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Measuring energy, estimating Hamiltonians, and the time-energy uncertainty relation
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Suppose that the Hamiltonian acting on a quantum system is unknown and one wants to determine which is
the Hamiltonian. We show that, in general, this requires a timeDt that obeys the uncertainty relationDtDH
*1, whereDH is a measure of how accurately the unknown Hamiltonian must be estimated. We apply this
result to the problem of measuring the energy of an unknown quantum state. It has been previously shown that
if the Hamiltonian is known, then the energy can, in principle, be measured with arbitrarily large precision in
an arbitrarily short time. On the other hand, we show that if the Hamiltonian is not known then an energy
measurement necessarily takes a minimum timeDt which obeys the uncertainty relationDtDE*1, whereDE
is the precision of the energy measurement. Several examples are studied to address the question of whether it
is possible to saturate these uncertainty relations. Their interpretation is discussed in detail.
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I. INTRODUCTION

The uncertainty relations play a central role in quant
mechanics. Their importance lies in the fact that they expr
in a succinct manner the fundamental limitations on the m
surements imposed by quantum mechanics. In particular,
these limitations that guarantee that the mathematical form
ism of the theory is free from contradictions with the expe
ment.

The time-energy uncertainty, however, has a particu
status because time is an external parameter in the th
and the energy operator plays a special role since it de
mines the temporal evolution. Thus the time-energy unc
tainty does not follow from the commutation relations of tw
operators, but is determined indirectly, for instance, from
mathematical properties of the Fourier transform with
spect to the time variable. The interpretation and status of
time-energy uncertainty should therefore be examined w
particular care.

In this paper, we shall concentrate on energy meas
ments. By analogy with other measurements, one exp
that the time-energy uncertainty expresses a fundame
constraint which energy measurements must satisfy. The
of this paper is to clarify whether such a constraint exis
and what should be its interpretation.

Suppose that one must measure the energy of an unkn
quantum state. One’s first intuition@1,2# in this case is that
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the energy of an unknown state can be determined to
accuracyDE, only if the durationDt of the measurement is
larger than 1/DE ~since DtDE>1), where we set\51.
Here and throughout, by accuracy of the measurement,
mean how much the result of the measurement differs fr
the result of an ideal von Neumann measurement of
Hamiltonian operatorH. This will be defined with precision
below.

Surprisingly, this intuition is incorrect. It is possible t
measure the energy of an unknown quantum state to a
trarily high accuracy in an arbitrarily short time@3#. As an
illustration consider a spin-1/2 particle with a magnetic m
ment m in a magnetic fieldBW 05B01W z pointing along thez
direction. In order to measure the energy of the spin, one
apply a strong magnetic fieldBW (z)5B(z)1W z pointing in thez
direction with a gradient in thez direction. This realizes a
Stern-Gerlach measurement ofsz , hence of the energy o
the particle. The time necessary for this measurement
pends on the magnitude of the additional magnetic fi
B(z), not on the original magnetic fieldB0. SinceB(z) can
be arbitrarily large, the energy can be determined in an a
trarily short time. Another example, which is discussed
detail in the original article@3#, is the measurement of th
energyH5p2/2m of a free particle.

Thus the time-energy uncertainty seems not to apply
energy measurements. Is this result universal? Or are t
cases where the time-energy uncertainty does apply,
measuring the energy to an accuracyDE does require a time
Dt limited by DtDE>1?

We first note that if one attempts to devise an ene
measurement, it is often the case that this measurement
take a time that satisfies the time-energy uncertainty. We
fer for instance, to the example considered by Landau
Peierls@1#, see also Landau and Lifschitz@2#, in which the
kinetic energy of a particle is measured by allowing it
collide with another particle initially at rest. In this examp

,
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if the energy is to be measured with precision, the init
momentum of the particle at rest must be well known, b
then its position is spread out and the time at which
measurement takes place is uncertain. Another well-kno
example is the radiative decay of an excited state. The e
sion of a photon by an excited atom that decays to its gro
state can be viewed as a measurement of the energy o
electronic state of the atom. The mean time it takes for
photon to be emitted, that is the lifetime of the excited sta
is then interpreted as the mean time it takes for the meas
ment. This lifetime is related to the linewidth, that is to t
uncertainty of the energy measurement, by the time-ene
uncertainty. Following Ref.@3#, one would argue that suc
energy measurements, which satisfy the time-energy un
tainty, are simply badly designed, and that one can, in p
ciple, make energy measurements that do not obey the t
energy uncertainty. Nevertheless, it is surprising that
many energy measurements do obey the time-energy un
tainty. We would like to know what makes some energy m
surements less efficient than others.

There are also some particular circumstances in which
time-energy uncertainty must be obeyed in an energy m
surement. Specifically, we consider the situation in wh
one wants to measure the energy of an isolated system. S
it is isolated, i.e., uncoupled to any exterior degrees of fr
dom, the measuring apparatus must be internal to the sy
itself. In Ref.@4#, it is argued that this constraint implies th
measuring the total energy of an isolated system to an a
racyDE requires a timeDt that satisfiesDtDE>1. Contrary
to the examples mentioned in the preceding paragra
where a more sophisticated strategy could, in principle, m
sure the energy in a smaller time than that given by
uncertainty relation, in this case the uncertainty relation m
be obeyed.

Thus the present status of the time-energy uncertaint
the context of energy measurements is unsatisfactory. Di
ent examples suggest conflicting interpretations.

As we shall prove below, the resolution of this puzzle
the following. When the Hamiltonian of the system isknown,
the conclusions of Ref.@3# hold, namely we can measure th
energy as precisely as we want in a time as short as we w
On the other hand,whenever the Hamiltonian of a system
completely unknown, determining what is the Hamiltonian
precisionDH requires a timeDt given byDtDH>1.

The origin of the conflicting interpretations of the tim
energy uncertainty relation in the context of estimating
energy of an unknown state is now clear. In some cases
energy measurement can also serve to estimate an unkn
Hamiltonian. In these cases, because the measuremen
serve this dual purpose, it requires a timeDt which is limited
by the accuracy with which it could estimate an unkno
Hamiltonian. On the other hand, the measurements en
aged in Ref.@3# cannot estimate an unknown Hamiltonia
These measurements measure an operatorA (sz in the ex-
ample above, or the momentump in the example of Ref.
@3#!. If the Hamiltonian is a function of this operatorH
5 f (A) ~for instance,H5mB0sz or H5p2/2m), then the
measurement ofA can be used to determine the energy of
unknown state. Such a von Neumann measurement o
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operatorA can be realized in an arbitrarily short time. But
the time is very short, the measurement is brutal, that is
interaction between the measuring apparatus and the sy
dominates the evolution. It is therefore impossible to u
such a measurement to estimate an unknown Hamilton
since the action of the original Hamiltonian is complete
masked by the interaction.

