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Abstract 

Interactions related to A-B phases exist between fluxons with Cp = a@~, a # integer when the fluxons are actually 

immersed in a region with non-vanishing mobile charge density. In particular, for the interesting case of LY = l/2 we find 
that this force is akractive. We briefly comment on the prospects of observing such forces. @ 1997 Published by Elsevier 
Science B.V. 

There is no magnetic field outside an ideal infinitely 
long and thin solenoid and no electromagnetic force 
per unit length between such parallel solenoids or flux- 
ons. In the following we note that the presence of mo- 

bile charged particles between and around the fluxons 
induces a new type of force between them. This force 
is of some theoretical interest and conceivably can be 
detected in a suitable experimental set-up. 

tit us assume that nF fluxons @I, C&J, . . . , GnF have 
been introduced at locations RI, R2,. . . , R,, where 
the ground state wave function of a system of N 
charges P(“)(rl,t2,. . . , r~) is non-vanishing. The 
modification of the Schrijdinger equation via ai + 
ai + (e/c) Ai, will then change the wave function 
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&r@~r&r@‘~,. . . ,R,,p@m), (1) 

and shift the initial ground state energy E(O) to 

E(‘)-tE(‘)+6E(‘)(R,,~,,R:!,~2 ,..., RnF,QnF). 

(2) 

This energy shift induces an interaction energy be- 
tween the fluxons, 

SEco’( Ri, @j) = W( Rj, @.) 
J ’ (3) 

and the gradients VR~ W will then yield forces Fi acting 
on the fluxons @i. The discussion of such forces and in 
particular the novel possibility of attraction between 
two semi-fluxons of equal sign (@I = @2 = @o/2) is 
the main purpose of the present note. 

To simplify the following we first neglect the mutual 
interaction of the charged particles. The energy shift 
is then a sum, 
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SE'O'(Rj,@j) = &8Ey;(Rj.4, (4) 
i=l 

over the shifts of the individual energies E,i of the 
N charges. The latter will now be assumed to be 
fermions. 

Consider first one fluxon, @ = L&O, introduced in 
the center of a cylindrical region of radius R. The 
free wave functions will be eigenfunctions of the (2 
component of) angular momentum denoted by 1. For 
@ = 0, 1 assumes the conventional positive and nega- 
tive integer values I= 0, f 1, f2, f3, . . . . If the radial 
degrees of freedom were frozen then we would have 
simply Ej,:’ = fi’(Z/*/2 mr*. The introduction of the 
fluxon effectively shifts up by cr all the 1 values, 

The sum of the energy shifts of the pair of levels 1 = 
fill is then 

SE{,($ = fi*(( a) /2mr*. 

Due to the invariance under @ + @ + n@o, 5((u) 
is periodic: .$( LY + n) = t(a). Specifically we find 
(((Y) = {a}* if {a} < l/2, or ((cu) = (1 - {a})* if 
{(Y} > l/2, with {cy} the non-integer part of (Y (i.e. 
{cu}=cumodl). 

The total energy shift is found by summing aE,$,),. 
over 1 and r values. Bohr-Sqfnmerfeld quantization 
implies discrete r = r, orbits. Along with the discrete 
1 in each annular rn+l > r > r, region this yields one 
state per area ~2; with m the typical distance between 
the charged particles which in the ground state fill up 
the Fermi circle . The two-dimensional (one layer) 
density is n2 N a;*. Thus 4, in the limit of many states 

(7) 

4The problem of finding w(R) for the case when we use 
the eigenfunctions J,(k$‘r) with energies (kc/ )2 is somewhat 
involved. The knJ are dekmined implicitly from the nth solution 
of J/ (kR) = 0 which is rather complicated for the large 1 and kr 
required here. 

6((Y) n*fi* 
R 

s 

2m dr 

-t22m r* 
00 

r 5Wn2fi2 =- 
2 2m 

ln(R/ao) 

is the total energy required in order to insert one fluxon 
at the center of a cylinder of radius 5 R. An extra factor 
l/2 is due to the fact that there are only half as many 
(I = QJ) pairs as I values. Also the minimal Bohr 
radius Q serves as a cutoff. 

