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Measuring energy, estimating Hamiltonians, and the time-energy uncertainty relation
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Suppose that the Hamiltonian acting on a quantum system is unknown and one wants to determine which is
the Hamiltonian. We show that, in general, this requires a thhéhat obeys the uncertainty relatidtt AH
=1, whereAH is a measure of how accurately the unknown Hamiltonian must be estimated. We apply this
result to the problem of measuring the energy of an unknown quantum state. It has been previously shown that
if the Hamiltonian is known, then the energy can, in principle, be measured with arbitrarily large precision in
an arbitrarily short time. On the other hand, we show that if the Hamiltonian is not known then an energy
measurement necessarily takes a minimum tirhevhich obeys the uncertainty relatidet AE=1, whereAE
is the precision of the energy measurement. Several examples are studied to address the question of whether it
is possible to saturate these uncertainty relations. Their interpretation is discussed in detail.
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[. INTRODUCTION the energy of an unknown state can be determined to an
accuracyAE, only if the durationAt of the measurement is
The uncertainty relations play a central role in quantumlarger than IAE (since AtAE=1), where we seti=1.
mechanics. Their importance lies in the fact that they expressiere and throughout, by accuracy of the measurement, we
in a succinct manner the fundamental limitations on the mea€an how much the result of the measurement differs from
surements imposed by quantum mechanics. In particular, it i € r'esul't of an ideal von Neumann measurement .Of the
these limitations that guarantee that the mathematical forma—am"toman operatoH. This will be defined with precision

: . o . . below.
'rirgn?f the theory is free from contradictions with the experi- Surprisingly, this intuition is incorrect. It is possible to

. . . measure the energy of an unknown quantum state to arbi-

The time-energy uncertainty, however, has a particulagrayily high accuracy in an arbitrarily short tinj&]. As an
status because time is an external parameter in the theofystration consider a spin-1/2 particle with a magnetic mo-
and the energy operator plays a special role since it detefﬁentﬂ in a magnetic field§o=BOiZ pointing along thez

mINes the temporal evolution. Thus the.tlme-en_ergy UNCeMGirection. In order to measure the energy of the spin, one can
tainty does not follow from the commutation relations of two

operators, but is determined indirectly, for instance, from thea.pIOIy a strong magnetic fiell(z) =B(2) 1, pointing in thez

mathematical properties of the Fourier transform with re-g'tr:rcntl%ne;/l\gtchh amgegslﬁg:ng]nyg d'rr]ee(:(':%nb;rzi r:r?(lelrzes;
spect to the time variable. The interpretation and status of thfhe particle. The time necessar’y for this measuremggnt de-

time-energy uncertainty should therefore be examined Wiﬂbends on the magnitude of the additional magnetic field

partlcul:ar care. hall B(z), not on the original magnetic fiel,. SinceB(z) can
In this paper, we shall concentrate on energy measurgsg grpjtrarily large, the energy can be determined in an arbi-

ments. By analogy with other measurements, one expectgarily short time. Another example, which is discussed in
that the time-energy uncertainty expresses a fundamentgktajl in the original articlg3], is the measurement of the
constraint which energy measurements must satisfy. The air@nerng =p?/2m of a free particle.
of this paper is to CIarify whether such a constraint exists, Thus the time-energy uncertainty seems not to app|y to
and what should be its interpretation. energy measurements. Is this result universal? Or are there
Suppose that one must measure the energy of an unknovgases where the time-energy uncertainty does apply, and
quantum state. One’s first intuitidid,2] in this case is that measuring the energy to an accurady does require a time
At limited by AtAE=17?
We first note that if one attempts to devise an energy
*Also at Department of Physics, University of South Carolina, measurement, it is often the case that this measurement will

Columbia, SC 29208 take a time that satisfies the time-energy uncertainty. We re-
*Ecole Polytechnique, CP165, Universitdbre de Bruxelles, fer for instance, to the example considered by Landau and

B-1050 Bruxelles, Belgium. Peierls[1], see also Landau and Lifschit2], in which the
TAlso at BRIMS, Hewlett-Packard Laboratories, Stoke Gifford, kinetic energy of a particle is measured by allowing it to