Therefore in order to understand the interpretation of
time-energy uncertainty relation in the context of ener
measurements, it is mandatory to first understand the lim
tions quantum mechanics imposes on the estimation of
Hamiltonian acting on a system when the Hamiltonian
unknown. This problem is, in a certain sense, the dual of
standard problem of quantum information in which one m
estimate the state of a quantum system. Here one must
mate the dynamics. This is a fundamental problem in qu
tum mechanics. In fact many experimental situations can
phrased in this language. For instance, there could be
unknown force acting on a particle that one wants to e
mate. Or the Hamiltonian could depend on an unknown
rameter that one wants to estimate.

We show in the present paper that the precision w
which one can estimate the dynamics and the time requ
for this estimation are related by an uncertainty relation

DtDH>1, ~1!

where the precise meaning ofDH depends on the details o
the problem.

It is intuitively obvious that the dynamics of a quantu
system cannot be estimated instantaneously. Indeed sup
that initially the state isc0. Then after a timet the state has
evolved to c(t,H)5e2 i tHc0.c01 i tHc0. From this ex-
pression it is clear that in order to estimate the dynamics,
to estimateH, sufficient time must elapse so that the zero
order termc0 in the expansion int does not dominate. Were
this the case, the statesc(t,H) would be almost identical to
c0 and hence undistinguishable. The results reported in
paper make this qualitative statement precise.

The problem of estimating the dynamics has been con
ered recently by Childs, Preskill, and Renes@5#. Their results
constitute a starting point for our discussion.

The remainder of the paper is organized as follows.
first discuss the problem of distinguishing with certainty b
tween the two Hamiltonians. Next we consider the ca
where one only wants to estimate with finite error probabil
which of the two Hamiltonians is the true Hamiltonian. The
we turn to the problem of estimating what is the Hamiltoni
when one has no prior knowledge about the Hamiltoni
Finally, we go back to the problem of estimating the ene
of an unknown state. We discuss how it is related to estim
ing an unknown Hamiltonian. We prove that if the Ham
tonian is completely unknown then the time necessary
estimate the energy and the precision with which the ene
is estimated must obey a time-energy uncertainty relat
We illustrate the problem of estimating the energy of a st
when the Hamiltonian is completely or partially unknown b
several examples.
7-2
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II. DISTINGUISHING BETWEEN THE TWO
HAMILTONIANS

A. Minimum time necessary to distinguish between the two
unknown Hamiltonians

In this section, we consider the problem of estimating
Hamiltonian acting on a system when the Hamiltonian
unknown. We consider in this section the special case
which there are only two possible Hamiltonians that co
act on the system,H1 or H2, and one must distinguish with
certainty which it is.

This particular problem has been considered previou
by Childs, Preskill, and Renes@5#. They show that the mini-
mum time Dt required to determine with certainty th
Hamiltonian must satisfy the constraint

Dt D0~H1 ,H2!>p, ~2!

where D0(H1 ,H2) measures how much the two Hamilto
nians differ and is defined as follows. Take the difference
the two HamiltoniansHd5H12H2. Denote byEmax

d and
Emin

d the largest and smallest eigenvalue ofHd, respectively.
ThenD0(H1 ,H2) is given by

D0~H1 ,H2!5max$Emax
d 2Emin

d ,uEmax
d u,uEmin

d u%. ~3!

~This expression generalizes a result of Ref.@5#.!
In the Appendix, it is shown thatD0 is a distance on the

space of Hamiltonian operators~i.e., it is symmetric, positive
and equal to zero only if the two Hamiltonians coincide, a
it obeys the triangle inequality!. This important property is
central to some of the arguments below.

In order to make the problem considered by Child
Preskill, and Renes more concrete, consider the follow
example. You are given a box in which there is one of
two unknown magnetic fieldsBW 1 or BW 2. Your task is to de-
termine which kind of box you have. The only way you c
probe the box is to send through the box a specific kind
particle of magnetic momentm. Thus the two possible kind
of boxes differ in that they act as two different Hamiltonia
H1,25mBW 1,2•sW . Given sufficient time or a sufficient suppl
of particles you can always determine which is the magn
field. ~We suppose that the time that the particles pass in
box can be freely chosen, for instance by choosing their
tial velocity. And one can send the particle through the b
as many times as one wants.! However, if you are given only
one particle, what is the minimum time necessary to acco
plish this task? Childs, Preskill, and Renes show that
time is limited by Eq.~2!.

We now present a proof of Eqs.~2!, ~3! that is inspired by
the techniques developed to study interaction-free meas
ments in Ref.@6#. The proof is also closely connected to th
bounds on oracle query complexity obtained in Ref.@7# and
even more so to a continuous-time analog obtained in R
@8#. We first describe the most general strategy that could
used. First of all, we consider that we may let the particle
into the box or not, i.e., for certain values of its position, t
particle can pass through the box and for others not. T
allows us to make a superposition of particle passing thro
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the box and not passing through the box. Mathematically,
describe this by the decomposition of the Hilbert space i
the sumH5Hbox% HNbox, whereHbox corresponds to the
particle passing through the box andHNbox corresponds to
the particle passing next to the box. Second, we consider
the particle can also be entangled with some other part
called ancilla onto which the Hamiltonian does not act~e.g.,
the ancilla is kept out of the box!. The Hilbert space is thus
further increased toH5(Hbox% HNbox) ^ Hancil la .

In the particular problem considered in this sectio
namely distinguishing between two possible Hamiltonia
using an ancilla turns out to be irrelevant.~However, when
one must distinguish between more than two Hamiltonia
using an ancilla can be helpful, see Ref.@5# for a simple
example.! To simplify the proof we will first consider the
case with no ancilla and then show in Sec. II C that t
presence of the ancilla makes no difference.

The most general strategy consists of sending the par
several times through the box and making an arbitrary u
tary transformation on the particle after each passage.
describe this as follows. Initially the particle is in stateuc0&.
Before thekth passage through the box, the particle is
state uck21

i &, where the superscripti 51,2 corresponds to
which HamiltonianH1,2 is acting on the particle. We decom
pose the state asuck21

i &5uuk
i &1uvk

i &, whereuuk
i &PHbox and

uvk
i &PHNbox. After passing through the box the particle

state isuck8
i&5e2 iH i tkuuk

i &1uvk
i &, where tk is the time the

particle is in the box~and we have supposed without loss
generality that if the particle does not pass through the
the Hamiltonian is zero!. We then make an arbitrary unitar
transformation on the particleuck8

i&→uck
i &5Ukuck8

i&. We
can describe the whole evolution succinctly by

uck
i &5Uke

2 iH̃ i tkuck21
i &, ~4!

whereH̃ i is the extension ofHi to Hbox% HNbox. It is equal
to Hi on Hbox and equal to zero onHNbox.

