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Why opposites attract
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We give a very simple proof that 't Hooft-Polyakov monopoles and antimonopoles attract at all sepa-

rations, not just at large distances.

PACS number(s): 11.15.Kc, 14.80.Hv

Oppositely electrically or magnetically charged point
particles attract at all distances. However, it is not obvi-
ous that this is also true for extended objects, like the
magnetic monopoles discovered in spontaneously broken
gauge theories by ’t Hooft [1] and Polyakov [2]. Certain-
ly the long-range part of the force between these objects
is attractive, but one might suspect a short-range repul-
sion when their cores overlap. In this paper we show that
this suspicion is groundless: oppositely charged
’t Hooft—Polyakov monopoles attract at all distances,
just like point particles. The most surprising part of this
result is how easy it is to prove.

We stress that our proof is for 't Hooft—-Polyakov
monopoles as extended objects in classical field theory;
we have nothing to say about quantum effects. Also, our
proof is for the original ’t Hooft—Polyakov monopoles
only, the objects that arise in the theory of a triplet of
real scalar fields with spontaneously broken SO(3) gauge
symmetry. We shall discuss possible generalizations to
other cases after we give the proof.

The energy of a field configuration in this theory is
given by

W= [ d*x[L(G{)*+L(D,4*

+1Mg% —v22+ - ] (1)

Here, as usual,
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g, A, and v are positive real numbers, all indices run from
1 to 3, and the sum over repeated indices is implied. The
ellipsis in Eq. (1) denotes terms involving canonical mo-
menta, all of which trivially vanish for the configurations
we shall consider.

For the energy to be finite, |¢| must go to v at spatial
infinity. Thus field configurations of finite energy are
characterized by a topological charge, the winding num-
ber, the number of times $°=¢°/|$| at spatial infinity
winds around the unit sphere. The monopole (antimono-
pole) is the minimum-energy field configuration with
winding number one (minus one). The topological charge
can also be constructed from a knowledge of the behavior
of ¢ at its zeros (assumed to be a finite set). With every
zero of ¢ we can associate a winding number, constructed
from the behavior of $ on a small sphere surrounding the
zero. It is then elementary that the winding number at
infinity is the sum of the winding numbers at the zeros.

This observation is the key to defining what we mean
by a monopole-antimonopole field configuration. It is a
configuration with two (and only two) zeros of ¢, one
with winding number one and with winding number
minus one.! The monopole-antimonopole solution is the

If we allowed more than two zeros, the minimum energy
would be zero. This is because we could put a new monopole
and antimonopole very close to our original antimonopole and
monopole, with the new objects arranged so as to almost annihi-
late the original objects.
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minimum-energy configuration with fixed zeros. It is a
solution of the equations of motion everywhere except at
the zeros; that is to say, in general, external forces must
be applied to the centers of the monopole and antimono-
pole (the zeros) to keep them at fixed locations. Let us
denote by W(p) the energy of this solution, with p the
distance between the centers. We shall show that for any
positive number 6 less than p,

Wip)>W(p—38). (3)

With no loss of generality, we can work in the axial
gauge, A/=0, and take the zeros to be on the z axis, at
z=x=xp/2. Let us write W(p) as the sum of three terms,

W, is the contribution to Eq. (1) from region 1:
o >z>8/2. W, is the contribution from region 2:
8/2>z>—8/2. W, is the contribution from region 3:
—8/2>z>— . All three W’s are manifestly non-
negative.

In fact, we can make a stronger statement than this:
W, is strictly positive. The argument is as follows: If we
follow ’t Hooft [1] and define the magnetic field by

— aja bcrapy Rbpy fc
F;=G3$"—(1/g)e"¢°D,$'D,6° , (5)

then the magnetic flux through any closed surface is
477/g times the sum of the topological charges of the
zeros enclosed by the surface. Let us consider the surface
consisting of the plane z=0 and the upper half of the
sphere at infinity. For a dipole configuration, the mag-
netic field falls off at large r like r 3, so the flux through
the hemisphere vanishes. There is one zero enclosed by
the surface, so the flux through the plane must be +47/g.
But if W, =0, the field in region 2 is gauge equivalent to
the classical vacuum, and F;; vanishes on the plane.

ZNote that this, and the subsequent arguments, would not be
true were we not working in the gauge 47=0.

3Space reflection turns a monopole into an antimonopole no
matter what the theory; this is nothing but the statement that
parity turns every element of m,(S?) into its inverse.

Because W, is positive, at least one of the other two
W ’s must be less than W(p)/2; let us choose the positive
z direction so it is W,. Now let us consider the following
trial configuration:

biia(%,3,2)=¢%x,y|z| +8/2) ,
Aiatrial(x’yrz)z A,—“(x,y, IZl +6/2) .

(6)

This is simply the original configuration of region 1,
patched on to its reflection in the plane z=8/2. This
configuration is continuous, and therefore it is a good tri-
al configuration for the functional (1), which only con-
tains first derivatives. Because the space reflection of a
monopole is an antimonopole, the trial configuration con-
sists of a monopole and an antimonopole separated by
p—95. Thus, by the variational principle,

Wip—8)< W, =2W,(p)< Wip) . (7)

This completes the argument.

Our proof would apply to a general theory of scalar
and gauge fields, with a general pattern of symmetry
breakdown, if we could only define, in general, what we
mean by a monopole and an antimonopole separated by a
fixed distance.® In our proof, this definition was based on
identifying the centers of the monopole and antimono-
pole with the zeros of ¢. This method (or an equivalent
one) works for many simple models, but we have no idea
of how to extend it to the general case, or even if it is pos-
sible to do so.

Our argument can also be applied to certain theories in
two spatial dimensions. For example, it can be used to
show that a vortex and an antivortex attract in the Abeli-
an Higgs model. This is an instructive example because it
shows there is no hope of proving what might seem at
first glance to be the natural partner of our result, the
statement that like charges always repel. In the Abelian
Higgs model, whether two vortices attract or repel de-
pends on the vector-to-scalar mass ratio, even at large
distances.
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