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Quantum Limitations on Superluminal Propagation
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Unstable systems such as media with inverted atomic population have been shown to allow the
propagation of analytic wave packets with group velocity faster than that of light, without violating
causality. We illuminate the important role played by unstable modes in this propagation and show that
the quantum fluctuations of these modes and their unitary time evolution impose severe restrictions on
the observation of superluminal phenomena. [S0031-9007(98)07063-X]

PACS numbers: 03.65.Sq, 42.50.—p, 42.50.Lc

A famous consequence of Einstein’s special theory ofial suppression of superluminal effects characterizes both
relativity is the principle of causality: signals cannot travelthe tunneling phenomena and the present case of unstable
faster than light. Nevertheless, it has been known for somsystems.
time that under certain conditions the group velocity of an To begin with we introduce a simple model which
electromagnetic wave packet can be arbitrarily large andlassically exhibits tachyonlike motion. Consider a real
its energy positive, but yet no conflict arises with causality:scalar field ¢ (x, ) in one spatial dimension, under the
the signal velocity always remains smaller than the velocityHamiltonian
of light in vacuum. At least two classes of such models 1 22
allowing “causal” superluminal behavior are known: the H = [ dx[7* + (dc¢)* + Tcosﬁﬂ. (1)
first is closely related to tunneling phenomena; the second

arises for unstable systems of atoms under an invertedere, 7(x.r) = ¢(x.7) is the field conjugate to
population condition [1]. ¢(x,t),A >0, and the speed of light is put equal to

While in the first case the “Super|umina|” transmissionone. This Hamiltonian describes the continuum limit of

of waves or particles through a barrier is exponentiallycoupled pendula. We will be interested in the dynamics
suppressed, in the second case, within a semiclassical c&t ¢ near the metastable stagex) = 0. For any finite
culation, wave packets travel with a superluminal groupime interval of interest, we make take sufficiently
velocity for unlimited distance, with negligible attenuation Small such that the potential term may be expanded,
and dispersion. The second case results from instabilicosvA ¢ = 1 — 5 @2, From now on we restrict our-
ties in the initial state of the radiating system, for ex-selves to this expansion. Then, the equation of motion
ample, a scalar field initially in a “false vacuum” state for ¢ becomes
[2]. Recently, an optical experiment studying superlumi- Oo — mleo =
" . . s ¢ —m e =0. (2)

nal group velocities for waves in a medium with inverted
population was suggested [3,4]. While the discussion wak term of the eigenmodes the solution is
semiclassical, it was further suggested [4] that with a full 1 ,
fledged quantum mechanical treatment one would possibly px,1) = N f dk e™ @ (t), )
obtain stable tachyoniclike quasiparticle excitations in the &
inverted medium. 1 ix

In this Letter we examine classical and quantum as- mx, 1) = N fdke (), 4)
pects of superluminal group velocities in unstable systems. . - . 1 t
Classically, a peak of an analytic wave packet may travef'here reality conditions implyp— = ¢, 7 = .
from pointA to pointB faster than the speed of light, since | € time evolution of the modes is given by
its shape aB can be fully reconstructed from the part of the _ Tok _:
wave packet which is causally connected to pdint We @i(t) = ro oSt + w SOk (5)
show that quantum mechanically, analyticity of the wave
packet is not the only condition needed for such a recon-
struction. Rather, the part of the wave packet which isvhere w; = k2 — m?. Notice that for|k| > m, w; is
causally connected to poiBt must contain many photons real, andgy, 7, oscillate in time. In the rangg| < m,
or large enough energy in the unstable modes. This conw, is imaginary, andp,(¢) and,(r) are exponentially di-
dition strongly suppresses superluminal effects in the limitverging. The latter modes are analogous to spontaneous
that the system contains only a few photons. The exponeremission in the optical model of an inverted medium of