We therefore have

^ck
1uck

2&5^ck21
1 ueiH̃ 1tke2 iH̃ 2tkuck21

2 &, ~5!

or expressed differently

^ck
1uck

2&2^ck21
1 uck21

2 &5^ck21
1 ueiH̃ 1tke2 iH̃ 2tk21uck21

2 &.
~6!

The procedure to distinguish betweenH1 and H2 can only
improve if the total timeT is kept fixed, but the particle is
allowed to pass more times through the box. That is
discrimination can only improve if one takes smaller tim
intervalstk . In the limit of infinitesimaltk , one obtains

d^c1uc2&
dt

5 i ^c1u~H̃12H̃2!uc2&5 i ^c1uH̃duc2&, ~7!

where H̃d5H̃12H̃2 is equal toHd5H12H2 on Hbox and
equal to zero onHNbox. The absolute value of the overla
therefore changes as
7-3
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AHARONOV, MASSAR, AND POPESCU PHYSICAL REVIEW A66, 052107 ~2002!
du^c1uc2&u2

dt
54 Im@^c2uc1&^c1uH̃duc2&#. ~8!

We can always write the statesuc1,2& as

uc1&5e1 ix/2@cos~u/2!uc i&1sin~u/2!uc'&],

uc2&5e2 ix/2@cos~u/2!uc i&2sin~u/2!uc'&],

where 0<u<p/2, ^c iuc'&50. ~9!

This enables us to write Eq.~8! as

d cos2u

dt
52 cosu sinu Im@^c iuH̃duc'&# ~10!

or equivalently

du

dt
5Im@^c iuH̃duc'&#. ~11!

Now we note that for any operatorA,

uIm@^c iuAuc'&#u<
amax2amin

2
, ~12!

where amax is the largest eigenvalue ofA and amin is the
smallest. Equality is attained if

uc i&5
eiwuamax&1eiw8uamin&

A2
,

uc'&5
ei (w1p/2)uamax&1ei (w82p/2)uamin&

A2
, ~13!

wherew andw8 are arbitrary phases. In the case ofH̃d, its
largest eigenvalue is max$Emax

d ,0% and its smallest eigenvalu
is min$Emin

d ,0% ~where Emax
d and Emin

d are the largest and
smallest eigenvalues ofHd). Hence the absolute value of th
right hand side of Eq. ~11! is bounded by
uIm@^c iuH̃duc'&#u<D0(H1 ,H2)/2, where D0 is given by
Eq. ~3!. We therefore have

Udu

dtU<D0~H1 ,H2!/2. ~14!

On integration we have

2
D0~H1 ,H2!t

2
<u~ t !2u~0!<

D0~H1 ,H2!t

2
. ~15!

Initially u(0)50 sinceuc(0)& is independent ofi. Requiring
that one can recognize with certainty which is the Ham
tonian, that is requiring u(t)5p/2, one finds that
tD0(H1 ,H2)>p, as announced.

In the above proof the possibility of allowing the partic
go through the box as well as outside the box allows us
extend the HamiltonianHd, so that it also has the eigenvalu
zero. This is described by replacingHi with H̃ i . It is the
05210
-

o

possibility that allows the maximum in Eq.~3! to be taken
not only over the first termEmax

d 2Emin
d , but also over the

two other termsuEmax
d u and uEmin

d u, and makes our result~3!
differ from the result obtained in Ref.@5#. Indeed if one does
not allow for this then Eq.~2! continues to hold, but Eq.~3!
is replaced byD0(H1 ,H2)5Emax

d 2Emin
d . Thus in this case

the measurement may be less efficient.
In order to illustrate how the ‘‘in/out of the box’’ possi

bility can be used, we consider the following example. W
are given one of two black boxes, and must distingu
which box we have. The boxes are conducting and holl
They are connected to an external electrostatic potential.
only way the two boxes differ is that the potential can ta
two different valuesf1 andf2. The only way we can probe
which box we have is by sending a charged particle throu
the box. The particle will therefore acquire a phase that
pends on the potential. Mathematically, we can describe
as the problem of distinguishing two HamiltoniansH1,2
5H01f1,2I , where I is the identity operator. In order to
distinguish which box we have, we put the particle in a s
perposition of two states, one of which passes through
box and the other does not. Thus we prepare the particl
the state (uthrough box&1unot through box&)/A2 and send
the particle at a speed such that it passes a timeT5p/(f1
2f2) in the box. After this time the particle is in one of th
two orthogonal states (unot through box&
6eipf1 /(f12f2)uthrough box&)/A2, which can easily be dis
tinguished. On the other hand, if we had not been allowed
use the ‘‘out of the box’’ alternative, we could not have di
tinguished between the two Hamiltonians since they dif
only by a constant term that adds an unobservable phas
the wave function.

There are also situations where it is not necessary to
the ‘‘in/out of the box’’ possibility. Suppose one must distin
guish, using a spin-1/2 particle of magnetic momentm, be-
tween two magnetic fields of equal magnitude but pointing
opposite directionsB1,256B01W z . The strategy in this case i
simply to prepare the spin in stateu↑x& and let it evolve in the
magnetic field a timeT5p/mB0, and then to measure th
operatorsy .

B. Distinguishing between the two time-dependent
Hamiltonians

In the preceding section, we considered the case wh
the two Hamiltonians that must be distinguished are ti
independent. One can easily generalize this result to the
where the Hamiltonians are time dependent.

Let us suppose one must distinguish between the
time-dependent HamiltoniansH1(t) and H2(t). The argu-
ments of Sec. II A can be followed unchanged until Eq.~14!
which becomes

Udu

dtU<D0„H1~ t !,H2~ t !…/2, ~16!

whereD0„H1(t),H2(t)… is the instantaneous value of the di
tance~3!. On integration, we have
7-4
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2E
0

t

dt
D0„H1~ t !,H2~ t !…

2
<u~ t !2u~0!

<E
0

t

dt
D0„H1~ t !,H2~ t !…

2
. ~17!

Initially u(0)50 sinceuc(0)& is independent ofi. Requiring
that one can recognize with certainty which is the Ham
tonian, that is requiringu(t)5p/2, one finds that

E
0

t

dt D0„H1~ t !,H2~ t !…>p, ~18!

which is the generalization of the constraint~2! to the case of
time-dependent Hamiltonians.

