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Abstract. We consider the tunnelling particle as a pre- and post-selected
system and prove that the tunnelling time is the expectation value of the
position of a ‘clock’ degree of freedom weakly coupled to it. Such a value,
called a ‘weak value’, typically falls outside the eigenvalue spectrum of the
operator. The appearance of unusual weak values has been associated with a
unique interference structure called ‘superoscillations’ (band-limited functions
which on a finite interval, approximate functions with spectra well outside their
band). It is proposed that superoscillations play an important role in the
interferences which give rise to superluminal effects. To demonstrate that, we
consider a certain simple tunnelling barrier which allows a wave packet to travel
in zero time and negligible distortion, a distance arbitrarily longer than the
width of the wave packet. The peak is shown to result from a superoscillatory
superposition at the tail. Similar reasoning applies to the dwell time. For this
system, both the Wigner time (related to the group velocity) and a clock time
correspond to superluminal velocities.

1. Introduction
The statistics of tunnelling particles, and more generally of scattered ones, is an

instance of quantum conditional probability. For a given initial state (or class of
states), we would like to calculate the a posteriori statistics of various observables
for a given postselection (i.e. in the far future the particle is found (measured to be)
on the far side of the barrier). Note that without postselection, the final state of a
particle impacting a high barrier would be a superposition of a reflected and a
(small) transmitted wave, and the statistics of a generic observable would depend
on both.
Consider a simple ‘clock’ degree of freedom coupled to our particle when it is

under the barrier. In the weak coupling limit (weak measurement), the expectation
value of the clock degree of freedom has a simple dependence on the initial and
final states. This is an instance of a ‘weak value’. In section 2, some useful
properties of weak values are reviewed, with some examples where they occur,
and their physical significance and the related subject of superoscillations are
discussed. In section 3, the conditional dwell time is shown to be the weak value of
a simple clock.
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In section 4, a simple system is introduced where superluminal tunnelling is
shown to occur with respect to the group-delay time as well as the conditional
dwell time. In section 5, both these results are shown to result from the same
superoscillatory interference.
The superluminality of the title refers to the superluminal dwell time and

group delay times. The signal time, defined as the time it takes the front of an
abrupt signal to arrive, is never superluminal, as required by causality. However, it
does not correspond to the times measured experimentally. All the operational
definitions of tunnelling times proposed to date can result in superluminal times.
For extensive reviews as well as theoretical background and bibliography see [1–3].
The superluminal predictions obtained in some calculations are simply arte-

facts of the unphysical superluminal diffusion of the nonrelativistic Schrödinger
equation. A well-known example is Hartman’s explanation of the effect named
after him [4], where the faster components of a (Gaussian) wave packet, by virtue
of their higher energies, are transmitted preferentially through a square barrier,
and since the analysis was done with the non-relativistic equation, this could lead
to superluminal traversal. However, superluminality in tunnelling is generic and
appears in calculations done with relativistic wave equations and with massless
particles as well. It has been shown in many cases to result from a reshaping of the
tail of the wave function to resemble it’s central peak [5–11]. This phenomenon has
been termed ‘mode reshaping’. In particular, this explanation makes it clear that
the information about the peak was available in the tail before the tunnelling ever
occurred (i.e. given the tail of the wavefunction, one could theoretically recon-
struct the rest). This effect is seen very clearly in the model system we consider
here, and the effect is very dramatic—the reconstruction can be done in a region
many standard deviations away from the centroid of the packet.

2. Weak values and superoscillations in the context of the two-state
formalism
The two-state formalism is a time-symmetric formulation of Quantum

measurement, dealing with weak measurements of pre- and post-selected systems
[12–15]. It is useful in analysing experimental situations involving postselection.
In this formalism, one deals with systems prepared at a given initial time in an

initial state jii, which are made to interact weakly with a measuring device (to be
described shortly), and then at a given final time found to be in a specified final
state j fi. In practice, this usually means one performs on an ensemble, a meas-
urement of an appropriate observable at the initial time, selects only the systems in
state jii (preselection), performs the weak measurement, and at the final time
measures the system again to test if it is in the final state j fi (postselection).
A conventional (‘strong’) measurement can be modelled as follows. The system

is made to interact with a ‘pointer’ degree of freedom, Q, via an interaction
Hamiltonian of the form