Let us address next the interaction of two semi- 
fluxons at a relative distance ) RI - R2) = a introduced 
near the origin at the center of a large domain contain- 
ing the mobile charged particles, with constant two- 
dimensional density n2. At a point t the vector poten- 
tials of the semi fluxons are Ai = $&&?~i/(r - Ri(, 
i = 1, 2 where & refer to the tangential unit vector 
with respect to Ri as origin. For r > a, A1 +A2 add, up 
to small corrections, to the vector potential of a single 
quantized fluxon at the origin. Insofar as the topolog- 
ical effects of interest are concerned, the latter is just 
a gauge artifact. Hence we expect that only a region 
of size of order a around each fluxon and between the 
fluxons will be affected and consequently that the mu- 
tual interaction energy will behave like W”‘(r) of Eq. 
(7) with K N a and &(a) = t( l/2) = l/4, 

9i- n2h2 
W(n,=1/2,azr1/2)(a) = KG 7 ln(u/Q). (9) 

The numerical factor of order one K represents the 
effects of having a two-center system. 

This interaction leads then to an attractive force be- 
tween the two semi-fluxons 

5 The logarithmic dependence of Wz’( R) on R is expected from 
general scaling arguments. Assume that the fluxon is inserted at 
the center of a Cylindrical hole of radius Ri”, inside a concentric 
annulus of external radius Rwt. The minimal substitution in the 
regular, symmetric, gauge A = d&/r)&, a --+ a + (e/c)A, is 
such that the total energy c, 11 (a+ (e/c) A)& I2 dx dy, remains 
invariant if we scale x + Ax and y -+ I\y, provided we have 
a homogeneous uniform (two-dimensional) density n2 (x, y) = 
C, I&(x,y)12 = const., where we assumed that sufficiently 

many states y are summed over so that the last equation is justified. 
This implies that W N lOg(Rat/Ri,) The argument holds also 
for general domains of overall size R and any shape: only the 
coefficient in W(R) N c In R would depend on the dimensionless 
ratios characterizing the shape. 
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t 10) 

Recalling that W and F represent the effect of one 
layer and n2 is the two-dimensional number density in 
this layer, we can rewrite the last equation in a more 
useful form as 

F(1/2,1/2)(4 KTnti2 1 N --- 
unit fluxonlength - 16 m a ’ 

(11) 

with n the true three-dimensional density of the 
charges. 

For two arbitrary fluxons ai and cr2 the force is 
given by an expression similar to ( 11) but with K 
a function of at and (~2. Obviously ~(al,a2) is a 
periodic function in both ai and ~2. The exact form 
of K( al, a2) is difficult to calculate, and depends on 
many details, but it is easy to see when the force is 
attractive and when the force is repulsive. For this one 
has to compare the energy in the case when the two 
fluxons overlap withthe energy when the two fluxons 
are far apart. From (S), the energy required to insert 
two overlapping fluxons is v with a = ai + a2. 
The energy required to insert two fluxons when the 
fluxons are well separated is simply the sum of the 
energies required to insert each fluxon, i.e. w$‘+ wGt. 
Consequently, for ((al + a2) > &al) + t(a2) the 
force is repulsive, while for [(at + a2) < [(al) + 

f(a2) the force is attractive. Clearly, for two semi- 
fluxons the force is attractive. 

These forces act only on fluxons which are actually 
immersed in the charged particle background but are 
absent for fluxons which are outside this region. Thus 
if in the example of the concentric cylindrical geome- 
try discussed above, we move the fluxon inside a hole, 
the energy of the system is unchanged and no force is 
expected Since there are no charged particles in the 
hole we can continue using the same vector potential 
A(r) = (a@o/r) 2s even when the fluxon is not in the 
center. The key point is that for every path enclosing 
the fluxon (or fluxons, if there are several fluxons in- 
side the hole) a charged particle confined to the anular 
domain can actually perform, the A-B phase will be 
the same. 