C. Using an ancilla does not help to distinguish between the
two Hamiltonians

In the proof of Eqs.~2!, ~3!, and~18! given in Secs. II A
and II B, we did not consider the possibility that the partic
passing through the box is entangled with another part
~ancilla!. We shall now show that if we assume the ancilla
not allowed into the box, then Eqs.~2!, ~3!, and~18! continue
to hold.

To this end it is helpful to view the particle and ancilla
a single larger system with HamiltonianHi

total5Hi(t)
^ Hancilla(t), whereHi is unknown andHancilla is known
but arbitrary, and to reformulate the task as the problem
distinguishingH1

total from H2
total . Note that this reformula-

tion includes apparently more involved strategies where,
instance, the ancilla is repeatedly measured and the evolu
made conditional on the results of these intermediate m
surements. Indeed by including the measuring device in
even bigger ancilla, one recovers the above formulation.

Now the distanceD0 between two such Hamiltonian
obeys

D0„H1
total~ t !,H2

total~ t !…5D0„H1~ t ! ^ Hancilla~ t !,H2~ t !

^ Hancilla~ t !…

5D0„H1~ t !,H2~ t !…. ~19!

Thus the time required to distinguish between the t
Hamiltonians~18! does not depend on the presence of
ancilla.

The basic reason why an ancilla does not help in dis
guishing between two unknown Hamiltonians is that all t
argument of Sec. II A depends on the eigenvalues of
difference between the two HamiltoniansHd but not on the
degeneracy of the eigenvalues. Including an ancilla does
change the eigenvalues ofHd, but changes their degenerac

D. Attaining the bound in the dichotomic case

We shall now show that one can always attain the bo
~2!. In general this will require putting the particle in a s
perposition of ‘‘in the box’’ and ‘‘out of the box’’ states
Equation ~13! shows that to attain the bound the partic
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must be kept in a superposition with equal weights of
eigenstates ofH̃d5H̃1

d2H̃2
d , with maximal and minimal ei-

genvalueuẼmax
d & and uẼmin

d &. In the preceding section, w
gave two examples of how to do this when the two Ham
toniansH1 andH2 commute. When the Hamiltonians do n
commute one must use a more complicated strategy. Le
first rewrite the HamiltoniansH̃1 and H̃2 as

H̃15H̃11H̃d/2, H̃25H̃12H̃d/2,

H̃15~H̃11H̃2!/2, H̃d5H̃12H̃2 . ~20!

The evolution during a small time intervalt can then be
written as

exp~2 iH̃ 1t!5exp@2 i ~H̃11H̃d/2!t#

.exp~2 iH̃ 1t!exp~2 iH̃ dt/2!exp@O~t2!#,

exp~2 iH̃ 2t!5exp@2 i ~H̃12H̃d/2!t#

.exp~2 iH̃ 1t!exp~1 iH̃ dt/2!exp@O~t2!#.

~21!

To distinguish between the two Hamiltonians, we initial
prepare the system in the stateuc(0)&5(uẼmax

d &
1uẼmin

d &)/A2. The evolution is the following. We le
the unknown Hamiltonian act for a small timet5T/N,
whereT5p/D0(H1 ,H2) and N is a large integer. We then
act on the system with the unitary transformationU
5exp(2inH̃d)exp(1iH̃1t), wheren is an arbitrary real num-
ber. The term on the right inU cancels the term on the left in
Eq. ~21!. This unitary evolutionU can, in principle, be done
in an arbitrarily short time. AfterN repetitions, the evolution
is

uc~T!&5$exp@2 i ~n61/2!H̃dt#exp@O~t2!#%Nuc~0!&

.exp~2 ip~n61/2!H̃d!uc~0!&, ~22!

where we have written an expression valid in the limit
large N. Thus we obtain two orthogonal states that can
distinguished with certainty.

Note that if we take the arbitrary real numbern to be
either61/2, thenU5exp(2itH̃1,2), that is we have exactly
canceled the evolution of one of the Hamiltonians. This
the technique that is proposed in Ref.@5#.

III. ESTIMATING AN UNKNOWN HAMILTONIAN

A. Formulation of the problem

In the preceding section, we considered the situat
where one mustdistinguish with certaintybetweentwo pos-
sible Hamiltonians. In the present section, we shall cons
the problem where one mustestimate with finite precision
which is the Hamiltonian.
7-5
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In order to give a precise formulation to this problem,
us suppose that the possible Hamiltonians are denoted bHi
and can occur witha priori probabilities p(Hi). After an
evolution that lasts for a timeDt, a measurement is carrie
out which yields resultj. The probability of the resultj given
that the Hamiltonian isHi is denoted byp( j uHi). The result
of the measurement allows one to estimate which is
Hamiltonian. We shall suppose that one makes a gues
which is the true Hamiltonian. We call the guessH j

guess.
Note thatH j

guesscan be one of the initial HamiltoniansHi ,
or it could be a different Hamiltonian altogether. The qual
of the guess is measured by an uncertainty

DH5(
i

p~Hi !(
j

p~ j uHi !D~Hi ,H j
guess!. ~23!

In this equationD(Hi ,H j
guess) is a distance on the space

Hamiltonians that measures how close the guess is to the
HamiltonianHi . It is natural to normalize the distanceD, for
instance, by requiring thatD(H,H1EI)5E, whereI is the
identity operator.

There are many different distances on the space of Ha
tonians. For instanceD(H1 ,H2)5ATr(H12H2)2/d, where
d is the dimension of the Hilbert space. In general the d
tance that one will use will depend on the specific probl
one considers. In the present paper we shall use the dist
D0 introduced in Eq.~3!. The reason is that this is the dis
tance that appears in the results of Sec. II, and these re
are used in the arguments below. We expect that using
other distance would change quantitatively, but not qual
tively, our results.

One of the most fundamental questions concerning
estimation of an unknown Hamiltonian is the relation b
tween the precisionDH with which the Hamiltonian is
known and the timeDt used to carry out the estimation. Th
remainder of this section is devoted to addressing this q
tion.

B. Estimating a Hamiltonian which can only take two values,
H 1 or H 2

As a first application of the general problem of estimati
an unknown Hamiltonian, we consider the particular situ
tion in which their are only two possible HamiltoniansH1
and H2, which are equally probably@p(H1)5p(H2)51/2#
and the task is to estimate which it is in a finite timeDt. The
quality of this estimate shall be expressed by using the
tanceD0 as the distance on the space of Hamiltonians
fined in Eq. ~3!. The techniques developed in Sec. II w
allow us to solve this problem exactly.