Bristol BS12-6QZ, United Kingdom. collide with another particle initially at rest. In this example
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if the energy is to be measured with precision, the initialoperatorA can be realized in an arbitrarily short time. But if
momentum of the particle at rest must be well known, butthe time is very short, the measurement is brutal, that is the
then its position is spread out and the time at which theénteraction between the measuring apparatus and the system
measurement takes place is uncertain. Another well-knowfominates the evolution. It is therefore impossible to use
example is the radiative decay of an excited state. The emi$uch a measurement to estimate an unknown Hamiltonian
sion of a photon by an excited atom that decays to its groungince the action of the original Hamiltonian is completely
state can be viewed as a measurement of the energy of tffd@sked by the interaction. . _
electronic state of the atom. The mean time it takes for the Therefore in order to understand the interpretation of the
photon to be emitted, that is the lifetime of the excited statefime-energy uncertainty relation in the context of energy
is then interpreted as the mean time it takes for the measurd€asurements, it is ma_nda_tory to first understa_md t_he limita-
ment. This lifetime is related to the linewidth, that is to the tions quantum mechanics imposes on the estimation of the
uncertainty of the energy measurement, by the time-energff@miltonian acting on a system when the Hamiltonian is
uncertainty. Following Ref[3], one would argue that such unknown. This problem is, in a certain sense, the dual of the
energy measurements, which satisfy the time-energy uncegtapdard problem of quantum information in which one must
tainty, are simply badly designed, and that one can, in prin€stimate the state of a quantum system. Here one must esti-
ciple, make energy measurements that do not obey the tim&ate the dynamics. This is a fundamental problem in quan-
energy uncertainty. Nevertheless, it is surprising that sdUm mechanlc_s. In fact many expenmental situations can be
many energy measurements do obey the time-energy uncdibrased in this Iar)guage. For instance, there could be an
tainty. We would like to know what makes some energy meatnknown force acting on a particle that one wants to esti-
surements less efficient than others. mate. Or the Hamiltonian could depend on an unknown pa-
There are also some particular circumstances in which thE2meter that one wants to estimate. N _
time-energy uncertainty must be obeyed in an energy mea- We show in the present paper that the precision with
surement. Specifically, we consider the situation in whichwhich one can estimate the dynamics and the time required
one wants to measure the energy of an isolated system. Sinf@ this estimation are related by an uncertainty relation
it is isolated, i.e., uncoupled to any exterior degrees of free-
QOm, the measurjng apparatus must be inter_nal_ to t_he system AtAH=1, 1)
itself. In Ref.[4], it is argued that this constraint implies that
measuring the total energy of an isolated system to an accu-
racy AE requires a timé\t that satisfiedAtAE=1. Contrary  where the precise meaning AH depends on the details of
to the examples mentioned in the preceding paragraphhe problem.
where a more sophisticated strategy could, in principle, mea- It is intuitively obvious that the dynamics of a quantum
sure the energy in a smaller time than that given by thesystem cannot be estimated instantaneously. Indeed suppose
uncertainty relation, in this case the uncertainty relation musthat initially the state isyy. Then after a time the state has
be obeyed. evolved to ¢(t,H)=e "Myy=yy+itH yy. From this ex-
Thus the present status of the time-energy uncertainty ipression it is clear that in order to estimate the dynamics, i.e.,
the context of energy measurements is unsatisfactory. Differto estimateH, sufficient time must elapse so that the zeroth-
ent examples suggest conflicting interpretations. order termyy in the expansion it does not dominate. Were
As we shall prove below, the resolution of this puzzle isthis the case, the statggt,H) would be almost identical to
the following. When the Hamiltonian of the systenkisown o and hence undistinguishable. The results reported in this
the conclusions of Ref3] hold, namely we can measure the paper make this qualitative statement precise.
energy as precisely as we want in a time as short as we want. The problem of estimating the dynamics has been consid-
On the other handyhenever the Hamiltonian of a system is ered recently by Childs, Preskill, and Rehb§ Their results
completely unknown, determining what is the Hamiltonian toconstitute a starting point for our discussion.
precisionAH requires a timeAt given byAtAH=1. The remainder of the paper is organized as follows. We
The origin of the conflicting interpretations of the time- first discuss the problem of distinguishing with certainty be-
energy uncertainty relation in the context of estimating theween the two Hamiltonians. Next we consider the case
energy of an unknown state is now clear. In some cases, thehere one only wants to estimate with finite error probability
energy measurement can also serve to estimate an unknowrhich of the two Hamiltonians is the true Hamiltonian. Then
Hamiltonian. In these cases, because the measurement cae turn to the problem of estimating what is the Hamiltonian
serve this dual purpose, it requires a tiknewhich is limited ~ when one has no prior knowledge about the Hamiltonian.
by the accuracy with which it could estimate an unknownFinally, we go back to the problem of estimating the energy
Hamiltonian. On the other hand, the measurements envisf an unknown state. We discuss how it is related to estimat-
aged in Ref[3] cannot estimate an unknown Hamiltonian. ing an unknown Hamiltonian. We prove that if the Hamil-
These measurements measure an operatar, in the ex-  tonian is completely unknown then the time necessary to
ample above, or the momentumin the example of Ref. estimate the energy and the precision with which the energy
[3]). If the Hamiltonian is a function of this operatdt is estimated must obey a time-energy uncertainty relation.
=f(A) (for instance,H=uByo, or H=p?/2m), then the We illustrate the problem of estimating the energy of a state
measurement oA can be used to determine the energy of anwhen the Hamiltonian is completely or partially unknown by
unknown state. Such a von Neumann measurement of aseveral examples.
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Il. DISTINGUISHING BETWEEN THE TWO the box and not passing through the box. Mathematically, we
HAMILTONIANS describe this by the decomposition of the Hilbert space into
the sumH="Hpox® Hnbox: WhereH,,, corresponds to the
particle passing through the box aftt,,, corresponds to
the particle passing next to the box. Second, we consider that
In this section, we consider the problem of estimating thethe particle can also be entangled with some other particle
Hamiltonian acting on a system when the Hamiltonian iscalled ancilla onto which the Hamiltonian does not @xg.,
unknown. We consider in this section the special case ifhe ancilla is kept out of the baxThe Hilbert space is thus
which there are only two possible Hamiltonians that couldfurther increased t61=(Hp0x® Hnbox) © Hancilla -
act on the systenti; or H,, and one must distinguish with  |n the particular problem considered in this section,
certainty which it is. namely distinguishing between two possible Hamiltonians,
This particular problem has been considered previouslyising an ancilla turns out to be irrelevatidowever, when
by Childs, Preskill, and Reng5]. They show that the mini- one must distinguish between more than two Hamiltonians,
mum time At required to determine with certainty the using an ancilla can be helpful, see RE§] for a simple
Hamiltonian must satisfy the constraint example). To simplify the proof we will first consider the
case with no ancilla and then show in Sec. Il C that the
AtDo(Hy,Hp)=m, (2) presence of the ancilla makes no difference.
The most general strategy consists of sending the particle

A. Minimum time necessary to distinguish between the two
unknown Hamiltonians

where Dg(H1,H,) measures how much the two Hamilto-

: . . ; 1 everal times through the box and making an arbitrary uni-
nians differ and is defined as follows. Take the ddn‘ference 0 ary transformation on the particle after each passage. We

thde two Ham|lton|anst=Hl—.H2. Denote byEna and  gescribe this as follows. Initially the particle is in sthig).
Emin the largest and smallest eigenvaluet, respectively. Before thekth passage through the box, the particle is in
ThenDo(Hy,H>) is given by state | _,), where the superscrifit=1,2 corresponds to
which HamiltonianH , is acting on the particle. We decom-
pose the state 1) =|uy) +|vy), where|u,) e Hpox and
lui) € Hnbox- After passing through the box the particle’s
state is|yy'y=e Mi%{u)+|v}), wheret, is the time the
particle is in the boxXand we have supposed without loss of
dgenerality that if the particle does not pass through the box
the Hamiltonian is zeno We then make an arbitrary unitary
transformation on the particléy'y—|)=U|e'). We
can describe the whole evolution succinctly by

DO(HlaHz):ma){E(rjnax_ E?nin1|E(rjnax|1|ngin|}- ©)

(This expression generalizes a result of R&t.)

In the Appendix, it is shown thdD, is a distance on the
space of Hamiltonian operatofise., it is symmetric, positive
and equal to zero only if the two Hamiltonians coincide, an
it obeys the triangle inequality This important property is
central to some of the arguments below.