Hint ¼ gðtÞPA; ð1Þ

where P is the variable conjugate to Q. The function gðtÞ satisfies
Ð
gðtÞdt ¼ 1, and

is nonzero only in a small interval. If this interval is short enough, one can assume
that during this time, the free Hamiltonian can be neglected. The initial state of the
pointer variable is described by the wavefunction:
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�iðQÞ ¼ ð�2�Þ�1=4 e�Q2=2�2 ; ð2Þ

and the initial state of the system is

j�ii ¼
X
k

�kjaki; ð3Þ

expressed in terms of the eigenfunctions of A. After the interaction the state of the
system and measuring device is

ð�2�Þ�1=4
X
k

�kjaki e�ðQ�akÞ2=2�2 : ð4Þ

If the width of the initial position of the pointer, �, is much smaller than the
separation between any two eigenvalues ak, then two different eigenstates of the
system at the initial time lead to almost orthogonal states of the pointer. After
amplification, the pointer is made to collapse. It is then found very close to a
position corresponding to an eigenvalue of A.
The weak measurements can be described by the same model with the single

change that the initial spread of the pointer position, �, is very large, and therefore
that of P, small. Since the spread is large, the inaccuracy of single measurements
has to be compensated for by large statistics. Furthermore, one also has to
compensate for the reduction in the size of the ensemble due to postselection.
For postselection of state j f i of the system, the pointer wavefunction at the

final time is the state described by equation (4), projected onto j f i:

�f ðQÞ ¼ ð�2�Þ�1=4
X
k

�kh f jaki e�ðQ�akÞ2=2�2 : ð5Þ

Using the fact that1

he�ðx��kÞ2=2�2i �
P

ck e
�ðx��kÞ2=2�2P

ck
	 e�ðx�h�iÞ2=2�2 ; h�i �

P
ck�kP
ck

ð6Þ

for all x s:t: : jh�ij 
 jx� h�ij 
 �, we get:

�f ðQÞ 	 ð�2�Þ�1=4 e�ðQ�AW Þ2=2�2 ; AW � h�f jAj�ii
h�f j�ii

8Q s:t: : jAW j 
 jQ�AW j 
 �: ð7Þ

The pointer may be said to show the value Aw, which is called the weak value of A
with respect to the initial and final states of the system (and is independent of the
initial state of the pointer). Measurement of Q yields the real part of Aw, but the
imaginary part also has a physical meaning and can be measured instead (by
measuring P). Note that the derivation above shows that the criterion for a weak
measurement is � � jAW j (due to our choice of units, Q and A have the same
dimensions).
Besides the fact that weak values are in general strictly complex, their

magnitudes can also lie outside of the range of eigenvalues. For example, it is
straightforward to check, that for a spin 1/2 system preselected to be in an
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eigenstate of sx and postselected to be in an eigenstate of sy, the weak-value of sn,
n̂n ¼ ð1=

ffiffiffi
2

p
Þðx̂xþ ŷyÞ is

ffiffiffi
2

p
. In general, the deviations from the ‘allowed’ range of

values can be arbitrarily large. In fact, for a nontrivial operator the set of weak
values comprises the entire complex plane2.
We see from the condition below equation (6), that for �� jh�ij, the Fourier

transform of both sides of that equation should be approximately the same. The
Fourier transformed equation has the form:

X
n

cn e
i�nk � c eih�ik

 !
exp ð��2k2=2Þ 	 0: ð9Þ

In other words, X
n

cn e
i�nk 	 c eih�ik for jkj < 1

�
: ð10Þ

As noted previously, h�i can lie outside the range of �n, and in that case we see that
in a small interval, a function may oscillate with a frequency which lies outside its
spectrum. In fact, a function may be approximated in a small interval arbitrarily
well by band limited functions (more precisely, the set of restrictions to a given
interval, I, of L2ðRÞ functions with Fourier spectrum in some finite interval I 0, is
dense in L2ðIÞ). This fact was discovered by Aharonov, and was termed super-
oscillations [20, 21, 23]. Other integral transforms can be applied to equation (6),
and yield similar results.
Note that in the special case jii ¼ j fi, the weak value coincides with the usual

expectation value. In this formalism it may be interpreted as the result of averaging
over a complete orthonormal set of final states, but of course for this special case,
the weakness condition is not really needed.