In Sec. II, it was shown that ifDt>p/D0(H1 ,H2), then
the two Hamiltonians can be distinguished perfectly a
thereforeDH is zero. On the other hand, whenDt→0, it is
impossible to obtain any information about the Hamiltonia
and the best strategy is to randomly guess eitherH1 or H2.
Hence in this limit DH→D0(H1 ,H2)/2. For intermediate
times, DH will decrease fromD0(H1 ,H2)/2 to zero as a
function ofDt. We shall show that for the optimal estimatio
strategy,DH is given by
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DH5maxH 0,
D0~H1 ,H2!

2 F12sinS D0~H1 ,H2!Dt

2 D G J .

~24!

To prove this let us first show that for an optimal guess
strategy, it is sufficient that the guessed Hamiltonian be
ther H1 or H2. We recall that in the estimation problem, a
formulated in Sec. III A, we left open the possibility o
guessing a Hamiltonian that is not one of the possible Ham
toniansHi . In the present case, it is not necessary to c
sider such possibilities.

To show this let us consider the contribution of guessj to
DH @we denote this contributionDH( j )]:

DH~ j !5
1

2
p~ j uH1!D~H1 ,H j

guess!

1
1

2
p~ j uH2!D~H2 ,H j

guess!. ~25!

Using the triangle inequality, we can write

DH~ j !>
1

2
p~ j uH1!D~H1 ,H2!

1
1

2
@p~ j uH2!2p~ j uH1!#D~H2 ,H j

guess!.

~26!

If p( j uH2)2p( j uH1)>0, we finally have

DH~ j !>
1

2
p~ j uH1!D~H1 ,H2! ~27!

with equality if and only ifH j
guess5H2. Thus if thea poste-

riori probability that the HamiltonianH2 is greater than thea
posteriori probability that the Hamiltonian wasH1, one
should guess that the Hamiltonian isH2. And conversely if
the a posteriori probability that the Hamiltonian wasH1 is
greater than the a posteriori probability that the Hamilton
wasH2, one should guess that the Hamiltonian isH1.

Let us now consider the optimal evolution and measu
ment strategy. The estimation strategy starts with a gi
quantum statec0. If the Hamiltonian isH1 this state evolves
into c1(t), whereas if the Hamiltonian isH2 the state
evolves intoc2(t). In Sec. II A, it was shown that the over
lap between these two states must obey the inequality

u^c1~ t !uc2~ t !&u> cos
D0t

2
, ~28!

with equality attained for the optimal strategy@we have de-
noted D05D0(H1 ,H2)]. Furthermore, it is shown in Ref
@10# that the probabilitypE of making an error when trying
to distinguish two equiprobable statesc1 andc2 is bounded
by

pE>
12A12u^c1uc2&u2

2
>

12sin~D0t/2!

2
, ~29!
7-6
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MEASURING ENERGY, ESTIMATING HAMILTONIANS, . . . PHYSICAL REVIEW A 66, 052107 ~2002!
with equality attained if one carries out a von Neumann m
surement of the basis (uc i&6uc'&)/2. Hence we find that for
the optimal strategy,

DH5pED05
D0

2 F12sinS D0Dt

2 D G . ~30!

WhenDt>p/Do, thenDH in Eq. ~30! is negative. SinceDH
should always be positive, we take the maximum of Eq.~30!
and zero, which gives Eq.~24!.

C. Estimating a completely unknown Hamiltonian

We now consider the situation where the Hamiltonian
completely unknown. Once more we shall use the dista
D0 as the distance on the space of Hamiltonians of Eq.~3!.
We shall show that in this case the precisionDH with which
the Hamiltonian is estimated and the time used to estim
the Hamiltonian must obey the constraint

DHDt>
1

4
. ~31!

This constitutes one of the fundamental results of this pa
To prove this, we will contrast two situations. In the fir

situation~which is the one we are interested in!, the experi-
menter has no information about the Hamiltonian. In the s
ond situation, we imagine that there is a ‘‘spy’’ that know
the true Hamiltonian, call itH0. The spy then tells the ex
perimenter that the true Hamiltonian is eitherH0 or some
other HamiltonianH1. Thea priori probabilities that the spy
chooses HamiltonianH0 or H1 are equal.

Denote byDH the maximum precision with which th
Hamiltonian can be known in the first case, and byDHdicho
the maximum precision with which the Hamiltonian can
known with the help of the spy. Obviously,DtDH
>DtDHdicho since the time intervals are the same in the t
situations and the information provided by the spy can o
increase the precision with which one can estimate
Hamiltonian. This means thatDtDH>maxDtDHdicho, where
the maximum is taken over all possible choices of the s
The results of Sec. III B can be used to show th
maxDtDHdicho>1/4, which proves Eq.~31!.

To show that maxDtDHdicho>1/4, note that in the di-
chotomic case, the productDHDt takes the form

DHDt5
D0Dt

2 F12sinS D0Dt

2 D G ~32!

for 0<Dt<p/D0. For small times this tends to zero sinc
DH is bounded andDt→0. And for Dt>p/D0, the product
is zero sinceDH50. There is an intermediate time whe
the product attains its maximum. One easily shows@using
sinx<x for x>0, which implies thatx(12sinx)>x(12x)]
that the maximum value of this product is greater than
quarter,

maxDHDt>
1

4
. ~33!
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D. Estimating a completely unknown Hamiltonian acting
in a d-dimensional space

Equation~31! gives a lower bound on the product of th
precision with which a completely unknown Hamiltonian
measured and the time taken to estimate it. We believe
this lower bound is not tight and that in general a stron
lower bound should hold. We do not know at present w
form this stronger lower bound will take, but we believe th
it should depend on the dimensionality of the Hilbert spa
on which the Hamiltonian acts.

An indication that this should be the case is provided
an example due to Farhi and Gutmann@8# inspired by Grov-
er’s search algorithm@9#. In this example, one must distin
guish betweend Hamiltonians of the formHk5Euk&^ku,
where thed statesuk& form an orthonormal basis. Farhi an
Gutmann show that in order to distinguish these Hamil
nians perfectly, a minimum time ofDt>cd1/2/E is necessary
~wherec is some positive constant!.

This example shows that there are situations where e
mating an unknown Hamiltonian becomes increasingly di
cult as the dimensiond of the Hilbert space on which it act
increases. However, in the Fahri-Gutmann example, the
known Hamiltonian has a very specific form which is know
before hand. We have obtained preliminary indications t
when the Hamiltonian is completely unknown, estimating
should take substantially more time than suggested by
Fahri-Gutmann example. We hope to report on this issue
future publication.