In order to make the problem considered by Childs,
Preskill, and Renes more concrete, consider the following i ifitut
example. You are given a box in which there is one of the [0 =Ure Yy, 4

two unknown magnetic field8; or B,. Your task is to de- o _ _
termine which kind of box you have. The only way you canWhereH; is the extension oH; t0 Hy,0,® Hnpox- It is equal
probe the box is to send through the box a specific kind of® Hi 0N Hpox and equal to zero oftypox.

particle of magnetic moment. Thus the two possible kinds ~ We therefore have

of boxes differ in that they act as two different Hamiltonians 1 L S

H,,=uB,, 0. Given sufficient time or a sufficient supply (il i) = (- 1| €M e M2y ), )
of particles you can always determine which is the magnetic .
field. (We suppose that the time that the particles pass in th@" €xPressed differently

box can be freely chosen, for instance by choosing their ini- = =, . ) Lt i )

tial velocity. And one can send the particle through the box (¥l ¥i) = (Wi 1l ¥ 1) = (4o €1 ke™Mok= 1]y o).
as many times as one wantslowever, if you are given only (6

)
one particle, what is the minimum time necessary to accom: h d distinquish b d |
plish this task? Childs, Preskill, and Renes show that thig "€ Procedure to distinguish betwebh andH, can only

time is limited by Eq.(2). improve if the total timeT is kept fixed, but the particle is

We now present a proof of Eg&), (3) that is inspired by a!low_eo! fo pass more times thr(_)ugh the box. That IS the
the techniques developed to study interaction-free measuré'—'scr'm'nat'On can .onlly Improve '.f one takes Sm?”ef time
ments in Ref[6]. The proof is also closely connected to the intervalst, . In the limit of infinitesimalt,, one obtains
bounds on oracle query.comple>.<|ty obtained in F{é].and d( ] g2 o _
even more so to a continuous-time analog obtained in Ref. ST L iy (R — Ry ) =i (Y R g2 7

. | G SRRl =i R, ()

[8]. We first describe the most general strategy that could be t
used. First of all, we consider that we may let the particle go o
into the box or not, i.e., for certain values of its position, thewhereHY=H,—H, is equal toHY=H;—H, on H,,, and
particle can pass through the box and for others not. Thigqual to zero orHy,.y. The absolute value of the overlap
allows us to make a superposition of particle passing througtherefore changes as
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d 11,7.2\|2 _
Wﬂtlm[<w2|w1><w1|H“|w2>]. ®
We can always write the statég’?) as
|4ty =e" " cog 012)| yl) +sin(/2)| )],
|y?) =€~ ¥ cog 612)| yl) —sin(612) [y )],
where O<6<x/2, (yl|y*)=0. (9)
This enables us to write E@8) as
dcog ~
C;t 0=2cosasinalm[<¢|‘|Hd|W>] (10)
or equivalently
de ~
Fralu KA (11)
Now we note that for any operatéy,
Qmax— @min
ImL(lAlp) )= =5, (12)

where a,,., is the largest eigenvalue & and a,,;, is the
smallest. Equality is attained if

ei‘p|ama><> + ei¢’|amin>

Iy =
[y N :
ei(¢+77/2)|amax>+ei(¢,_7r/2)|amin>
= , 13
[ 2 (13

where¢ and ¢’ are arbitrary phases. In the casertf, its
largest eigenvalue is m&g,

is min{E2, .0} (where ES_, and EJ,;,

are the largest and

smallest eigenvalues #f%). Hence the absolute value of the

right hand side of Eqg. (11) is bounded by
m[ (][R9 ¢t )]|<Do(H4,H,)/2, where Dy is given by
Eq. (3). We therefore have

dé
a0t <Dgy(H,H,)/2. (149
On integration we have
Dgo(Hq,Ho)t Dgo(Hq,Ho)t
_ Do(H1. At ; 2) < o(t)— o(0)=< 2oL ; 2t (15)

Initially #(0)=0 since|(0)) is independent of. Requiring

20 and its smallest eigenvalue

PHYSICAL REVIEW A6, 052107 (2002

possibility that allows the maximum in E¢3) to be taken
not only over the first ternES,,,—ES.,, but also over the

two other termgE? _ | and|EZ. |, and makes our resuig)

differ from the result obtained in Ref5]. Indeed if one does

not allow for this then Eq(2) continues to hold, but Ed3)

is replaced byDo(H;,H,)=E% . —E%. . Thus in this case

the measurement may be less efficient.

In order to illustrate how the “in/out of the box” possi-
bility can be used, we consider the following example. We
are given one of two black boxes, and must distinguish
which box we have. The boxes are conducting and hollow.
They are connected to an external electrostatic potential. The
only way the two boxes differ is that the potential can take
two different valuesp,; and ¢,. The only way we can probe
which box we have is by sending a charged particle through
the box. The particle will therefore acquire a phase that de-
pends on the potential. Mathematically, we can describe this
as the problem of distinguishing two Hamiltoniats, ,
=Hop+ ¢14, wherel is the identity operator. In order to
distinguish which box we have, we put the particle in a su-
perposition of two states, one of which passes through the
box and the other does not. Thus we prepare the particle in
the state |through box+ |not through boX)/\2 and send
the particle at a speed such that it passes a Tfimer/(¢,

— ¢»,) in the box. After this time the particle is in one of the
two orthogonal states |ifot through box

+ ¢! m¢1/(41=92)|through bo¥)/ /2, which can easily be dis-
tinguished. On the other hand, if we had not been allowed to
use the “out of the box” alternative, we could not have dis-
tinguished between the two Hamiltonians since they differ
only by a constant term that adds an unobservable phase to
the wave function.

There are also situations where it is not necessary to use
the “in/out of the box” possibility. Suppose one must distin-
guish, using a spin-1/2 particle of magnetic momgntbe-
tween two magnetic fields of equal magnitude but pointing in
opposite direction8; ,= * Boiz. The strategy in this case is
simply to prepare the spin in stdtg,) and let it evolve in the
magnetic field a timeél = =/ uBy, and then to measure the
operatoro, .

B. Distinguishing between the two time-dependent
Hamiltonians

In the preceding section, we considered the case where
the two Hamiltonians that must be distinguished are time
independent. One can easily generalize this result to the case
where the Hamiltonians are time dependent.

Let us suppose one must distinguish between the two
time-dependent Hamiltoniand(t) and H,(t). The argu-
ments of Sec. Il A can be followed unchanged until Eigl)

that one can recognize with certainty which is the Hamil-Which becomes

tonian, that is requiring 6(t)==/2, one finds that

tDo(H4,H,) =, as announced.