3. The dwell time as a weak value
We would like to calculate the expectation value of the time measured by a

‘clock’ consisting of an auxiliary system which interacts weakly with our particle as
long as it stays in a given region. Furthermore, we would like to restrict the
calculation only to the subensemble of particles which ultimately end up on the
right of the barrier. The simplest interaction is perhaps the one defined by the
Hamiltonian:

Hint ¼ P	Xð0;LÞ

where 	 is the degree of freedom of the clock and P	 is its conjugate momentum,
and
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2To see this, let us develop the initial and final states of the particle in terms of the
eigenfunctions of the operator to be measured, A:

jii ¼
X
k

�kjaki; j f i ¼
X
k


kjaki; ðAjaki ¼ akjakiÞ ð8Þ

Then, AW ¼ h f jAjii=h f jii ¼
P

�k�kak=

P

�k�k. Suppose A is nontrivial, i.e. it has more

than one eigenvalue. Assume k ¼ 1; 2 correspond to two of these, and take 
1 ¼ 
2 ¼ ð1=
ffiffiffi
2

p
Þ.

Then the two equations: AW ¼ ð�1a1 þ �2a2Þ=ð�1 þ �2Þ ¼ z, and j�1j2 þ j�2j2 ¼ 1, are three
real equations in four unknowns. They can be solved for any value of z, as can be verified
easily.



Xð0;LÞðxÞ ¼
1 if 0 < x < L

0 otherwise
:

�

This is the effective form, for example of the potential , seen by a particle in an Sz

eigenstate, in the Stern–Gerlach experiment (	 being the z coordinate, and ð0;LÞ
the region of the magnetic field).
In order to use the results of the previous section to calculate the conditional

dwell time, we need to generalize them in two respects:

1. The postselection is no longer (explicitly at least) of a particular final state,
but of the subspace consisting of those states that at large positive times tend
to be supported on the right side—the transmitted ‘out states’.

2. In deriving the formula for the weak value of a variable we had assumed
that the measurement process is short enough that the evolution of the pre-
and post-selected states during its duration can be neglected. This is
certainly not the case here!

The formula for the weak value of an operator, O, with respect to the
postselection of the subspace spanned by the (orthonormal) set of states fj f ig is
easily found to be:

hOiWi;ff g ¼
hijPff gOjii
hijPff gjii

;

where Pffg ¼
P

f j f ih f j is the projection operator onto the subspace spanned by
fj fig.
In the case of tunnelling, and more generally, scattering, this can be simplified

considerable if we use the fact that an ‘in state’ (a state asymptotically supported to
the left of the barrier and moving to the right at large negative times, for example)
becomes for large positive times an ‘out state’ which in turn is the sum of a
reflected and a transmitted component:

j�ðt << 0Þi ¼ j�incidenti; j�ðt >> 0Þi ¼ j�reflectedi þ j�transmittedi:

If we now denote by PT the projection operator onto the space of ‘transmitted’
states (i.e. ‘out states’ traveling to the right), and apply the last result, we find for
the weak value of O:

hOiWi¼inc; f¼trans ¼
h�incjPTOj�inci
h�incjPTj�inci

¼ h�transjOj�inci
h�transj�inci

:

The second generalization is even simpler—we simply divide the measurement
into many short ones:

O ’
X1
j¼�1

Oj; OjðtÞ � OX½ j�t;ð jþ1Þ�t�ðtÞ:

Assuming that during a time interval of duration �t the evolution of the states can
be ignored, we have

hOjiWinc;trans ’ C�t
h�transð j�tÞjOj�incð j�tÞi
h�transð j�tÞj�incð j�tÞi :
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The constant C is an arbitrary calibration constant of the measuring ‘pointer’, and
we naturally set C ¼ 1=�t. Using the fact that h�transðtÞj�incðtÞi is independent of
t, we have in the limit �t ! 0:

hOiW ¼
ð1
�1

h�transðtÞjOj�incðtÞi
h�transðtÞj�incðtÞi

dt ¼
Ð1
�1h�transðtÞjOj�incðtÞidt

h�transð0Þj�incð0Þi
:

For our clock, O ¼ X½0;L�, this formula reads:

Eð	; t ! 1ji; fÞ ¼ hX½0;L�iW ¼
Ð1
�1 dt

ÐL
0 dx�

�
f ðx; tÞ�iðx; tÞÐ1

1 dx��
f ðx; 0Þ�iðx; 0Þ

: ð11Þ

This result can also be obtained directly by a first-order perturbation theory
calculation, as was shown in a previous paper [16].
Steinberg [17, 18] has arrived at this formula under similar assumptions by

a somewhat different line of reasoning. He introduced the term conditional
(quantum) probability for the probability distribution of a system following
post-selection, and we use the notation of conditional expectation in the formula
above, in the same spirit. The connection to weak values was also noted by
Steinberg.
The formula is valid when 	 and p	 do not appear in additional terms in the full

Hamiltonian, but the generalization is straightforward.

