x)y(x) is proportional to the probability of finding the particle at the point
x. We are able to infer the extended nature of a single particle only indirectly,
for example, by analyzing a two slit experiment.

There are three general arguments usually presented as to why we can never
see the wave function of a single particle. These arguments seem convincing,
but we will later show why they are misleading.

1. In the laboratory we never see an extended object. If we make a
measurement of an electron, we will always see it as a point on a
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photographic plate, or a single track in a cloud chamber. It will always
appear as a localized object, never as an extended object.

. The second argument appeals to unitarity. Suppose we have two

possible wavefunctions in the Schrédinger representation, Y1 and Wao.
These are two different descriptions in space since, in general, the two
functions are not orthogonal vectors in the Hilbert space. Suppose we
now say that there is a measurement that can distinguish between the
states Y1 and Y2 which are not orthogonal. That means there exists a
measuring device with some state ¢ such that if the system is in state
/1 the state of the measuring device will go to ¢1, and if the system is
in state Yo the measuring device state will go to ¢2. To be able to
distinguish between the two results, we must have ¢1 and ¢2
orthogonal. However, this violates unitarity since the initial states
were not orthogonal.

The usual argument is to have a large number of particles described by
the same wavefunction Y. That is, we start with a set Y1(x1), Yi(x9),
..., ¥1(xN) and a set ya(x1), ya(x2), ...,¥wa(xN). Using these two
ensembles, we can distinguish between the two states, since the scalar
product between any Y1 and g is less than 1. The scalar product
between the states of two sufficiently large ensembles of particles is
essentially zero. Once again the statistical interpretation seems to be
indicated.

. The last argument is the most important since it forces us to adopt the

two-vector formulation. Suppose at time ¢, there is a quantum particle
whose wavefunction is non-zero in a large region. Let us assume there
1s an experiment which can determine that the particle is spread over
this large region. We do this experiment and soon afterwards we do the
usual experiment and find the particle localized at one position. If we
were studying a charged particle, huge currents must flow to conserve
charge. Otherwise there would be another frame of reference where the
charge is not conserved. Thus the wavefunction cannot collapse
infinitely fast. There is no way that an extended object can suddenly
become a localized one.

We would like to be able to observe the full wave function. The wavefunction
obeys the Schrodinger equation which tells us we have a vector in Hilbert
space which evolves in a deterministic fashion. All the mystery in quantum
mechanics occurs because we are told that we cannot observe the
wavefunction. What we can observe is not what is described by the
mathematics. The connection between what can be observed in the laboratory
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and what is described by the Schrédinger equation is only probabilistic. It
would be beautiful if we could see the wavefunction directly.

I1. Protective Experiments — An Example

The main argument for the reformulation suggested here is that there
are experiments which protect the wavefunction so we can measure the
wavefunction without destroying it. We call such experiments, protective
experiments. Shelly Glashow suggested calling these protective experiments
“in vivo” experiments. This is in analogy with biological experiments which
preserve the life in a cell of small living objects. We shall consider below an
example in which the protection is due to energy conservation.

Suppose we are given a particle described by a known Hamiltonian with
discrete, non-degenerate eigenstates. We are told that the particle is in a
definite eigenstate and we are asked to measure its wavefunction. A
particular example of this would be an electron in the ground state of a
hydrogen atom. In the standard interpretation, we measure the energy of this
state and say that this is all that can be known. However, quantum
mechanics contains much more information than this. It tells us that there is
a wavefunction at each position in space. This is an infinite amount of
additional information for a single particle. We will now discuss how we can
extract this information without disturbing the wavefunction.

Measurement in an ideal quantum-mechanical experiment has been
described by von Neumann. We let Hy be the Hamiltonian of the free system.
This could be the Hamiltonian of an electron in the atom where, for
simplicity, we take the proton mass as infinitely large. We let A represent the
quantity we wish to measure, and let ¢ be a variable of the measuring device.
Then, the Hamiltonian of the system is

H =H, + gt)q A. (1)

where g(t) is an interaction parameter. We choose

8o - 1:I/T

Here T is the effective time of the measurement and g, is a constant
representing the strength of the coupling between the system and the
measuring device.