In the above proof the possibility of allowing the particle

dé
—‘<D0(H1(t),Hz(t))/2, (16)

dt

go through the box as well as outside the box allows us to
extend the Hamiltoniafl 9, so that it also has the eigenvalue whereDo(H,(t),H,(t)) is the instantaneous value of the dis-

zero. This is described by replacitd; with H;. It is the

tance(3). On integration, we have

052107-4



MEASURING ENERGY, ESTIMATING HAMILTONIANS, . .. PHYSICAL REVIEW A 66, 052107 (2002

t  Do(Hq(t),Hy(t)) must be kept in a superposition with equal weights of the
- fodtf$9(t)_ 6(0) eigenstates ofl=H{—HJ, with maximal and minimal ei-
genvalue|EY ) and|EY, ). In the preceding section, we
t Do(Hq(t),Hy(1)) gave two examples of how to do this when the two Hamil-
= fodtf- 7 toniansH; andH, commute. When the Hamiltonians do not

commute one must use a more complicated strategy. Let us
Initially #(0)=0 since|(0)) is independent of. Requiring  first rewrite the Hamiltonianél, andH, as
that one can recognize with certainty which is the Hamil- . o
tonian, that is requiring(t)= /2, one finds that H,=H"+H%Y2, H,=H"—HY2,

ftdtDo(Hl(t),Hz(t))aw, (18) AT =(R,+Hy/2, HI=H,—H,. (20
0

The evolution during a small time interval can then be
which is the generalization of the constraiif to the case of  written as

time-dependent Hamiltonians.
exp(—iH, ) =exgd —i(H"+HY2)7]
C. Using an ancilla does not help to distinguish between the
two Hamiltonians =exp(—iA * r)exp(—iA72)exd O(2)],
In the proof of Eqs(2), (3), and(18) given in Secs. Il A
and Il B, we did not consider the possibility that the particle exp —iH,7)=exd —i(H"—H%2)7]
passing through the box is entangled with another particle

(ancilla). We shall now show that if we assume the ancilla is ~ext —if* Pexd +iF97/2)exd O( 2
not allowed into the box, then Eg&), (3), and(18) continue " m)exp 72)exi O(7)].
to hold. (22)

To this end it is helpful to view the particle and ancilla as o o o
a single larger system with HamiltoniaH}Ota'=Hi(t) To distinguish between the two Hamiltonians, we initially
®Hancinia(t), WhereH; is unknown andH nciia is known — prepare the system in the statgy(0))=(|Eqa.
but arbitrary, and to reformulate the task as the problem ofi-|EJ. })/\/2. The evolution is the following. We let
distinguishingH*'*' from HY'?'. Note that this reformula- the unknown Hamiltonian act for a small time=T/N,
tion includes apparently more involved strategies where, fowhere T=n/Dy(H,,H,) andN is a large integer. We then
instance, the ancilla is repeatedly measured and the evolutiaitt on the system with the unitary transformatich
made conditional on the results of these intermediate mea- exp(—ivH%exp(iFi* 7, wherev is an arbitrary real num-
surements. Indeed by including the measuring device in ager, The term on the right il cancels the term on the left in
even bigger ancilla, one recovers the above formulation. Eg. (21). This unitary evolutiorlJ can, in principle, be done

Now the distanceD, between two such Hamiltonians i, an arbitrarily short time. AfteN repetitions, the evolution
obeys is
Do(H'™ (1), HZ"™(1))=Do(H1(t) ®Hancina(t), Ha(t)
®Hancilla(t))

=Do(H4(t),Ha(1)). (19

|p(T)y={exd —i(v+1/2H7]exd O() }"|4(0))
=exp( —im(v+1/2HY|4(0)), (22)

) ) o where we have written an expression valid in the limit of

Thus the time required to distinguish between the twoarge N. Thus we obtain two orthogonal states that can be
Hamiltonians(18) does not depend on the presence of angistinguished with certainty.
a”ﬁ_'ua-b . o ia d ¢ helo in disti Note that if we take the arbitrary real numberto be

e basic reason why an ancilla does not help in distin-_. N _ . .
guishing between two unknown Hamiltonians is that all thee'ther_ 1/2, thenU=exp(-irH, ), that is we have exactly
argument of Sec. Il A depends on the eigenvalues of th
difference between the two Hamiltoniak' but not on the
degeneracy of the eigenvalues. Including an ancilla does not
change the eigenvalues Hf?, but changes their degeneracy. Il ESTIMATING AN UNKNOWN HAMILTONIAN

A. Formulation of the problem

canceled the evolution of one of the Hamiltonians. This is
fhe technique that is proposed in RE5].

D. Attaining the bound in the dichotomic case In the preceding section, we considered the situation

We shall now show that one can always attain the boundvhere one mustlistinguish with certaintypetweentwo pos-
(2). In general this will require putting the particle in a su- sible Hamiltonians. In the present section, we shall consider
perposition of “in the box” and “out of the box” states. the problem where one musttimate with finite precision
Equation (13) shows that to attain the bound the particle which is the Hamiltonian.
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us suppose that the possible Hamiltonians are denotédi by 2 2

and can occur witha priori probabilitiesp(H;). After an

evolution that lasts for a timAt, a measurement is carried

out which yields result. The probability of the resujtgiven To prove this let us first show that for an optimal guessing
that the Hamiltonian i$1; is denoted byp(j|H;). The result strategy, it is sufficient that the guessed Hamiltonian be ei-
of the measurement allows one to estimate which is theherH; or H,. We recall that in the estimation problem, as
Hamiltonian. We shall suppose that one makes a guess éérmulated in Sec. lll A, we left open the possibility of
which is the true Hamiltonian. We call the gued§“®®>  guessing a Hamiltonian that is not one of the possible Hamil-

In order to give a precise formulation to this problem, let Do(Hq,Hy) Do(Hy,Hp)At
AH=ma>{ 0——— 1—sin(—) .

Note thatH?"***can be one of the initial Hamiltoniarts;, ~ toniansH;. In the present case, it is not necessary to con-
or it could be a different Hamiltonian altogether. The quality sider such possibilities.
of the guess is measured by an uncertainty To show this let us consider the contribution of guggs

AH [we denote this contributioAH(j)]:

AH=2) p(H)X p(j[H)D(H; HUesy.  (23) R
! J AH(j)=5p(j[H)D(Hy, HP'*®

In this equatiorD (H; ,H{"**) is a distance on the space of 1
Hamiltonians that measures how close the guess is to the true +>p(j[Hy)D(Hy, HE e, (25)
HamiltonianH; . It is natural to normalize the distanBe for 2
instance, by requiring thdd(H,H+EI)=E, wherel is the
identity operator.