4. Model system: particle tunnelling through an n-delta-function
potential
Olkhovsky et al. [19] showed that a Schrödinger particle tunnelling through a

double rectangular barrier traversed the distance between the bumps instanta-
neously in the limit that its kinetic energy was much smaller than the height of the
barrier. Unlike previous examples of superluminal tunnelling, the length of the
region of superluminality consists of an arbitrarily long portion with zero poten-
tial, between the bumps. Replacing the rectangular barriers in the example
discussed in [19] by delta-function potentials, the calculations can be made
somewhat simpler, and are easily generalized to n arbitrary delta bumps (still
using the approximation of low kinetic energy).
In this section we make a direct calculation of the transmission coefficient for

the stationary scattering of a scalar particle obeying the Schrödinger equation, off
a multiple delta-function potential. The Schrödinger equation is of course non-
relativistic and displays an unphysical superluminal dispersion. However, the
time-independent equation is the same as for the scalar relativistic wave equation,
and we focus on the Schrödinger equation merely for a simple concrete inter-
pretation. The origin of the superluminality in this case is a reshaping of the tail of
the wavefunction. For a further discussion of the justification of using the
Schrödinger equation for investigating superluminal tunnelling times see the
review by Chiao and Steinberg [3].

4.1. Transmission through a multiple delta-function potential
Consider the Schrödinger equation with the following potential:

VðxÞ ¼ ��i�ðx� LiÞ; L0 ¼ 0: ð12Þ
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The energy eigenfunctions have the form (for x < 0 and x > Ln):

 ðxÞ ¼ A eikx þ B e�ikx x < 0

C eikx þD e�ikx x > Ln

�
ð13Þ

The coefficients satisfy:

A

B

	 

¼ M

C

D

	 

; ð14Þ

M ¼
Yn
i¼1


i
1 e�2ikLi

�e2ikLi �1

	 

þ I

� 
; 
j ¼

m�j

ik
ð15Þ

In the limit of small kinetic energy (j
ij � 1), we can drop the I matrices, as long
as n < 
i. It is then straightforward to prove by induction on n that:

M ¼
Yn
1


i

Qn
i¼2ð1� ziÞ

Qn
i¼2ðz�1i � 1Þ

�
Qn

i¼2ð1� ziÞ �
Qn

i¼2ðz�1i � 1Þ

 !
þOð1Þ ð16Þ

where z1 ¼ 1; zi ¼ e2ikðLi�Li�1Þ ði ¼ 2 � � � nÞ
As usual, we examine the case of ‘stationary scattering’. To get the (amplitude)

transmission coefficient for probability current flowing from the left, t, we put
A ¼ 1;B ¼ r;C ¼ t;D ¼ 0 in equation (13):

 ðxÞ ¼ eikx þ r e�ikx x < 0

t eikx x > Ln

�
ð17Þ

and we see that t ¼ M�1
11 , so:

t ¼ M�1
11 	 
�11 � � �
�1nQn

i¼2 ð1� ziÞ
¼ 
�11 � � �
�1n

Qn
i¼2 z

�12
iQn

i¼2 ðz
�12
i � z

1
2

iÞ

¼
Q

�1i

ð�2iÞn�1
e�ikLnQn

i¼2 sin ðkðLi � Li�1ÞÞ
ð18Þ

The stationary phase formula for the delay time, 	g:

	g � �h
@

@E
arg ðtÞ; ð19Þ

yields the value 	g ¼ �ðmL=�hkÞ ¼ �ðL=vðkÞÞ for the delay, which cancels the time
for a free particle, and we get an overall zero time for tunnelling. Since this is true
for all k, it should be true for an arbitrary wave packet, as long as the stationary
phase approximation holds. The condition for that is derived in the next subsection.