IV. MEASURING ENERGY WHEN THE HAMILTONIAN
IS UNKNOWN

A. Introduction

The results presented in the preceding section concer
the estimation of Hamiltonians have important implicatio
for energy measurements. As shown in Ref.@3#, the energy
of the state can be measured in an arbitrarily short tim
However a careful scrutiny of the arguments of Ref.@3#
shows that a quick energy measurement is possible on
the Hamiltonian is known. In the example discussed in
Introduction, it is possible to carry out a quick energy me
surement only because we know that the particle is in a m
netic field BW 0 of known magnitude pointing along the1z
direction. Suppose, however, that the magnetic field is po
ing initially either along the1z or the 2z axis. Then a
measurement ofsz yields no information about the energ
Thus in order to determine the energy of the particle,
must also determine the magnetic field. That is we must a
determine which is the Hamiltonian. But as we discuss
above, determining the Hamiltonian will take a minimu
time Dt. ~We suppose that the only way we can probe
magnetic field is with a particle of magnetic momentm. Of
course, if we could use a particle of larger magnetic mome
the measurement of the magnetic field could be done fas!
Thus in this example measuring the energy of the state c
not be done instantaneously because the Hamiltonian is
perfectly known.
7-7
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In fact this is a very general result. We shall show bel
that if the Hamiltonian acting on a system is completely u
known, then the precisionDE with which one can estimat
the energy of the state in a time intervalDt obeys the con-
straint

Dt DE>1/4. ~34!

This assertion follows easily from the results obtained
the preceding section. However, before proving it we fi
need to define with precision what we mean by an accur
DE of an energy measurement.

B. Accuracy of an energy measurement

An ideal energy measurement is a von Neumann meas
ment of the Hamiltonian operatorH5(EEuE&^Eu. If the
quantum state isuc&, the measurement gives resultE with
probability p(Euc)5u^cuE&u2.

Let us consider an imperfect measurement. This meas
ment will predict that the energy isE8 with probability
p(E8). Neither the energiesE8 nor the probabilitiesp(E8)
need to coincide with the energies and probabilities for
ideal energy measurement. Nevertheless, we would like
define in a precise way the accuracy of an energy meas
ment.

The simplest situation in which to define the accuracy
an energy measurement is when the quantum state is a
ergy eigenstateuc&5uE&. In this case the true energy of th
state is well defined. Hence the accuracy of the imper
energy measurement is simply the amount by which the
ergiesE8 differ from the true energyE:

DE5(
E8

p~E8uE!uE82Eu, ~35!

wherep(E8uE) is the probability that the estimated energy
E8 when the quantum state isc5uE&.

If the state is not an energy eigenstate then we define
accuracy of the energy measurement as the average ove
probability u^Euc&u2 that an ideal energy measurement giv
resultE times of the accuracy of the measurement if the s
is uE&:

DE5(
E

u^Euc&u2(
E8

p~E8uE!uE82Eu. ~36!

C. Proof of the time-energy uncertainty relation for energy
measurements when the Hamiltonian is completely

unknown

We start by noting that the proof of Eq.~34! whenc is not
an eigenstate of the Hamiltonian follows from the case wh
c is an eigenstate of the Hamiltonian, since we have defi
in Eq. ~36! the uncertainty whenc is not an eigenstate of th
Hamiltonian as an average of the uncertainties whenc is an
eigenstate of the Hamiltonian times the probability tha
measurement of the Hamiltonian operator yields the co
sponding energy. Therefore we can restrict ourselves to c
sidering the case wherec5uE& is an eigenstate of the
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HamiltonianH. Since the HamiltonianH is completely un-
known, the statec is also unknown.

To prove Eq.~34!, we fix Dt and contrast, as in the Se
III C, the two situations. In the first, one has no informatio
about the Hamiltonian. In the second, a spy gives the a
tional information that the Hamiltonian is eitherH0 ~the true
Hamiltonian! or H1. We shall suppose thatH15H01e1
wheree is ac number and1 is the identity operator. We sha
further suppose that with the information provided by the s
there is equala priori probabilities that the Hamiltonian is
H0 or H1. Let us denote the energy uncertainty in the fi
situation byDE and in the second situation byDEspy. Ob-
viously we haveDtDE>DtDEspy sinceDt is the same in
both situations and the information provided by the spy c
only decrease the energy uncertainty. We therefore wan
put a bound onDEspy.

First, note that since the two HamiltoniansH0 and H1
5H01e1 commute, the experimenter can immediately d
termine which is the statec by measuring the operatorH0.
This measurement can, in principle, be done arbitrarily fa
Hence the experimenter knows that the energy is eitheE,
the true energy, orE1e.

Since the experimenter has only two possibilities betwe
which to choose, an optimal strategy will consist of guess
either that the energy isE or E1e. It is not necessary to
consider other possibilities such as guessing that the en
is E1e/2. Furthermore, the energy uncertainty will b
DEspy5epE , where pE is the probability of making the
wrong guess. The proof of these assertions follows from
fact thatDE, as defined in Eq.~35!, is linear in the prob-
abilities p(E8) times a distanceuE82Eu on the space of
energies. Hence the arguments of Sec. III B,@Eqs. ~25!–
~27!#, can be used in the present case.

But the error probabilitypE of mistaking one energy for
the other is identical to the error probability of wrongly ide
tifying the HamiltoniansH0 andH1 ~since knowing the en-
ergy is equivalent to knowing the Hamiltonian!. Hence in the
present caseDEspy5DH, whereDH is the uncertainty in
estimating the two HamiltoniansH0 and H1. But we have
shown in Sec. III B that for givenDt there exists a choice o
e such thatDtDH>1/4.

D. Saturating the time-energy uncertainty for energy
measurements when the Hamiltonian is unknown?

We now address the question ofwhether it is possible to
devise a universal measurement strategy that can determ
the energy of an unknown state even if there is no pr
knowledge about the Hamiltonian?Such universal measure
ment strategies exist and are well known. We illustrate th
by a typical example, namely the emission of electrom
netic radiation by an excited state of an atom.

We then inquire whether this measurement strategy s
rates the time-energy uncertainty relation obtained in the p
ceding section. It turns out that for this measurement st
egy, and using the definition of Sec. IV B,DtDE is infinite.
However, in a qualitative way this measurement strate
does obey a time-energy uncertainty. This is discussed
detail.
7-8
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As mentioned in the Introduction, the emission of one
more photons by an excited atomic state can be viewed
measurement of the energy of the electrons. The coup
between the measuring apparatus~the electromagnetic field
Am) and the system~the electron! is realized through the
interaction

Hint5E d3xAm~x!Jm~x!, ~37!

whereJm(x) is the electric current. In interaction represe
tation it takes the form

Hint5E
0

`

dv(
k

~avk
† eivt1avke

2 ivt!Jkv . ~38!