There are many different distances on the space of Hamil- 1
tonians. For instanc®(H;,H,)=\Tr(H,—H,)?/d, where AH(j)= Ep(j|H1)D(H1,H2)
d is the dimension of the Hilbert space. In general the dis-
tance that one will use will depend on the specific problem 1
one considers. In the present paper we shall use the distance + E[p(j [H2) —p(j[H1)ID(Hy, HP 5.
Dy introduced in Eq(3). The reason is that this is the dis-
tance that appears in the results of Sec. I, and these results (26)
are used in the arguments below. We expect that using an- | ) )
other distance would change quantitatively, but not qualita!f P(ilH2) = p(i|H1)=0, we finally have
tively, our results. 1

Qne_of the most fundamenta_l questions concerning the AH(])ZEP(HHQD(Hl,Hz) (27)
estimation of an unknown Hamiltonian is the relation be-
tween the precisiolAH with which the Hamiltonian is ) _ . .
known and the time\t used to carry out the estimation. The With equality if and only ifHP"**3=H,. Thus if thea poste-

remainder of this section is devoted to addressing this que&ir Probability that the Hamiltoniakt, is greater than tha
tion. posteriori probability that the Hamiltonian wasl;, one

should guess that the HamiltonianHs. And conversely if

N I . the a posteriori probability that the Hamiltonian wald ; is

B. Estimating a Hamiltonian which can only take two values, o eater than the a posteriori probability that the Hamiltonian
HyorH, wasH,, one should guess that the HamiltoniarHis.

As a first application of the general problem of estimating Let us now consider the optimal evolution and measure-
an unknown Hamiltonian, we consider the particular situaiment strategy. The estimation strategy starts with a given
tion in which their are only two possible Hamiltoniaks;, ~ quantum state),. If the Hamiltonian isH, this state evolves
and H,, which are equally probablyp(H,)=p(H,)=1/2] into ¢4(t), whereas if the Hamiltonian i#1, the state
and the task is to estimate which it is in a finite tilhe The  evolves intoy,(t). In Sec. Il A, it was shown that the over-
quality of this estimate shall be expressed by using the dislap between these two states must obey the inequality
tanceD, as the distance on the space of Hamiltonians de-

Using the triangle inequality, we can write

fined in Eq.(3). The techniques developed in Sec. Il will Dot
allow us to solve this problem exactly. [(a(O] ()= coso™ (28)

In Sec. Il, it was shown that iAt=m/Dy(H,,H>), then
the two Hamiltonians can be distinguished perfectly andwith equality attained for the optimal stratefye have de-
thereforeAH is zero. On the other hand, wheit—0, itis ~ hoted Do=Do(Hy,H,)]. Furthermore, it is shown in Ref.
impossible to obtain any information about the Hamiltoniang[10] that the probabilitype of making an error when trying
and the best strategy is to randomly guess eitheor H,.  to distinguish two equiprobable statés and ¢, is bounded
Hence in this limitAH—Dy(H;,H,)/2. For intermediate by
times, AH will decrease fromDy(H,H,)/2 to zero as a i
function of At. We shall show that for the optimal estimation . 1= V1= [(ylyp)l _ 1—-sin(Dot/2)

2

strategy,AH is given by E 2 (29
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with equality attained if one carries out a von Neumann mea-
surement of the basisy!) + | 4))/2. Hence we find that for

the optimal strategy,

Dy [ DoAt
AH=pgDg=—11-sin .

5 5 (30)

WhenAt=7/D,, thenAH in Eq. (30) is negative. SincaH
should always be positive, we take the maximum of @B6)
and zero, which gives Edq24).

C. Estimating a completely unknown Hamiltonian

PHYSICAL REVIEW A 66, 052107 (2002

D. Estimating a completely unknown Hamiltonian acting
in a d-dimensional space

Equation(31) gives a lower bound on the product of the
precision with which a completely unknown Hamiltonian is
measured and the time taken to estimate it. We believe that
this lower bound is not tight and that in general a stronger
lower bound should hold. We do not know at present what
form this stronger lower bound will take, but we believe that
it should depend on the dimensionality of the Hilbert space
on which the Hamiltonian acts.

An indication that this should be the case is provided by
an example due to Farhi and Gutmd®inspired by Grov-

We now consider the situation where the Hamiltonian iser’s search algorithmi9]. In this example, one must distin-
completely unknown. Once more we shall use the distancguish betweend Hamiltonians of the formH,=E|k)(k|,

D, as the distance on the space of Hamiltonians of (BJ.
We shall show that in this case the precisibH with which

where thed states/k) form an orthonormal basis. Farhi and
Gutmann show that in order to distinguish these Hamilto-

the Hamiltonian is estimated and the time used to estimatgijzns perfectly, a minimum time aft=cd"%E is necessary

the Hamiltonian must obey the constraint

31)

I

AHAt=

(wherec is some positive constant

This example shows that there are situations where esti-
mating an unknown Hamiltonian becomes increasingly diffi-
cult as the dimensiod of the Hilbert space on which it acts

This constitutes one of the fundamental results of this papet?creasas. Hlowe':verh in the Fahn-G'L]thmfann exr?mhp]e,kthe un-
To prove this, we will contrast two situations. In the first K"OWn Hamiltonian has a very specific form which is known

situation(which is the one we are interested, ithe experi- before hand. We h_ave_obtained preliminary indica_ltion_s th_at
menter has no information about the Hamiltonian. In the sec?hen the Hamiltonian is completely unknown, estimating it
ond situation, we imagine that there is a “spy” that knows should take substantially more time than suggested by the
the true Hamiltonian, call itHy. The spy then tells the ex- Fahri-Gutmann example. We hope to report on this issue in a
perimenter that the true Hamiltonian is eithieg or some future publication.

other HamiltoniarH . Thea priori probabilities that the spy
chooses Hamiltoniakly or H, are equal.

Denote byAH the maximum precision with which the
Hamiltonian can be known in the first case, andAy yicho
the maximum precision with which the Hamiltonian can be
known with the help of the spy. ObviouslyAtAH The results presented in the preceding section concerning
= AtAH gi.no Since the time intervals are the same in the twothe estimation of Hamiltonians have important implications
situations and the information provided by the spy can onlyfor energy measurements. As shown in Ré&f, the energy
increase the precision with which one can estimate thef the state can be measured in an arbitrarily short time.
Hamiltonian. This means thaitAH=maxAtAH.,,, Where  However a careful scrutiny of the arguments of R]
the maximum is taken over all possible choices of the spyshows that a quick energy measurement is possible only if
The results of Sec. IIIB can be used to show thatthe Hamiltonian is known. In the example discussed in the
maxAtAHgich>1/4, which proves Eq(31). Introduction, it is possible to carry out a quick energy mea-

To show that madAtAHgn>1/4, note that in the di- surement only because we know that the particle is in a mag-

chotomic case, the produdtHAt takes the form netic field B, of known magnitude pointing along the z
direction. Suppose, however, that the magnetic field is point-
ing initially either along the+z or the —z axis. Then a
measurement of, yields no information about the energy.
Thus in order to determine the energy of the particle, we
for O<At<m/D,. For small times this tends to zero since myst also determine the magnetic field. That is we must also
AH is bounded andt—0. And for At=m/Dy, the product  determine which is the Hamiltonian. But as we discussed
is zero sinceAH=0. There is an intermediate time where ahove, determining the Hamiltonian will take a minimum
the product attains its maximum. One easily shdwsing  time At. (We suppose that the only way we can probe the
sink=x for x=0, which implies thatx(1—sinX)=x(1-x)]  magnetic field is with a particle of magnetic moment Of
that the maximum value of this product is greater than &ourse, if we could use a particle of larger magnetic moment,
quarter, the measurement of the magnetic field could be done faster.
Thus in this example measuring the energy of the state can-
1 not be done instantaneously because the Hamiltonian is not

maxAHAt= . (33 perfectly known.