4.2. The condition for superluminal tunnelling of a packet
Restated for wave packets, our results so far can be summarized as:

�ðx; tÞ ¼
Ð
gðkÞ eikx þ rðkÞ e�ikx

� �
e�i!ðkÞt dk x < 0Ð

ð�ikÞCðkÞgðkÞ eikðx�LnÞ e�i!ðkÞt dk x > Ln

(
; ð20Þ
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and

CðkÞ ¼
Q

�1i

�ikð�2iÞn�1
Qn

i¼2 sin ðkðLi � Li�1ÞÞ
: ð21Þ

When �k is sufficiently small, the diffusion can be ignored and CðkÞ can be
considered constant (as will be shown shortly). Then we can again separate out the
time dependence of the wavefunction and the spatial part can be written:

 ðxÞ ¼
�ðxÞ x < 0

C� 0ðx� LnÞ x > Ln

�
ð22Þ

where �ðxÞ in the two regions is related through analytic continuation.
If �ðxÞ ¼ RðxÞ eiSðxÞ where RðxÞ is large and slowly varying in the region

jx� x0j < �x and SðxÞ goes through a few cycles there, then the time of arrival
distribution of the transmitted packet will be approximately that of the incoming
one, shifted by �L=hvi. Note also that this is also true for a mixed state which can
be decomposed into various pure states with this property.
Let us now find the explicit condition for CðkÞ to be approximately constant,

for the case where Lj ¼ ð j=nÞL, �j ¼ �, and as before, n < j
j ¼ m�=k. In this case,
we have

CðkÞ ¼

ik

m�

	 
n

�2ik 2i sin kL=nð Þn�1
ð23Þ

Using the fact that ðx=sin xÞ ¼ 1þ ðx2=6Þ þOðx4Þ, we get:

CðkÞ ¼ � 1

m�

n� 1
2Lm�

	 
n�1
1þ 1

6

kLffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
	 
2

þO kl

n� 1

	 
3 ! !
ð24Þ

Thus, CðkÞ will be approximately constant if the spectrum of the wave packet is
limited to k such that jkj 	

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
=L. In other words, �k 	

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
=L, or

�x 	 ðL=
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
. This means that the length of the barrier can be arbitrarily

longer than the ‘length’ of the tunnelling packet as usually defined (standard
deviation of the x coordinate), the penalty paid being an exponential suppression of
the amplitude.

4.3. Calculation of the dwell time
It is interesting to compare the ‘group delay’ (which is zero in the low k limit)

with the dwell time. For the sake of simplicity, we shall deal with the case n ¼ 2.
A direct calculation of the dwell time of the transmitted component can be made
by calculating the transmission coefficient after adding a potential which is
constant over the region between the delta spikes, and vanishing outside it. We get:

t ’ 
�2
e�ikL

�2i sin k 0L
;

where k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE �V0Þ=�h

p
and V0 is the value of the potential between the deltas.

Clearly, ð@ arg ðtÞ=@V0Þ ¼ 0, and the (conditional) dwell time is zero as expected.
A direct calculation of the dwell time using formula (11) also shows that it tends

to zero in the low energy limit.
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5. Superluminality and its relation to interference in the tail of the
wavefunction
The calculation of the transmission coefficient, t, can also be done in a way

more suggestive of superoscillations. Let us explain this for the case of two delta
functions (the n ¼ 2 case in equation (12), ‘Fabry Perot interferometer’).
Suppose a quasimonochromatic wave packet with wave number k arrives at the

first delta spike. The transmitted component is the same as the original wave,
except for an attenuation and phase which are independent of k. At the second
delta spike, the wave splits into a (approximately unattenuated) reflected wave and
a transmitted one which is apart from a k-independent multiplicative constant the
same as the impinging wave. The reflected component is again reflected at the
first delta, and arrives at the second delta with an additional phase of 2kL, but
with approximately the same amplitude as the original transmitted wave. In a like
manner, one gets additional transmitted waves with additional phases of
2nkL; n ¼ 2; 3; . . . ; and amplitudes which decrease very slowly. Thus we get the
following formal sum for the resulting amplitude of the wave (up to a multi-
plicative constant):

X
n

eikxðeik2LÞn ¼ eikx

1� e2ikL ¼ eikx e�ikL

�2i sin kL ð25Þ

which is in agreement with our previous calculation. This is an example of
superoscillations since a sum of positive wavevectors results in a negative one
(or, equivalently, a sum of positive shifts which results in a negative shift)3. This is
true in the following sense: for jkj 
 1=L the denominator of the right-hand side
can be considered constant. However, in such a small interval the function does
not really oscillate, so it really does not have a well-defined frequency. To really
speak about superoscillations we need to have a large number of delta-functions.
The sum for the case n > 2 factors into n� 1 sums of the above form, in the low
kinetic energy limit, since to leading order in 
�1, the only contributions are from
waves which tunnel through each delta only once, but may be reflected any
number of times between consecutive deltas. We then reproduce the results of
subsection 4.2, where we had the weaker condition k <

