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An interplay of the Aharonov-Bohm phase and the Berry phase appears as a fluxon circulates an extended (quantum) charge 
distribution. For a fluxon-charge system in a superconductor, we will show how the interplay of the phases leads to a net topolog- 
ical effect. The realization of the effect in the Higgs model is discussed. 

1. Introduction 

Topological  phases can arise as a system undergoes 
a cyclic motion.  The phase accumulated  by a charge 
encircling a magnet ic  fluxon is the A h a r o n o v - B o h m  
(AB)  effect [ 1 ] (AB) ,  or, for a magnetic  moment  
encircling a line of  charge, the A h a r o n o v - C a s h e r  
(AC)  effect [2] .  Cyclic mot ion  of  a state in Hi lber t  
space can also give rise to the Berry phase [3] .  The 
lat ter  phase may be dis t inguished from the AB and 
the AC phases. While  the AB (or AC)  phase appears  
in the Hami l ton ian  of  any physical  system contain-  
ing a fluxon and a poin t  charge (or  a magnet ic  mo- 
ment  and a line of  charge),  the Berry phase applies 
only in the adiabat ic  l imit ,  i.e. if  the system includes 
"heavy"  degrees of  f reedom whose mot ion  can be re- 
garded as adiabat ic .  

Our  purpose is to draw at tent ion to an interplay o f  
the AB (or AC) phase and the Berry phase. It occurs 
in a charge-f luxon system when the charge (or  
f luxon) is in the ground state o f  some potent ia l  and 
its locat ion is therefore smeared.  The interplay of  the 
phases is manifested as the heavy fluxon goes through 
the "c loud"  of  charge. As will be shown below, in this 
case, the mot ion  of  the fluxon induces adiabat ic  
modif ica t ions  in the ground state which leads to a 
Berry phase complement ing  the AC phase collected 
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by the fluxon. (A similar  interplay of  the AB and 
Berry phases occurs if  the fluxon is smeared and the 
charge is heavy. ) We will demonst ra te  that  this inter- 
play appears  even if  the charge is screened and the 
fluxon is embedded  in a superconductor .  A non-triv- 
ial phase, collected as the fluxon encircles the charge, 
emerges as a sum of  the usual AC part  and an addi-  
t ional  Berry phase. The two phases complement  each 
other, yielding an overall  topological  phase identical  
to the "f ree"  phase accumulated  when there is no 
screening. We study the interplay of  the phases in a 
superconductor  model,  and examine its impl icat ions  
for the interact ion of  a vortex line and an external 
charge in the Higgs model.  Other  topological  aspects 
of  the problem are discussed elsewhere [ 4 ]. 

2. Interplay of topological phases 

The interplay of  AB and Berry phases takes its sim- 
plest form in the following system. Consider  a system 
of  two non-interact ing part icles of  masses m, M with 
coordinates  and momenta  r, p and R, P respectively 
in two dimensions.  The Hami l ton ian  and the wave 
function of  the system are 

p2 p2 
H =  ~m + V ( r ) +  2 M  (2.1) 

and 
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5v(r, R) =~,o(r)fb(R) , (2.2) 

respectively. The particle of mass m is assumed to be 
in the ground state q/o(r) (or any stationary bound 
state) of some potential V(r), while the second par- 
ticle (M) is free. 

Compare this two-particle system with one in which 
particle rn has a charge q, and particle M has a corre- 
sponding (quantized) fluxon of magnitude ch/q. The 
new electron-fluxon system is generated from the old 
Hamiltonian (2.1) by the unobservable gauge 
transformation 

~(r, R ) ~  ~'  (r, R) : e x p [ i A  ( r - R )  ] ~(r, R) , 
(2.3) 

where A is the angle between the vector ( r - R )  and 
the ~ axis ~ 

A ( r - R ) - a r c t a n  (~-x)'V- Y (2.4) 

with r= r (x ,  y) and R=R(X,  Y). This transforma- 
tion yields the new Hamiltonian 

H'= [PWhVrA(r-R) ]2 + r (r )  
2m 

[P+hVRA(r -R)  ]2 
+ (2.5) 