IV. MEASURING ENERGY WHEN THE HAMILTONIAN
IS UNKNOWN

A. Introduction

DoAt
AHAt=——

1-sin (32

2

DOAt)

052107-7



AHARONOV, MASSAR, AND POPESCU PHYSICAL REVIEW A6, 052107 (2002

In fact this is a very general result. We shall show belowHamiltonianH. Since the Hamiltoniand is completely un-
thatif the Hamiltonian acting on a system is completely un-known, the state) is also unknown.
known, then the precisioAE with which one can estimate  To prove Eq.(34), we fix At and contrast, as in the Sec.
the energy of the state in a time intervat obeys the con- |1 C, the two situations. In the first, one has no information
straint about the Hamiltonian. In the second, a spy gives the addi-
tional information that the Hamiltonian is eithElg (the true
=1/4. Lo
AtAE=1/4 (34) Hamiltonian or H;. We shall suppose thadtl;=H,+ €l
This assertion follows easily from the results obtained inWheree is ac number and is the identity operator. We shall
the preceding section. However, before proving it we firstfurther suppose that with the information provided by the spy
need to define with precision what we mean by an accuracthere is equak priori probabilities that the Hamiltonian is

AE of an energy measurement. Ho or H,. Let us denote the energy uncertainty in the first
situation byAE and in the second situation yEg,,. Ob-
B. Accuracy of an energy measurement viously we haveAtAE=AtAEq,, sinceAt is the same in

. . both situations and the information provided by the spy can
An ideal energy measurement is a von Neumann measurgy,y decrease the energy uncertainty. We therefore want to
ment of the Hamiltonian operatdd =3 :E|E)(E|. If the put a bound om E.
quantum state i$y), the measurement gives reseitwith First, note that since the two Hamiltoniakk, and H
probability p(E|y) = |(4|E)". , =Hy+ €l commute, the experimenter can immediately de-
Let us consider an imperfect measurement. This measurgsrmine which is the states by measuring the operatét,.
ment will predict that the energy iE" with probability  This measurement can, in principle, be done arbitrarily fast.
P(E’). Neither the energieE’ nor the probabilitiep(E')  Hence the experimenter knows that the energy is eifher
need to coincide with the energies and probabilities for anne trye energy, oE+ €.
ideal energy measurement. Nevertheless, we would like 10 gjnce the experimenter has only two possibilities between
define in a precise way the accuracy of an energy measurggich to choose, an optimal strategy will consist of guessing
ment. ) L ) i either that the energy iE or E+e€. It is not necessary to
The simplest situation in which to define the accuracy Ofcqnsider other possibilities such as guessing that the energy

an energy measurement is when the quantum state is an §8- g4 ¢/2. Furthermore, the energy uncertainty will be

ergy eigenstatgy)=|E). In this case the true energy of the AE,,,~epe, where pg is the probability of making the

state is well defined. Hence the accuracy of the imperfecyong guess. The proof of these assertions follows from the
energy measurement is simply the amount by which the engyot that AE, as defined in Eq(35), is linear in the prob-
ergiesE’ differ from the true energ: abilities p(E') times a distancdE’' —E| on the space of
energies. Hence the arguments of Sec. llI[Bgs. (25—
AE=, p(E'|E)|E’'—E], (35  (27)], can be used in the present case.

E’ But the error probabilitypg of mistaking one energy for
, . o . ._the other is identical to the error probability of wrongly iden-
wherep(E’|E) is the probability that the estimated energy 'Stifying the HamiltoniansH, andH, (since knowing the en-

E’ when the quantum state ig=|E). . . . . .
If the state is not an energy eigenstate then we define th§rgy Is equivalent to knowing the Hamiltonjaikience in the

resent casé\Egp =AH, where AH is the uncertainty in
accuracy of the energy measurement as the average over t gtimating the two Hamiltoniankl, and H,. But we have

oy 2 . .
probability |(E| 4)|” that an ideal energy measurement IVE€Schown in Sec. 11l B that for givert there exists a choice of

ir;a|sllél>t-E times of the accuracy of the measurement if the statee such thatAtAH= 1/4.

D. Saturating the time-energy uncertainty for energy
AE:; [(E|%)[2>, p(E'|E)|E"—E]. (36) measurements when the Hamiltonian is unknown?
E/

We now address the question whether it is possible to
devise a universal measurement strategy that can determine
the energy of an unknown state even if there is no prior
knowledge about the Hamiltoniar®uch universal measure-
ment strategies exist and are well known. We illustrate them

We start by noting that the proof of E(B4) wheng isnot by a typical example, namely the emission of electromag-
an eigenstate of the Hamiltonian follows from the case wheraetic radiation by an excited state of an atom.
¢ is an eigenstate of the Hamiltonian, since we have defined We then inquire whether this measurement strategy satu-
in Eqg. (36) the uncertainty wheg is not an eigenstate of the rates the time-energy uncertainty relation obtained in the pre-
Hamiltonian as an average of the uncertainties w#ies an  ceding section. It turns out that for this measurement strat-
eigenstate of the Hamiltonian times the probability that aegy, and using the definition of Sec. IV BtAE is infinite.
measurement of the Hamiltonian operator yields the correHowever, in a qualitative way this measurement strategy
sponding energy. Therefore we can restrict ourselves to cordoes obey a time-energy uncertainty. This is discussed in
sidering the case wherg¢=|E) is an eigenstate of the detail.