Herev is the energy of the photons;k represents other de
grees of freedom of the photons, in addition to their ene
~momentum and polarization!; and Jkv are operators acting
on the electrons Hilbert space. The photons are taken t
initially in their ground stateavku0&50.

The interaction Hamiltonian~37! is independent of the
electron Hamiltonian, i.e., it is independent of whether
electron is bound to a proton, a helium nucleus, a molec
etc. Therefore such a measurement can determine the en
of an unknown state, independently of the Hamiltonian
can also determine which is the Hamiltonian, since the
ergy of the emitted photons will differ if the electron
bound to a proton, a helium nucleus, a molecule, etc.
price to pay for this universality is that the energy resolut
of the measurement and the time necessary for the mea
ment are constrained by the time-energy uncertainty. The
guments presented in this paper show that this will always
the case for a measurement of energy, which does not
into account prior knowledge about the Hamiltonian.

An important limitation of the above measureme
scheme is that the emitted photon only reveals the differe
in energy between the initial and final state of the atom
there are several allowed transitions with identical ene
differences, then the measurement will not allow these ini
states to be differentiated. It would have to be complemen
by a second measurement to determine which of the pos
final states the atom reached. Nevertheless, the impo
point of this example is to show that, in principle, it is po
sible to come close to saturating the time-energy uncerta
relation when estimating the energy of a system wh
Hamiltonian is unknown.

In order to see how close we come to saturating the tim
energy uncertainty in this scheme, let us examine it in m
detail. The probability density that a photon is emitted
time t is

P~decay at timet !5ge2gt. ~39!

Thus the time it takes to complete the measurement is
well defined. Rather this time is variable but its mean
finite,

E dt t P~decay at timet !5g21. ~40!
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This is to be contrasted with the situation envisaged in
previous sections where we required that the measureme
finished after some time intervalDt.

Let us now consider the energy of the emitted photon
the true energy of the electronic state isE0, then the prob-
ability density that the emitted photon has energyE is

P~emitted photon has energyE!5
1

p S g

g21~E2E0!2D .

~41!

If we compute the accuracy of the energy measurement u
the definition~36!, we find

DE5E dEP~emitted photon has energyE!uE2E0u51`.

~42!

Thus this measurement satisfies the time-energy un
tainty relation. In fact the productDtDE is infinite since both
the time it takes to complete the measurement and the en
uncertainty are infinite. However, we note that if we mod
the definition ofDt to be the mean timeg21 taken to carry
out the measurement and if we modify the definition of t
energy uncertaintyDE to be the linewidthg, then this mea-
surement does obeys a time-energy uncertainty relation.

Therefore it may be possible to devise a better ene
measurement that saturates the time-energy uncertainty
rived in Sec. IV C. Or this uncertainty relation is too stron
and one can prove a weaker form of the uncertainty relat
for instance using as definition ofDt andDE, the mean time
taken for the measurement and the linewidth@where the line-
width can be defined operationally asg5(E22E1)/2 with
E1,2 the energies such thatP ~emitted photon has energyE!
has half its maximum value#. In the latter case, the measur
ment just described would be optimal in the sense tha
would saturate the time-energy uncertainty for energy m
surements when the Hamiltonian is unknown.

E. Estimating energy when one has partial knowledge
about the Hamiltonian

In the preceding section, we considered the situat
where one wants to estimate the energy of an unknown s
but one has no prior knowledge about the Hamiltonia
When some prior knowledge is available the situation is c
siderably more complicated and the relation between
time used for the measurement and the precision with wh
the energy can be estimated will depend on the details of
problem.

To illustrate this we consider two examples. First, co
sider the case of two HamiltoniansH1 andH2 that have the
same eigenstatesH1ck5E1kck , H2ck5E2kck and their ei-
genvalues coincide except for one eigenstateE1k5E2k(k
Þk0) but E1k0

ÞE2k0
. Suppose we must determine the e

ergy of an unknown stateC. A strategy to do this in a shor
time is to first carry out a von Neumann measurement of
basisck that diagonalizesH1 andH2 ~this can be done in an
arbitrarily short time!. If one finds that the outcomek is
different from k0, then one immediately knows the energ
On the other hand, ifk5k0, then to know the energy on
must determine which is the Hamiltonian. This takes a ti
Dt5p/uE1k0

2E2k0
u. If the unknown stateC was uniformly
7-9
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AHARONOV, MASSAR, AND POPESCU PHYSICAL REVIEW A66, 052107 ~2002!
distributed in Hilbert space~denotedH), then the probability
that C belongs to subspacek0 is 1/dimH and the average
time necessary to determine the energy of the state
p/dimHuE1k0

2E2k0
u, which is much smaller than the tim

needed to determine the Hamiltonian. The reason for
difference in time scales is because the particle has mo
its support in a part of the Hilbert space where the t
Hamiltonians do not differ.

Our second example is superficially similar to the pre
ous one. But more careful consideration show some su
differences. We consider a particle confined to a~one-
dimensional! box. The potential in the box vanishes ever
where, except in a corner where it may be either zero or t
a large negative value. In order to measure the energy o
particle in a minimum time the following strategy seem
natural. First, we measure whether the particle is in the c
ner or not.~This position measurement should be sligh
fuzzy so as not to disturb the momentum too much.! This
measurement can, in principle, be done in an arbitrarily sh
time. If the particle is not in the corner, we measure its m
mentum, and hence know its energy. This can also be don
an arbitrarily short time. If the particle is in the corner, th
we must determine the value of the potential in order
know the energy of the particle. This takes a finite time
order 1/DV, whereDV is the uncertainty in the potential.

Thus in this case it seems that the minimum time requi
for the energy measurement depends essentially on the p
ability of the particle being in the corner of the box rath
than on the precisionDE with which one wants to know the
energy. However, the situation is more complicated. T
above procedure approximates to some extent a von N
mann measurement of the Hamiltonian operator. Indeed
statistics of the measurement outcomes are such that
reproduce correctly the moments of the Hamiltonian ope
tor. Thus, for instance, upon repeating the measurem
many times one will obtain a good estimate of the aver
energy^H&, or the average value of any power of the Ham
tonian^Hn&. However, the above procedure is not equival
to a von Neumann measurement of the Hamiltonian oper
~which is the task we set out to perform!. Indeed there are
some functions of the Hamiltonian, which cannot be e
mated correctly with the above procedure.