2M 

with the induced vector potentials 

VrA ( r - R )  = --VRA ( r - R )  - (2.6) 
I r -RI  ' 

where ~ is the unit vector orthogonal to r - R .  
Note that the AB and AC vector potentials of the 

system above can be expressed by 

AAB =A(r--R)  = ch VrA , 
q 

1 A A c :  q l t X E ( R - r ) :  Ch 

where I t= (ch/q)ez is the magnetic moment of the 
fluxon, E ( R - r )  is the electric field at the location of 
the fluxon, and A ( r - R )  is the electromagnetic vec- 

~ Although this gauge function might seem completely trivial, it 
is not. If ~U(r~, r2) describes two identical bosonic particles, 
the transformed wave function ~' has the symmetry of two 
fermions. 

tor potential generated by the fluxon at the location 
of the charge. Therefore, the transformed Hamilto- 
nian H'  is indeed identical to the Hamiltonian of an 
electron-fluxon system, and the vector potentials in 
(2.5) admit a natural interpretation. The charge in- 
teracts with the AB vector potential A generated by 
the fluxon, while the fluxon interacts with the AC 
vector potential /z×E due to the local electric field. 
(Of course the same Hamiltonian also describes a 
system in which the fluxon is bound and the charge 
is free.) We know that this system is topologically 
trivial, being equivalent to the non-interacting Ham- 
iltonian (2.1). Nevertheless, it is instructive to see 
how a trivial phase emerges. 

If the fluxon's trajectory is limited to the region 
outside the "cloud" of charge, it will clearly accumu- 
late a phase of 27r, since the path encircles the total 
charge. Consider, however, a closed path that crosses 
the smeared charge. If the motion of the fluxon is adi- 
abatic, with respect to the characteristic time scale of 
the ground state, the effect is the same as a classical 
charge distribution. In this case, we have a non-triv- 
ial AC phase corresponding to the fraction of the 
charge the path encloses. On the other hand, we know 
that this system cannot give rise to a non-trivial top- 
ological effect since its Hamiltonian is gauge equiva- 
lent to a system of two non-interacting particles. 

This apparent contradiction is reconciled by an ad- 
ditional phase due to the motion in Hilbert space, i.e., 
by Berry phase. With respect to the ground state, the 
adiabatic motion of the fluxon can be viewed as a 
slowly varying external source. Then, as is well known, 
the motion in Hilbert space generates the "Berry" 
vector potential 

MBerry = i( Tg ~e) (r) [ VR Tg ~R) ( r ) )  . (2.7) 

For the system above, 

T~g~)(r) = e x p [ i A ( r - R )  ]~Uo(r) , 

and R the location of the fluxon, is a slow parameter. 
The Berry vector potential is in fact the negative of 
the AC vector potential. Therefore, the Berry phase 
in this case always cancels the AC phase exactly. Thus, 
although the AC phase (alone) could be non-trivial 
topologically, it can not be observed, and the total 
phase accumulated by this system is trivial as 
expected. 

A similar interplay of Berry and the AB phase ap- 
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pears if a heavy free charge circulates a smeared 
(point-like quantized) fluxon. As the charge slowly 
crosses the "cloud" of flux we have a non-trivial AB 
phase that is cancelled by the Berry phase. 

While the interplay of the phases in the system 
above yields a net trivial phase, in other systems it 
can lead to a non-trivial effect. In ref. [4] it is shown 
how the interplay allows a topological approach to a 
system of an extended charge and a fluxon carrying 
half a quantum of flux. In the following we discuss 
the generic system ofa fluxon and a (non-quantized) 
charge in a medium that screens the field strengths, 
and show that the interplay leads to a net topological 
effect. 