C. Proof of the time-energy uncertainty relation for energy
measurements when the Hamiltonian is completely
unknown
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As mentioned in the Introduction, the emission of one orThis is to be contrasted with the situation envisaged in the
more photons by an excited atomic state can be viewed aspevious sections where we required that the measurement be
measurement of the energy of the electrons. The couplinfnished after some time intervalt.
between the measuring apparaftise electromagnetic field ~ Let us now consider the energy of the emitted photon. If
A*) and the systenithe electron is realized through the the true energy of the electronic statefg, then the prob-

interaction ability density that the emitted photon has eneEis
itted photon h ! ’
Him:f dsxAﬂ(X)JM(X), (37) P(emitted photon has ener@)—; m .

(41)

Wh'ere'JM(>|(() IS Lhefelectrlc current. In interaction represen- ¢,,q compute the accuracy of the energy measurement using
tation It takes the form the definition(36), we find

Hint= fo dwEk (al e +a,e 'y, (39 AE:f d E P(emitted photon has enerds)|E— Eq| = + .
(42)

H is th f the ph ; h - . . .
ere is the energy of the photonk;represents other de Thus this measurement satisfies the time-energy uncer-

grees of freedom of the photons, in addition to their energ){aint relation. In fact the produ@tAE is infinite since both
(momentum and p(_)lanzatl()mandka are operators acting the t?/me it takes to complgte the measurement and the energy
on _the (_alectr(_)ns Hilbert space. The photons are taken to tlﬁﬂcertainty are infinite. However, we note that if we modify
initially in their ground state,;0)=0. the definition ofAt to be the mean time ! taken to carry

The interaction Hamiltoniari37) is independent of the ; the measurement and if we modify the definition of the
electron _Ham|Iton|an, ie., itis mde_pendent of whether theenergy uncertaintAE to be the linewidthy, then this mea-
electron is bound to a proton, a helium nucleus, a moleculegyrement does obeys a time-energy uncertainty relation.
etc. Therefore such a measurement can determine the energyTherefore it may be possible to devise a better energy
of an unknown state, independently of the Hamiltonian. Itmeasurement that saturates the time-energy uncertainty de-
can also determine which is the Hamiltonian, since the enrived in Sec. IV C. Or this uncertainty relation is too strong,
ergy of the emitted photons will differ if the electron is and one can prove a weaker form of the uncertainty relation,
bound to a proton, a helium nucleus, a molecule, etc. Théor instance using as definition &ft andAE, the mean time
price to pay for this universality is that the energy resolutiontaken for the measurement and the linewidithere the line-
of the measurement and the time necessary for the measungidth can be defined operationally as=(E,—E;)/2 with
ment are constrained by the time-energy uncertainty. The ak; , the energies such th&t (emitted photon has enerds)
guments presented in this paper show that this will always bbas half its maximum valdeln the latter case, the measure-
the case for a measurement of energy, which does not takgent just described would be optimal in the sense that it
into account prior knowledge about the Hamiltonian. would saturate the time-energy uncertainty for energy mea-

An important limitaton of the above measurementsurements when the Hamiltonian is unknown.
scheme is that the emitted photon only reveals the difference
in energy between the initial and final state of the atom. If
there are several allowed transitions with identical energy
differences, then the measurement will not allow these initial In the preceding section, we considered the situation
states to be differentiated. It would have to be complementewhere one wants to estimate the energy of an unknown state,
by a second measurement to determine which of the possibRut one has no prior knowledge about the Hamiltonian.
final states the atom reached. Nevertheless, the importaMYhen some prior knowledge is available the situation is con-
point of this example is to show that, in principle, it is pos- s_lderably more complicated and the relation between the

sible to come close to saturating the time-energy uncertaintjme used for the measurement and the precision with which
relation when estimating the energy of a system whos he energy can be estimated will depend on the details of the

Hamiltonian is unknown. probIe_m. . . .
In order to see how close we come to saturating the time-. To illustrate this we consider two examples. First, con-
energy uncertainty in this scheme, let us examine it in mor(§Ider the case of two Hamiltonians, andH, that have the

; - . . . Same eigenstateds = Eq ¢, Hoh = Eocihy and their ei-
;jiritgll.i;'he probability density that a photon is emitted atgenvalues coincide except for one eigensttg= E . (k

#Kko) but Eqy #Ejy . Suppose we must determine the en-
P(decay at time)=ye ™. (39) ergy of an unknown stat#. A strategy to do this in a short

time is to first carry out a von Neumann measurement of the
Thus the time it takes to complete the measurement is ndiasisy, that diagonalize$i; andH, (this can be done in an
well defined. Rather this time is variable but its mean isarbitrarily short time. If one finds that the outcomk is
finite, different fromk,, then one immediately knows the energy.
On the other hand, ik=k,, then to know the energy one
must determine which is the Hamiltonian. This takes a time
At= 77/|E1k0— E2ko|' If the unknown stat&l was uniformly

E. Estimating energy when one has partial knowledge
about the Hamiltonian

f dtt P(decay at time)=y L. (40)
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distributed in Hilbert spacédenotedH), then the probability ~clearly depends on the value of the potential in the corner,
that ¥ belongs to subspade, is 1/dimH and the average and therefore it can only be determined in a time of order
time necessary to determine the energy of the state i&/V.

x/dim H|E1k0_ E2k0 , which is much smaller than the time The origin of this surprising situation is that in the above
needed to determine the Hamiltonian. The reason for thi€X@mple the exact spectrumidfdepends on the potential in
difference in time scales is because the particle has most 8f€ corner. When the particle is far from the corner, most

its support in a part of the Hilbert space where the twoduestions concerning the energy of the particle are indepen-
Hamiltonians do not differ. dent of the exact spectrum &i. But a variable such as

Our second example is superficially similar to the preVi_cos(ndl—l/p) is sensitive to the exact spectrum and therefore

ous one. But more careful consideration show some subtl Order to measure it one must know what is the potential in
differences. We consider a particle confined to(ane- the_corner. Operators such_ as cmd(—Vp)_ are called modular
dimensional box. The potential in the box vanishes every- Variables, and have been introduced in Re1].

where, except in a corner where it may be either zero or take

a large negative value. In order to measure the energy of the V. CONCLUSIONS

particle in a minimum time the following strategy seems |, he present paper, we have shown that if the Hamil-

natural. First, we measure whether the particle is in the corgyian that governs the evolution of a quantum system is
ner or not.(This pos?tion measurement should be S”,gh“yunknown, then the time necessary to estimate the Hamil-
fuzzy so as not to disturb the momentum too mudkhis  y,nian obeys a time-energy uncertainty relati@ To this

measurement can, in principle, be done in an arbitrarily shorg, 4 \we first gave a simple proof of the problem considered
time. If the particle is not in the corner, we measure its mo+,

_ ) Childs, Preskill, and Rend$§] where there are only two
me”t“m' a_nd hence_ know its energy. Th's_ can also be done Bﬁssible Hamiltonians between which one must choose. We
an arbitrarily short time. If the particle is in the corner, then