Suppose, for instance, that the particle is known to
approximately localized at a distanced from the corner of the
box (d is taken to be much larger than the size of the reg
where the potential is unknown!, and suppose that it is
known that the momentum of the particle is approximatelyp.
Since the particle is far from the corner, by measuring
momentum of the particle one has some information ab
its energy. For instance, independent repetitions of the m
surement will yield estimates of the moments of the Ham
tonian operator̂Hn&. Such measurements of the momentu
can be done in an arbitrarily short time. However, supp
that one wants to measure the operator cos(mdH/p)
5(eimdH/p1e2imdH/p)/2 ~wherem is the mass of the particle!.
This is the real part of the operator that evolves the part
from its initial position up to the corner where the potential
unknown. The expectation value of the above opera
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clearly depends on the value of the potential in the corn
and therefore it can only be determined in a time of ord
1/V.

The origin of this surprising situation is that in the abo
example the exact spectrum ofH depends on the potential i
the corner. When the particle is far from the corner, m
questions concerning the energy of the particle are indep
dent of the exact spectrum ofH. But a variable such as
cos(mdH/p) is sensitive to the exact spectrum and theref
in order to measure it one must know what is the potentia
the corner. Operators such as cos(mdH/p) are called modular
variables, and have been introduced in Ref.@11#.

V. CONCLUSIONS

In the present paper, we have shown that if the Ham
tonian that governs the evolution of a quantum system
unknown, then the time necessary to estimate the Ha
tonian obeys a time-energy uncertainty relation~2!. To this
end we first gave a simple proof of the problem conside
by Childs, Preskill, and Renes@5# where there are only two
possible Hamiltonians between which one must choose.
then showed how to extend this result to the case where t
are many Hamiltonians among which one must choose.
bound we obtained is probably not tight when the unkno
Hamiltonians act in a space of large dimensionalityd.2,
and it should be possible to refine it by a more detai
analysis.

Our results concerning the time-energy uncertainty re
tion applied to estimating Hamiltonians have many appli
tions. In particular, they provide new insight about how t
time-energy uncertainty applies to energy measurement
has been shown by Aharonov and Bohm that if the Ham
tonian of the system is known, then the Hamiltonian can
principle, be measured in an arbitrarily short time@3#. On the
other hand, we show that if the Hamiltonian is unknown th
the energy measurement cannot be done in an arbitra
short time. The minimum amount of time required depen
on the details of the problem, for instance what is the pr
knowledge about the Hamiltonian, what is the prior know
edge about the state, and exactly what one wants to k
about the energy of the state. We show that if one has
prior information about the Hamiltonian, then the time tak
to carry out the measurement and the precision with wh
the energy is measured obey a time-energy uncertainty r
tion.

We also show that one can devise a measurement of
energy of a quantum system that always works, indep
dently of any prior knowledge about the system. Such a m
surement is obtained by coupling the system to an exte
apparatus that oscillates at all frequencies and such that
frequency is coupled to different degrees of freedom of
apparatus. This is illustrated in Eq.~38! in the case where the
external apparatus is taken to be the electromagnetic fi
Such measurements do not saturate our time-energy un
tainty relation, although they do obey a qualitatively simil
uncertainty relation between the lifetime of the state and
linewidth.
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MEASURING ENERGY, ESTIMATING HAMILTONIANS, . . . PHYSICAL REVIEW A 66, 052107 ~2002!
To conclude, we find that the real meaning of energy
quantum mechanics is that of governing the time evolut
of a system. To measure the energy one has to determin
time evolution, and this takes time. Thus energy meas
ments require time, and their precision is limited by the tim
we have at our disposal. On the other hand, in the exam
presented by Aharonov and Bohm@3#, the Hamiltonian is
known in advance, hence one need not spend time to d
mine the time evolution. Instead, one could find out the va
of the energy not by determining the time evolution, i.e., n
by measuring the actual energy, but by measuring an op
tor ~the operator to which the Hamiltonian is equal! whose
numerical eigenvalue is equal to that of the energy. Howe
we emphasize that although this procedure does yield
numerical values equal to that of the energy, it is not a pro
energy measurement. Indeed, if we believe the Hamilton
to beH but in reality it is different, sayH8, then the value
obtained by the instantaneous Aharonov-Bohm measu
procedure~which tells us to measure the operatorH) would
no longer be correct, and, furthermore, we would not kn
that our measurement is wrong. Thus a proper energy m
surement necessarily probes the time evolution and there
cannot be done instantaneously. Rather the time take
carry out the measurement and the precision with which
knows the energy are constrained by a time-energy un
tainty relationDtDE>1.
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APPENDIX

In this appendix, we show thatD0(H1 ,H2) defined in Eq.
~3! is a distance on the space of Hamiltonians. That isD0 is
05210
n
n
the
e-
e
es

er-
e
t
ra-

r,
e

er
n

g

a-
re
to
e
r-

y
e

l

~1! positive: D0(H1 ,H2)>0 with equality if and only if
H15H2; ~2! D0 is symmetric:D0(H1 ,H2)5D0(H2 ,H1);
and ~3! D0 obeys the triangle inequalityD0(H1 ,H2)
<D0(H1 ,H3)1D0(H3 ,H2).

Let us first introduce a norm

uuHuu05max$Emax2Emin,uEmaxu,uEminu%, ~A1!

whereEmax,Emin are the largest, smallest eigenvalues ofH.
Now

D0~H1 ,H2!5uuH12H2uu0 , ~A2!

hence if we can prove thatuuHuu0 is indeed a norm, then i
follows immediately thatD0 is a distance.

We recall that a norm must satisfy the following prope
ties: ~1! positivity: uuHuu>0 with equality if and only ifH
50; ~2! linearity: uulHuu5uluuuHuu for any c numberl; ~3!
triangle inequalityuuH11H2uu<uuH1uu1uuH2uu.

Properties~1! and ~2! are immediate. Let us conside
property ~3!. Let us denote byE1

max and uc1
max& the largest

eigenvalue ofH1 and the corresponding eigenvector; b
E2

max and uc2
max& the largest eigenvalue ofH2 and the corre-

sponding eigenvector; byE12
max anduc12

max& the largest eigen-
value ofH11H2 and the corresponding eigenvector. Let
show thatE12

max<E1
max1E2

max. We have

E12
max5^c12

maxu~H11H2!uc12
max&

5^c12
maxuH1uc12

max&1^c12
maxuH2uc12

max&

<^c1
maxuH1uc1

max&1^c2
maxuH2uc2

max&

5E1
max1E2

max. ~A3!

Similarly we have E12
min>E1

min1E2
min , where

E12
min ,E1

min,E2
min are the smallest eigenvalues ofH1

1H2 ,H1 ,H2, respectively. The triangle inequality follow
from these relations between eigenvalues and from the d
nition of uuHuu0.
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