3. Berry and AC phases in a superconductor model 

Consider an external charge Qo and a fluxon of 
magnitude (hc/q) in a medium of particles of charge 
q that screens the electromagnetic field. Despite the 
screening of the electric field a cancellation mecha- 
nism, very similar to the one described above, guar- 
antees the usual AC phase, 2nQo/q, when the fluxon 
encircles Qo. A possible realization of such a system 
is a type-II superconductor containing a fluxon and 
some external charge Qo with Qo mod(q)  ¢ 0 (where 
q is the condensate charge). As the charge encircles 
the fluxon at a large distance, a non-trivial AB phase, 
q~AB= 27rQo/q, arises from the interaction with the AB 
vector potential. This interaction is unchanged by the 
superconductor. On the other hand, consider the 
phase accumulated as the fiuxon encircles the charge 
at a large distance. The interaction of the fluxon via 
the AC vector potential/J × E is screened by the su- 
perconductor. In this case, it is less obvious that the 
system accumulates the same phase. In a previous 
paper [ 5 ] ~2 we have argued that in the latter process 
the same non-trivial phase CrPAB=CI)Ac=2:gQo/q, is 
accumulated, i.e. the truly topological phase is unaf- 
fected by the screening of E. This was demonstrated 
by constructing a simplified model for the system. As 
will be shown in the following, this model also dem- 
onstrates the interplay of AC and Berry phases. 

It is amusing to point out that similar Berry phases 

,2 A discussion from another point of view is presented in refi 
[61. 

must be invoked under other circumstances. Con- 
sider the effect of adding a neutral external particle 
of large mass M instead of an external charge Qo. The 
medium will screen the effect of the mass by inducing 
some local charge density around it. The combined 
gravity + electrostatic force on the Cooper pairs will 
vanish, but in this case the electric field in the super- 
conductor will be nonzero! Consequently, the fluxon 
will interact with this electric field. The AC phase ac- 
cumulated by the fluxon will in general be non-trivial 
(depending on the ratio GmM/q 2, where m is the 
mass of a Cooper pair). The total phase accumulated 
by the system must be zero, however, since the unit 
charge of the medium is quantized properly with re- 
spect to the fiuxon. Indeed, as we shall verify below, 
the cancellation of the AC phase is due to an addi- 
tional non-trivial Berry phase. This phase results from 
the distortion of the superconductor's wave function 
under the influence of the external slowly moving 
fluxon. To see how this phase is generated, we shall 
introduce an effective model which describes the 
quantum behavior of the induced Cooper pairs (or 
holes) that screen the external field. 

Let Qo denote the external charge which is inserted 
into the superconductor. An effective Hamiltonian 
that describes the effect of screening the electric field 
of this charge reads [ 5,6 ] 

1 Hsc = ~ (Q+ Qo) 2- co cos 0, (3.1) 

where 0 = - iq 3/00 is the momentum conjugate to 0 
and co,/~ are constants. The ground state is given (in 
the limit co/l >> q2 ) by 

~o(0)= , ~=~ exp(-i(O-2nN) ~ -) 

× uo( O- 2nN) , (3.2) 

where 

u o ( O ) = ( ~ ' ] ~ / 4 e x p ( - ~ O 2 ) .  (3.3) 
\ n q /  

Defining the electric field operator as 

E= O+Q~°°er (3.4) 
27rr 

(r, the radial distance, is a c number), it is easily ver- 
ified that since ( Q ) = - Q o ,  ( E ) = 0 ,  and (E  n) 
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(where n is some integer) does not depend on Qo. 
However the modular electric field 

/exp (i  ~ ~ E . d / ) ) = e x p  (i  ~ )  (3.5, 

does depend on the external charge Qo and gives an 
AC phase as if the electric field were not screened. 
Therefore, while the superconductor screens (expo- 
nentially, in the full theory) any moment of the ex- 
ternal electric field, the modular electric field is not 
screened. 

We now couple this system, of a charge Qo in a su- 
perconductor to a fluxon. We assume that the fluxon 
can be approximated by a point-like particle of effec- 
tive mass Mr that interacts only with the induced 
Cooper pairs and the charge Qo- Consider first the 
case Qo=0. As in section 2 above the Hamiltonian 
must be equivalent, modulo a gauge transformation, 
to the interaction-free Hamiltonian 

H=gsc(Qo=O)+ P~ (3.6) 
2Mr'  

where we have neglected the irrelevant radial motion 
of the fluxon. Performing the gauge transformation 

Q '  ) 7J(0, 0)-~exp i q QO qJo(O)z(O) (3.7) 

(analogous to (2.3) ), where Z(0) is the fluxon's wave 
function and 0 is the angular coordinate of the fluxon 
(conjugate to Po), we find that the Hamiltonian 
transforms to 