There are two interesting limits. The first is the impulsive limit where we
take T — 0 and the other is the adiabatic limit where we take T — o-. The
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usual experiment is to take the impulsive limit in which the experiment lasts
an extremely short time. In this case we can ignore H,, and the momentum
conjugate to ¢ will be changed by one of the eigenvalues of A. We are only
able to get probabilities for this change and hence cannot measure the
wavefunction.

In the adiabatic limit the experiment lasts a long time while the coupling
between the measuring device and the particle becomes very weak and
approaches zero. Surprisingly, even though the coupling goes to zero, we can
still get information about the particle and we get this information without
changing the wavefunction. Indeed, in the adiabatic limit the ground state
wave function is the ground state of the full Hamiltonian during the full time
of the measurement. The only thing that can change is the phase.

We will first look at an eigenstate of ¢ and then at a superposition of
eigenstates. For an eigenstate, the adiabatic limit becomes a normal
perturbation problem. The energy goes to the original energy plus a
correction that goes to zero, that is

E = Eg + g(t) g {(A) (3)

where (A) is the expectation value of A calculated with the original
wavefunction. Now E — Eg — 0 but the total phase accumulated is

[E®)dt = [Eodt +go g(A). (4)

Since quantum theory is a linear theory, what is true for ¢ as an eigenstate 1s
true for a superposition of eigenstates. If we start with the measuring device
in a superposition of g’s there will be a different phase associated with each

value of ¢q. If p is the momentum conjugate to q, the change in p will be dp =

go(A). So we can measure not only the eigenvalue of an operator, but the
average of an operator in a given state.

We can also clearly make N simultaneous measurements with N measuring
devices, each measuring a different Ap. The Hamiltonian in this case is

N
H = H, + gt) D gnAn. (5)

n=o
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If we choose the set of variables A, to be the projection operators in different
regions of space, the results for each A will be proportional to Y*(x,) W(xy,) at

this point x,, and the entire set measures Y*(x) Y(x) in its full glory in all
space.

II1. Refutation of the Three Arguments of Section I

We must now show why the three seemingly very convincing arguments of
Section I were misleading.

1. The first argument is easily discounted. The previous experiments
were simply not the right experiments. Up to now, we have only
designed experiments that would “kill” the wavefunction by looking for
a localized particle. These were not "in vivo" experiments. In analogy
with our biological example, if you do the wrong experiment on an
organism, you will kill it. We previously were doing the wrong
experiment on Y and thus “killed” it.

2. The unitarity issue is resolved in an interesting way. The only states
that were protected are nondegenerate eigenstates of the Hamiltonian.
These eigenstates are orthogonal to each other, so no contradiction
with unitarity arises. If we try to measure superpositions of two such
states the system will collapse to one state or the other. We are still
able to see the state in its full glory, but we see only one state out of
the set of completely orthogonal nondegenerate eigenstates of the
Hamiltonian. If we want to see other states such as a superposition of
eigenstates, we must find a different protection since conservation of
energy does not preserve them.

The issue is not to think of measurement as just determining what we
don’t know. The real issue of measurement theory is determining what
can manifest itself. If we have an electron passing through two slits,
we can measure its wave function for a single particle and see the full
glory of the interference spectrum. It is only necessary to devise the
right protection.

3. Complete resolution of the third argument will be presented in the
next section but it is interesting and fruitful to consider what happens,
if while performing a protective measurement in one region of space, a
usual position measurement is performed at some other location and
finds the particle there. Can we violate causality and send signals
faster than light? The answer is no. As an example suppose we have an
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electron in the ground state of the hydrogen atom as shown in the
figure.
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We are doing our protective experiment in the vicinity of the proton and
find the wave function density corresponding to the ground state. While
we are doing our experiment some other physicist makes a non-protective
measurement at a large distance L. away from us and finds the whole
particle there. This contradicts the outcome of our protective experiment.
To avoid possibility of casual connection between these experiments, we
must complete our protective experiment in a time T less than L/c. For
finite time experiment we no longer can be sure that the electron remains
in the ground state. There is a finite probability of exciting the state,
which goes like e ET This is the probability to make a mistake. On the
other hand, the probability to find the particle at location L is

e—L \ 2mE

where m is the mass of the particle and E is the binding energy. The only
way to violate causality is to have a binding energy greater than 2mc2. We
have a nice result. There is no way to consistently describe a single

particle in relativistic quantum theory if the binding energy exceeds
2mc?2.