The interaction (9) is quasi-confining (W(r) -+ 00 
with r + 00) just like the two-dimensional Coulomb 
interaction. For such cases the system may find it en- 
ergetically favorable once r > & = screening length), 

to screen the charges (or fluxons in the present case). 
Indeed such a screening is generated by the circulation 
of all the charged particles of charge e (for a fluxon 
of @ = @c/2 say). The corresponding current density 
at a distance r is 

J(r) =(han/mr)%e. (12) 

The screening of the B field is found from Maxwell’s 
equation, 

dBinduced 
t 

dr 

aefin J&z-. 
c mcr 

(13) 

a in Eq. ( 13) depends on r due to the partial screen- 
ing of the initial fluxon a = a(r = 0) by currents 
circulating between the origin and r, 

a(r) = L 
@O 

r 

27~B~~“‘=‘( t) dr . (14) 

0 

The coupled equations ( 13), ( 14) yield r profiles for 
a(r) and BFduced (r) which are exponentially falling 
off like exp( -r/A,), thus defining A,. Approximating 

a(r) = at9( A, - r) we readily find A, from 

A.fC &-kc 

2~ rBFdnduced(r) = T J ?dBz 
dr 

0 0 

T ea/ih2 27raiic =-~--_a@o=_, 
me 2 e 

where we used integration by parts, Rq. ( 13). and de- 
manded that the net induced flux exactly cancel a&. 

Thus far we have discussed the force between non- 
integer fluxons in abstract - referring to ideal infinitely 
thin fluxons and ideal mobile non-interacting charged 
particles in the space between the fluxons. We will 
next briefly address the feasibility of actually detect- 
ing such forces. In principle the conduction electrons 
in metals could serve as the charged medium particles. 
Their number density n is large enough, n N 3 x 1022, 
so as to make the putative l/r force (Eq. ( 11) ) ap- 
preciable (N 10m3 dyne/cm at r = lO,zm). Clearly 
for the force to operate over a range r the wave func- 
tion of the electrons should coherently spread over 
this distance. Such extended coherent states in which 
the circulating pattern of currents associated with the 
modified ground states does not dissipate, have indeed 
been manifested in the related experiments of Webb 
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[ I] utilizing mesoscopic rings at low temperatures. 
A magnetic fluxon was introduced there at the hole 
of the ring. However in order to generate the forces 
of interest here the fluxons should be, according to 
the previous discussion, actually immersed inside the 
metal or be pressed right next to the surface. The flux- 
ons in this case would be carried inside a microscopic 
solenoid and it is not clear how a practical arrange- 
ment can be made where the forces of interest can 
actually compete with the metal rigidity. 

This leads us then to consider type II superconduc- 
tors where half fluxons (that is, integer fluxons with 
the charge of the Cooper pair) arise naturally. In ideal 
samples of sufficient purity and resultant minimal pin- 
ning, two relatively nearby fluxons may move toward 
each other under the effect of the force generated due 
to the presence of a fraction f of unpaired electrons. 

It should be emphasized that despite superficial sim- 
ilarities, the effect considered here is novel and quite 
distinct from conventional forces between the fluxons 
in superconductors. Thus in type II superconductors 
an effective logarithmic interaction - cut off at a dis- 
tance of the order of the penetration length h, - exists 
between the fluxons. This is due to the B1 . B2 inter- 
action of the overlapping magnetic field extending out 
of the fluxon cores. Alternatively, it can be viewed as 
the interaction between the supercurrents maintaining 
the two fluxons 6 . This force is repulsive (attractive) 
between equal sign fluxons - a feature underlying the 
formation of the Abrikosov lattice - since the Bi (Ji) 
are parallel (anti-parallel). 

Our force is completely different in every possible 
respect. First, it is attractive also between two equal 
sign semi-fluxons. Second, it is generated by the re- 
sponse and currents due to the ordinary unpaired elec- 
trons. The fraction f of these varies like 

0 
312 

f="_ f . 
ne + n, c 

(17) 

Thus for small f the present force will be weaker but 
potentially could have a longer range. Indeed from 

6 In the London approximation Ji N Vi N At with i = 1,2 
referring to the first or second fluxon and the interaction is 
(e2/ca) JAI - .42. 