0 H ' =  ~ - ( o c o s ( 0 + 0 )  

+ [P°+(h/q)O/rl2 (3.8) 
2M~ 

This Hamiltonian can be interpreted as in our former 
discussion above. The fluxon enters via interactions 
through the AC vector potential (the third term 
above), while the potential for the induced charge 
(second term above) is shifted by the angle 0. This 
modified potential term gives rise to a Berry phase. 
With no external charge, the sum of the two phases 
cancels, as is seen from the explicit wave function 
( 3.7 ). So far we have indeed performed a pure gauge 
transformation. The same cancellation can be reached 
also by considering the effect of the gauge transfor- 

mation on the Cooper pair wave function (in the n- 
representation). The gauge transformation (3.7) can 
be written 

(1) 
~ ' = e x p  iq  00  Z(O) ~, exp(inO)u, 

=)~(0) Z exp[in(O+O)lu,. (3.9) 
n 

The coefficients u, are merely the n-particle Schr6- 
dinger wave functions. In a state of definite number, 
say n, of Cooper pairs, the fluxon moves on a path 
that encloses the charge and accumulates an AC phase 
-2z~n. Eq. (3.9) states that as the angle 0 changes by 
2~r, the nth component of the many-particle wave 
function is to be shifted by a phase + 27rn. 

Next consider Q0¢0. The Hamiltonian that in- 
cludes the effect of the external charge Qo can be ob- 
tained by shifting the induced charge operator ( ~  
(~+Qo. The Hamiltonian of the total system than 
reads 

(~)+Qo) 2 
Htot-  - -  - o J c o s ( 0 + 0 )  

2p 

+ [Po +(h/q)(O-+Qo)/r]2 
(3.10) 

2,~If 

If we regard the motion of the fluxon as adiabatic, 
the Hamiltonian (3.10) indicates three contribu- 
tions to the total phase of the wave function. The 
fluxon interacts through an AC vector potential con- 
sisting of two parts. One is the vector potential gen- 
erated by the induced charge (given by (h/q)Q/r), 
and the second is the contribution of the external 
charge (given by (h/q) Qo/r). The fluxon also acts 
on the superconductor as an external source, which 
shows up in (3.10) by the shift of the potential term 
to cos(0+0) .  This shift is the source of the Berry 
phase. The solution of the Schr6dinger equation reads 

(1 ) 
5v(0,0)=exp i q ( ( 2 + Q o ) 0  ~'o(0)z(Ü). (3.11) 

Clearly, as the fluxon completes one revolution, the 
wave function is shifted by exp(2~iQo/q). The total 
phase can be separated according to the discussion 
above into the following three parts: 
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(/)tot : (/)~x~ "1- (/)l~d + (~Berry 

27rQo 2 z c Q o  2zrQo 2rcQo 
- + - -  - - -  (3.12) 

q q q q 

We conclude that two equivalent interpretations o f  
the topological effect arising from the interaction o f  
a fluxon with an unquantized charge in a supercon- 
ducting medium are possible. Either one says the lo- 
cal average electric field vanishes so that the total AC 
phase, due to the first two terms in (3.12) is zero. 
The topological phase, in this case, is given by a non- 
trivial Berry phase. Or, one can say that the effect of  
the Berry phase is to cancel the AC phase arising from 
the contribution of  the induced charge (,nma+.~ AC 
qSBer~y = 0). What  is left is the local AC phase gener- 
ated by the external charge. 

4. Interplay of phases in the Higgs model 

Systems similar to the one discussed above have 
been studied in the framework of  field theories with 
broken symmetry. The vacuum of  those theories ad- 
mits a topological vortex with a confined flux which 
is the relativistic analog of  the vortex of  a type-II su- 
perconductor. Since the vacuum cannot screen the 
modular  electric field of  an external unquantized 
charge (with respect to the charge of  the condensed 
field), it was argued that as the vortex line circulates 
an external charge it must collect a nontrivial phase 
and give rise to an observable interference [2,7]. This 
effect could be used for example to detect the "hair"  
of  a black hole [7,8]. We would like to indicate that 
a dynamical demonstration of  the type discussed here 
including the analogue of  Berry's phase is possible also 
in the case of  a "relativistic superconductor".  To this 
end we will show how the usual Abelian Higgs model 
reduces in the presence of  an external non-dynamical  
charge to a generalized version of  the model dis- 
cussed above. 