¢ determine the val f th tential in order tothen showed how to extend this result to the case where there
we must determiné the vaiue of the potential in or are many Hamiltonians among which one must choose. The
know the energy of the particle. This takes a finite time of

order 1AV, whereAV is the uncertainty in the potential. bound we obtained is probably not tight when the unknown

Thus in this case it seems that the minimum time requirea—lam'.Itor"anS actin a space of Igrge' dimensionatity 2, .
for the energy measurement depends essentially on the proB'd it should be possible to refine it by a more detailed
ability of the particle being in the corer of the box rather 2nalysis. _ _ _
than on the precisioA E with which one wants to know the  Our results concerning the time-energy uncertainty rela-
energy. However, the situation is more complicated. Thdion applied to estimating Hamiltonians have many applica-
above procedure approximates to some extent a von Nedons. In particular, they provide new insight about how the
mann measurement of the Hamiltonian operator. Indeed thiéme-energy uncertainty applies to energy measurements. It
statistics of the measurement outcomes are such that théas been shown by Aharonov and Bohm that if the Hamil-
reproduce correctly the moments of the Hamiltonian operatonian of the system is known, then the Hamiltonian can, in
tor. Thus, for instance, upon repeating the measuremengrinciple, be measured in an arbitrarily short tif3¢ On the
many times one will obtain a good estimate of the averag®ther hand, we show that if the Hamiltonian is unknown then
energy(H), or the average value of any power of the Hamil- the energy measurement cannot be done in an arbitrarily
tonian(H"). However, the above procedure is not equivalentshort time. The minimum amount of time required depends
to a von Neumann measurement of the Hamiltonian operatasn the details of the problem, for instance what is the prior
(which is the task we set out to perfornindeed there are knowledge about the Hamiltonian, what is the prior knowl-
some functions of the Hamiltonian, which cannot be esti-edge about the state, and exactly what one wants to know
mated correctly with the above procedure. about the energy of the state. We show that if one has no

Suppose, for instance, that the particle is known to beprior information about the Hamiltonian, then the time taken
approximately localized at a distandérom the corner of the  to carry out the measurement and the precision with which
box (d is taken to be much larger than the size of the regiorthe energy is measured obey a time-energy uncertainty rela-
where the potential is unknownand suppose that it is tion.
known that the momentum of the particle is approximagely We also show that one can devise a measurement of the
Since the particle is far from the corner, by measuring theenergy of a quantum system that always works, indepen-
momentum of the particle one has some information aboutlently of any prior knowledge about the system. Such a mea-
its energy. For instance, independent repetitions of the meaurement is obtained by coupling the system to an external
surement will yield estimates of the moments of the Hamil-apparatus that oscillates at all frequencies and such that each
tonian operatofH"). Such measurements of the momentumfrequency is coupled to different degrees of freedom of the
can be done in an arbitrarily short time. However, suppos@pparatus. This is illustrated in E@8) in the case where the
that one wants to measure the operator mak{p) external apparatus is taken to be the electromagnetic field.
=(emIHPtg~mdHP) 1> (wherem is the mass of the partidle  Such measurements do not saturate our time-energy uncer-
This is the real part of the operator that evolves the particl¢ainty relation, although they do obey a qualitatively similar
from its initial position up to the corner where the potential isuncertainty relation between the lifetime of the state and the
unknown. The expectation value of the above operatolinewidth.
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To conclude, we find that the real meaning of energy in(1) positive: Do(H{,H,)=0 with equality if and only if

quantum mechanics is that of governing the time evolutiorH,;=H,; (2) D, is symmetric:Do(H;,H,)=Dg(H,,H;);

of a system. To measure the energy one has to determine taed (3) D, obeys the triangle inequalityD,(H;,H>)

time evolution, and this takes time. Thus energy measure<sDy(H,H3)+Dy(H3,H5).

ments require time, and their precision is limited by the time Let us first introduce a norm

we have at our disposal. On the other hand, in the examples , ,

presented by Aharonov and Bohf8], the Hamiltonian is [[H[[o=maxEM&*—E™™, |[EM®],[E™},

known in advance, hence one need not spend time to deter-

mine the time evolution. Instead, one could find out the valu

of the energy not by determining the time evolution, i.e., not oW

by measuring the actual energy, but by measuring an opera-

tor (the operator to which the Hamiltonian is eqgualhose

numerical eigenvalue is equal to that of the energy. Howeveence if we can prove thatH||o is indeed a norm, then it

we emphasize that although this procedure does yield thillows immediately thaD, is a distance.

numerical values equal to that of the energy, it is not a proper \We recall that a norm must satisfy the following proper-

energy measurement. Indeed, if we believe the Hamiltoniafies: (1) positivity: ||H||=0 with equality if and only ifH

(A1)

hereEMaX E™IM gre the largest, smallest eigenvaluedHof

Do(H1,Hp)=[|H1—H,l[o, (A2)

to beH but in reality it is different, sayH’, then the value

=0; (2) linearity: |[NH||=|\[||H]| for any c number\; (3)

obtained by the instantaneous Aharonov-Bohm measuringiiangle inequalityl|H; + H,||<||H4|| +||H2]|.

procedurglwhich tells us to measure the operakby would

Properties(1) and (2) are immediate. Let us consider

no longer be correct, and, furthermore, we would not knowyroperty (3). Let us denote bET and |41'®) the largest
that our measurement is wrong. Thus a proper energy megjgenvalue ofH, and the corresponding eigenvector; by
surement necessarily probes the time evolution and therefor@«znax and| '™ the largest eigenvalue f, and the corre-

cannot be done instantaneously. Rather the time taken
carry out the measurement and the precision with which o
knows the energy are constrained by a time-energy unce

tainty relationAtAE=1.
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APPENDIX

In this appendix, we show th&t,(H4,H,) defined in Eq.
(3) is a distance on the space of Hamiltonians. Thdd jSs

té’ponding eigenvector; biy;,
NGalue ofH,+H, and the corresponding eigenvector. Let us

2 and| 15 the largest eigen-

Show thatE [} *< ET'®+ E'®*. We have

12 =z 1(HitHo) gy
= (i HlY22") + (W THal W1z
<(UTPTHLPT™) + (W27 HA 92)
= EP¥4 P,

(A3)

Similarly ~ we  have EJ">=E]"+EJ",  where
ER",ET"EJ'" are the smallest eigenvalues dfi;
+H,,H,H,, respectively. The triangle inequality follows
from these relations between eigenvalues and from the defi-
nition of |[H||o.
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