7Tk(l) = Tox COSwit — Wi ok Sinwkl,
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two-level systems. We will henceforth refer to the free os-of normal modes, the truncated one also includes unstable
cillatory modes and diverging modes as the “normal” andcomponents.
“unstable” modes, respectively. It is only near the point The time evolution of the truncated wave packet can
¢ ~ m ~ 0 that these modes exist as linearly indepen-be calculated using the exact expression for the Green
dent solutions. Asp grows sufficiently, the instability is function [2,3,5]. There are three regimes: (i) For points
damped by the nonlinearterm in (1), but for the time of x < —¢, the causality of the Green function dictates that
interest to us, the latter can be neglected. the value ofp7(x, t) is not affected by the existence of the
We now turn to examine several features of the classicaltuncated wave packet at> 0. Thus, the field is zero
equation of motion (2). First, we examine the propagatiorin this range. (ii) For—¢ < x < ¢, however, the time
of a wave packet given by evolution of the truncated wave packet is very different
from that of the original one: it is exponentially growing
o(x, 1) = ] dk[go(k)e™ it + H.c], (8) duetothe contributions of unstable components. Since the
|| >m amplitude of the normal modes oscillates in time while the

and 7(x,7) = 9,0(x,7). We takego(k) to be nonzero @amplitude of the unstable modes grows exponentially, for
only in the range ohormal modesm < |k| < kmax, and timest > 1/m the wave packep” (x, t) is predominantly
centered around: = ko, with a width Ak < ko — m. composed of unstable modes of very small wave vectors,
The spatial width of this wave packet IgAk, and we with an exponentially small contribution of normal modes.

assume that at = 0 it is spatially centered far to the left (iii) Finally, for points x > ¢, the causality of the Green
of the origin, atX, < 0, such that only a small tail extends function dictates that the value gfr (x, r) does not depend
to the regionx > 0. on whether or not it is truncated at the origintat 0. It

This wave packet propagates with a group veloaity, IS 9iven, up to a time dependent phase factor iy —
and a phase velocity;,,, given by v,1,0). The propagation of the superluminal peak is not
affected by the truncation, and, for long enough times, one
Yy — 1 ko 7 finds atX, + v,r a wave packet of width /Ak, in which
£, ) the field ¢ oscillates with a characteristic wave vector
of k. Thus, at long times the fielp” (x,7) shows an
Sincev, > 1, the motion of the center of the wave packetinteresting behavior: itis predominantly composed of very
(group velocity) is superluminal (tachyonlike), while the small wave vectordk| < m with just an exponentially
phase velocity is always subluminal. As long as thesmall contribution of wave vectork| > m. However,
dispersion is negligiblep (x, t) is (up to a time dependent in a region of spatial widthl/Ak around X, + v,z it
phase factor) jusip(x — v,t,0), i.e., the initial wave oscillates at the large wave vectap > m. The region
packet moving at velocity,. 1/Ak can be made arbitrarily large, if is taken long
Second, we note that despite the superluminal groupnough. These short-wavelength oscillations of a long-
velocity, causality is maintained [2,5]. This is best wavelength wave packet are very similar to the superfast
seen through the Green functions of Eq. (2). InFourier oscillations discussed in [6-8].
terms of the homogeneous Green functioggx, ) = The above discussion demonstrates that in order to
[dxX'[G(x — x",)po(x') + G(x — x',t)me(x')]. How-  maintain consistency with causality, the mechanism which
ever, G and G vanish outside the light cone, i.e., for gives rise to superluminal group velocities has to rely
x — x' > t. Thereforethe value ofp at pointx at time  on the local information stored in the tail. As long as
t is fully determined by its value at points that are the true information that the wave has been truncated
causally connected teo. has not arrived, the local amplification extrapolates the
For further insight into this point, it is instructive to peak as if this truncation does not exist. Classically,
examine what happens if the initial wave packet is trun-extrapolating the full wave from an infinitesimally small
cated atr = 0, i.e., po(x) andmy(x) are replaced byj = tail is, although surprising, possible. As discussed in [5],
6(x)po(x) and i = 6(x)my(x), respectively. Herd is for an analytic function, the wave can be reconstructed
a smoothed step function. The length scale over which iby means of local Taylor expansion, and the tachyonlike
is smoothed is assumed smaller than all other length scalggopagation can be viewed as an analytic continuation of
in the problem and is kept finite just to avoid an infinite the tail.
d.¢. Note that sincepy(x) is centered aX, <« 0, the As we now show, the extrapolation of the full propa-
truncated wave packet; (x) constitutes only a small tail gated wave packet from the truncated tail is made pos-
of the original one, and the energy stored in the truncatedible by the unstable modes, and this is true independent
wave packet is just a small fraction of that stored in theof the details of the model. Sincg (k) is the Fourier
original one. The momentum representation of the truntransform of a small tail, it is very small. The propagated
cated wave packet( (x) is g (k) = [ dk’ ﬁ go(k'),  wave packet, after truncation, is
with n an infinitesimal number. The smoothing of the step
function is accounted for by an upper cutoff to thénte-
gral. While the original wave packet was solely composed