Consider the Higgs Lagrangian in 2 + 1 dimensions 

5°= -¼F2+ I (O,, +ieA~,)0(x)12+ r%(0) 

+ JuA, ' ,  (4.1) 

where 0 is the Higgs field, Vn is the Higgs potential 
and Ju= (Jo, 0, 0). In our non-relativistic model we 
have seen that the non-trivial phase could be derived 
from the interaction of  the fluxon with the radial 
fluctuations of  the electric field. Therefore, we con- 

sider a spherical symmetric approximation for the 
fields. In the low energy limit the Higgs field is given 
by 0(r,  t )=qoexp[io~(r ,  t ) ]  ( V n ( 0 o ) = 0 ) .  The 
Hamiltonian in this approximation reads 

f ( E2 H~ +~)lVexp(io~)12)dr,  (4.2) H =  2zrr ~ - + 4 ~ o 2  
0 

with/ / ,~=aS°/~(aoa)  and A =0 .  The additional con- 
straint (Gauss law) reduces to an equation for the 
radial electric field 

r 

E ( r , t ) = ~  27rr ' (e~+Jo)dr ' .  (4.3) 
0 

Finally, we make the theory discrete by letting the 
parameter r take the values r~ separated by the inter- 
vals Ei, such that 27reir~= 1 where i=  1, 2, ..., oo. The 
radial electric field at the point r~ is given by 

1 ~ (eH~+Joi) 
Ei - 27rr i i= 1 

= (2zrri)- '  (Q,+Qo) , (4.4) 

where Qz = Y~eHi is the total charge enclosed in a cir- 
cle o f  radius ri, and Qo is the total external charge. 
The Hamiltonian on the "lattice", denoted as H ' ,  
becomes 

H '  = 
~/ (@ + Q°)2 H, z 

8zc2r 2 + 40~ 

0o ~ 
+ 2  7 [ 1 --cos(o~i--o~,_l) ] . (4.5) 

To quantize this model we impose the commuta-  
tion relations [as, ~ ] = i h d  u and substitute 
Hi= - ihO/~o~ to obtain the Schr~3dinger equation of  
the effective model 

a 
i h ~  ~(c~i, t ) = H '  ~ ( ~ ,  t) . 

Ot 
(4.6) 

Comparing (4.5) with the effective Hamiltonian 
(3.1) we note that the resulting Hamiltonian is (up 
to the term H~/Og) merely a sum of effective Ham- 
iltonians of  the same form as (3.1). The charge () is 
replaced by 0~, the total charge up to ri and 0i= 
c~i+, - o~i is a local version of  the angular variable 0 
conjugate to (). Indeed, since [ 0~, ()j] = iehd u, we could 
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have regarded (~, and 0, as the basic conjugate vari- 
ables. For r~< eOo we can neglect the term H2/fb 2. In 
this region we can expect the electric field to behave 
as in the model  above. For r,>> e#o this term domi-  
nates, since at a large distance from the external 
charge local fluctuations contribute more than fluc- 
tuations associated with screening. However,  the ba- 
sic features of  the simple model remain. Since the 
variables 0t are periodic, the charge (~i enclosed in a 
shell of  radius ri is quantized with respect to the basic 
unit of  charge q =  eft and so 

<exp ( i  ~--- ~ E .d l )>  = <exp (2rci ~ ) >  

= e x p  (2zri ~ ) .  (4.7) 

To derive the modif icat ions due to the presence of  
a fluxon we repeat our argument  in section 3. The 
(pure)  gauge transformation U= exp{i [ ( 1/eh ) Qi~ ] ] 
introduces an interaction with a fluxon at the point 
(ri, ~). This t ransformat ion affects only the potential 
term containing 0,, and shifts it to cos(0 i+O) .  We 
therefore see that while the mot ion of  the fluxon in- 
duces only a local change in the Hamil tonian,  the 
modificat ion of  the potential  due to the mot ion of  
the fluxon will give rise to a Berry phase. Alterna- 

lively, one could say that the Berry phase cancels the 
part of  the AC phase due to the Cooper  pair screening 
the external charge. The net phase, due to the inter- 
action of the vortex with the electric field induced by 
the external charge, remains. 
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