Eq. (16) we find that the screening length due to the 
electrons is 7 

A, = -&.Bohr(~)“2 = *so(LyA. (18) 

We note that the phases of the unpaired electrons wave 

function and ensuing currents are not manifest in the 
Ginsburg-Landau approximation. The latter - the ba- 
sic framework for much of the superconductivity re- 
search - is concerned only with the overall unpaired 
fraction (reflected in the magnitude of the order pa- 

rameter) and hence cannot capture the delicate effect 
proposed here. Hopefully it is not altogether impos- 
sible that the effect can be observed in some special 
experimental arrangement * . 

We will conclude now with a few remarks: 
(i) We considered so far a system of free charged 

fermions. Let us consider the induced interactions for 
charged bosons. At T = 0 all bosons would be in the 
same nodeless ground state $0 (x, y) . In the cylindri- 
cally symmetric geometry considered above $0 has 
1 = 0 and is roughly constant radially. The introduc- 
tion of the semi-fluxon will shift it to 1 = l/2. The 
expectation of 12/2mr2 will yield then an estimate N 
( h2/8m) In R for the energy shift of a single state and 
( nb2/8m) In R for the density n of particles. 

(ii) The semi-fluxons in a T = 0 charged bosonic 
background exhibit an amusing confining-screening 
interplay, somewhat reminiscent of this effect in QCD. 
There is a confining linear QQ potential V = aR 
at large distances and the same is expected for QQ 
baryons in SU(2),. Creation of qq pairs tends to 
screen the confining potential - and only exponen- 
tially falling Yukawa like potentials exist between 
physical, color neutral, hadrons. 

The QCD quarks with non-zero triality (screening 
the confining interaction between QQ) are analogous 
to the electrons which transform non-trivially under 

7 The circulation of the ordinary electron currents outside A, is 
energetically unfavorable from the point of view of the dominant 
Cooper pairs as it would generate a B field outside the original 
Buxon. However, if the coherence length of the electrons wave 
function is small it will predominantly limit the range of the force. 

*We need to have sufficiently low temperatures to maximize the 
coherence length of electrons and yet maintain appreciable fraction 
f of unpaired electrons. The distance r between the two fluxons 
has to be substantially larger than A,, the range of the much 
stronger ordinary repulsive forces, and pinning effects should not 
mask the very weak force. 
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the 22 of the fluxon in our example, and generate 
currents screening the interaction between the semi- 
fluxons. The mechanisms for screening and confine- 
ment tend to be mutually exclusive: both in QCD and 
in our example the screening of charges reduce the 
long range forces and the resulting putative pairing of 
QQ (two semi-fluxons here). Also the qq which are 
already paired by confinement to triality (and color) 
singlets will not screen the QQ force. The introduc- 
tion of the two semi-fluxons will not induce here large 
scale pairing of the electrons. Yet the mechanism of 
semi-fluxons confinement may quench the screening 
currents. This could be the case for the Bose-Einstein 
condensate example. A null line will form between 
the fluxons or between the fluxons and the boundary 
of the medium [ 21. This line impedes the circulation 
of screening currents around @1 or @2 separately. 

(iii) Finally it is amusing to compare the topologi- 
cal force ( 11) with the Casimir force 9 between two 
parallel conducting wires N ric/a3. The ratio is p z 

&i&L! N nfia2/mc2 N nA,,,a2. For electron sys- 
tems n N a0 -3 with UC, of the order of the Bohr radius. 
Using A,,/u.a N cy,, we have then p m cu,,a2/ai. 
Since generally a > a0 this ratio is very large. 
The origin of this large ratio is easy to assess. Only 

g DUN [ 31 suggested that Casimir type 1 /a3 forces exist in vac- 
uum between fluxons due to the effect of charge Higgs field. The 
Higgs field, or other virtually created pairs of massive particles, 
cannot mediate long range forces which are in fact due to two- 
photon exchange. DUN’S suggestion amounts therefore to a tenor- 
malixation due to fluxon effect of the ordinary Casimir force. For 
example see Ref. [4]. 

vacuum fluctuations (photons) on scales A N a con- 
tribute to the Casimir force whereas all electron modes 
down to wavelength A N u.c contribute equally to the 
interaction energy and force proposed here. 
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