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
=L, allowing the

function to complete many oscillations in the region.
The same kind of calculation can be done for the wavefunction of our clock’s

‘pointer’. Then this superoscillatory sum would correspond to a series of positive
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3The sum in equation (25) actually diverges, the physical reason being that we have
neglected the attenuation of the amplitude, in order to maintain consistency with the low
kinetic energy approximation we have used so far. For the case n ¼ 2 it is easy to evaluate
equation (15) without resort to that approximation, and the resulting transmission ampli-
tude is:

tðkÞ ¼ 
�2

1þ 2


þ 1


2

	 

e2ikL

ð26Þ

Similarly, the sum on the left of equation (26) should be replaced by the exact one:

ð1þ 
Þ�2
X1
j¼0




1þ 


	 
2
e2ikL

" #j
¼ 
�2

1þ 2


þ 1


2

	 

� e2ikL

ð27Þ



time readings interfering to give zero. This derivation shows that for this system,
the dwell and group-delay times not only coincide, but are also described by the
same mechanism. Note that since the clock is described by a projection operator,
with eigenvalues 0 and 1, the superoscillatory sum cannot describe the series of
equation (6). However, it can be interpreted as the product of such series
corresponding to the decomposition of the clock projector into a sum of projectors
onto the same spatial interval multiplied by appropriate time intervals (the weak
value of a sum is the sum of the weak values).
The group delay in tunnelling through a thick barrier follows from the fact that

under the barrier, no phase accumulates, and the entire phase shift comes from the
boundaries and is practically independent of the thickness. For cases where
interference with a delayed wave takes place, a few authors [5–11] have suggested
a different mechanism. In Chiao and Steinberg’s words [3]: ‘If destructive
interference is set up between part of the wave traveling unimpeded and part
which has suffered a delay �t due to multiple reflections, one has �outðtÞ ¼
�inðtÞ � ��ðt��tÞ 	 ð1� �Þ�inðtÞ þ ��t d�inðtÞ=d t 	 ð1� �Þ�inðtþ ��t=ð1� �ÞÞ,
which is already a linear extrapolation into the future. In cases where the dispersion
is sufficiently flat, as in a bandgap medium, the extrapolation is in fact surprisingly
better than this first-order approximation. As was suggested by Steinberg [7] and
recently discussed more rigorously by Lee and Lee [9] and Lee [11], this implies
that even a simple Fabry–Perot interferometer exhibits superluminality when
excited off resonance’ [presumably, � 
 ð1=�t� 0ðtÞÞ ]. Another physical interpret-
ation of the mode reshaping process is also suggested in [8]. We would like to
explain this ‘better than first-order’ approximation. Let us instead look at the
momentum wavefunction. A spatial shift corresponds to a linear shift in this
function. A positive spatial delay would correspond to a linear shift steeper than
one, and the converse for a negative delay. In the Taylor expansion of the
transmission coefficient for the momentum wave function, the zero term is
insignificant, the second corresponds, as just explained, to the spatial shift, and
the higher give the distortion. When many waves with large and evenly distributed
shifts interfere, their sum is for a wide range of momenta, zero, and in particular
momentum independent. In other words, the momentum wavefunction is flat for a
wide band of frequencies. This corresponds to a much better than first-order
approximation of the spatial wavefunction, as can be seen in the special case of the
system described in this paper.

6. Discussion
It is important to note that when one speaks of the time it takes an atom to emit

a photon, one usually means the standard deviation of the time of emission. This
value does not prescribe any bound on the length of time over which the
wavefunction of the photon traversing a point is analytic. One might imagine
the emitting atom sending an arbitrarily long tail ahead of the actual peak of a
photon. An appropriate tunnelling device could reshape this tail to resemble the
peak, and the photon could be detected there well in advance of the time the peak
should have reached it.
The probability of finding the photon there so early is not greater than in the

absence of the barrier, as the reshaped tail still has the same probability as the
unreshaped one—with probability close to 1, the photon will be reflected back, and
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never reach this point. However, if one considers a large number of emitting
atoms, and such a barrier, then for the subensemble of photons that manage to
traverse the barrier, the distribution of the measured arrival times should be
approximately the same as in the absence of the barrier, but shifted by the time it
takes to traverse its length.
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