The Two-Vector Reformulation of Quantum Theory

resolve violation of Lorentz covariance in the wavefunction collapse

problem we must reformulate quantum mechanics. It is possible to do this by
using the two-vector formulation. The two-vector formulation can be
described as follows. Suppose we have a region of space where an experiment
1s performed. For example, in a scattering experiment we start with an
incoming state, call it y; and allow this prepared state to interact and
produce a set of outgoing states corresponding to different outcomes. We want
to select only particles that go into a particular outgoing state 2. In classical
physics, if we had a well-defined incoming state there would be only one
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outgoing state. In quantum mechanics there will be an ensemble of outgoing
states. This allows us to define new quantum ensembles that do not have an
analogy in classical physics. These are called pre-selected and post-selected
ensembles. They are characterized by giving two boundary conditions on the
particles. These are the boundary conditions at the start of the experiment
and the boundary conditions at the end of the experiment. That is, if an
incoming state 1 can produce the following set of outgoing states Yo, Y3,
etc., then we form separate ensembles for those experiments that produce the
pair (Y1,y2) and those that produce (\y1,y3), etc.

This suggests characterizing each quantum particle in the pre-selected and
post-selected ensemble by two states. Each quantum particle is described at
any instant by two vectors that we will call the history vector and the destiny
vector. This concept will enable us to explain how a distribution that was
extended in space can suddenly be replaced by a distribution that is peaked
near a given position.

What we measure is not p(x) = Wy*(x) Y(x) but the density

Y*o(x) Wi(x)

Prol) =  —
_f\p*z(x') Wi(x") dx’

—C0

where /1 is the history vector and Y2 is the destiny vector. In all protective
experiments what is measured is not the average of either of these states but
the above combination. In the usual non-protective experiments, the history
vector and the destiny vector were the same, so this distinction was not
obvious.

Let us consider again the paradoxical situation of the argument 3. Let the
initial state Y be a superposition of the two localized states. The final state
V2 1s one of these localized states. We might obtain it by just looking and not
finding the particle in another place. The paradox is how the particle “Jjumps”
instantaneously to the first location just by not observing it in the second
location. The way out is that the particle was in the first location during the
whole period between the two measurements! Indeed, the two vector density
P12(x) 1s non-zero only when both y; and y; are not zero, i.e., only in the first
location. Similarly we can resolve the problem of how an extended particle
becomes localized. The product of an extended particle and a localized
particle is always a localized particle. It is localized all the time.
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We resolve argument 3 by thinking of a quantum system as being described
by two vectors, the history vector and the destiny vector, rather than by one
vector. We no longer violate causality since the description depends also upon
what happens later, not just upon what has happened. If you change your
mind about what you will measure, the destiny vector must be changed all
the way back to the beginning just as we would have to change the history
vector if we had decided to perform a different experiment. This is analogous
to the Einstein-Podolsky-Rosen (EPR) experiment. In EPR, we have already
learned that if we take a single system that is already correlated to another
system, and make a measurement on one of the systems, it immediately
changes the state of the other system. In an ensemble, the probability
distribution remains unchanged, so we cannot use this to send information
faster than light. In the same way here, the future state changes the present
for an individual quantum system; but it doesn’t change the probability
distribution for an ensemble. Therefore, it cannot be used to transfer
information backwards in time.

Conclusion

We have described a new type of experiment, the protective measurement,
through which we can observe the extended wavefunction of a single particle
in its full glory. This reality of the wavefunction strongly supports a new
interpretation of quantum mechanics, the 2-vector formulation, in which
there are 2 vectors describing a quantum system, the usual vector
propagating from the past and a second one propagating backwards from the
future. We show how this interpretation resolves the arguments given
against the observability of the wavefunction of a single particle.
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