ké—m

ol(x, 1) = f dk[ e™ 1o oI (k) + H.c]. (8)
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However while on the right-hand side, the amplitudesfrequency/k2 — m2. The situation is less obvious for the
g6 (k), originating from the truncated tail, are very small; unstable modes. On one hand, we would like the quantum
on the left-hand side the magnitude of the tachyonic pealuctuations in the fieldg, 7, to be as small as possible,
is not small, since the peak is fully reconstructed from thebut, on the other hand, stationary states of the unstable
tail. Since the amplitude of the stable modes,k), for  modes necessarily have infinite fluctuations. Any state of
|k| > m, is constant in time, this amplification can arisefinite fluctuations in nonstationary, with the fluctuations
only from the contribution of unstable modes growing growing exponentially in time. Thus, we choose the initial
exponentially with time. It is then essential to havestate of the unstable modes to be a nonstationary one, in
unstable modes for a full reconstruction of a superluminalvhich the exponential growth of the field fluctuations is
peak from a truncated tail. slowest. This state is the ground state of an harmonic

We now proceed to the quantum mechanical analog obscillator of frequencyw/m? — k2. The vacuum state of
this classical system. Can a similar mechanism of locahe entire system is then a direct product of the vacuum
amplification give rise to superluminal group velocities?state for each mode.

If so, a process analogous to the classical analytical con- Next, we should find the quantum analog of the wave
tinuation may use the local information to reconstruct thepacket we analyzed in the classical case. Again, causality
wave packet’'s peak. dictates that a measurement of the figlct a given point

The causality of the Hamiltonian (1) is manifested in thecannot be affected by its values in causally disconnected
quantum case by the statement that causally disconnectgdints. Thus, to analyze the quantum analog of the
local observables commute. This causality motivates uslassical superluminal propagation, we need to construct
to study the quantum analog of the classical truncatethe quantum analog of the truncated wave paikgtx).
wave packet. We first define an analog of a false vacuuriive do so by shifting each mode; from its vacuum
state for this model, on top of which we define a quantunstate, in Wthh(gok> = 0, to a coherent state, in which
state describing a truncated wave packet. Then, we show,) = gd (k):
that if the truncated wave packet is too small (in a sense

explained below), the initial quantum state describing it is |Wy) = ex;{i f dk gg(k)ﬁ,j} [vac, 9)
not orthogonal to the false vacuum state. In that case, the h
vacuum quantum fluctuations in the fieldss are, at =  where|vac is the vacuum state. Classically, as we saw

0, larger than the amplitude of the truncated wave packetabove, the truncated wave packet included all the informa-
and one cannot distinguish between the false vacuum stati@n needed to reconstruct the superluminal propagation of
and the wave packet state. As we saw above, classically,(x). Quantum mechanically, however, this is true only
the small truncated wave packet becomes exponentialli§ the state(9) is orthogonal to the vacuum stateOther-
large in time, and one may naively hope that quantunwise, one cannot distinguish between the time evolution of
mechanically it eventually becomes larger than the vacuurthe vacuum state and that of (9).
fluctuations. However, this cannot be the case, due to The scalar produdivac|¥,) can be easily calculated,
the unitary quantum mechanical time evolution: the scalar |
product of two states, here the false vacuum and truncated  (vac| ¥,) = exp—— f dk || [gd (k)T (10)
wave packet states, is constant in time. Thus, f & 0 2n
the truncated wave packet is not orthogonal to the fals@here are normallk| > m) and unstablé€|k| < m) con-
vacuum, it cannot be distinguished from it at a latertributions to thek integral in (10). The physical inter-
time. The exponential growth of the tail is masked by anpretation of the normal contributions is rather cleg(k)
exponential growth in the quantum fluctuations. |s the amphtude of the oscillations of the mokleand
Turning to a more concrete discussion, we promote théz= [go (k)?dk is the average number of photons in that
functionse(x, 1), 7 (x, t) to quantum operators. From the wave vector range. The contribution of the unstable modes
standard canonical commutation relations for the fieldscannot be discussed in terms of the photons. For these
[o(x, 1), w(x',0)] = ihd(x — x'), it f0||0WS as usual that modes, the integrang | is just the ratio of the energy
for the normal modes$oy, rr,:r,] = [gok,’iTk/] = [hd(k —  stored in thek mode tofiw(k). The quantum state de-
k). However, for the unstable modes the system doescribing the wave packelWVy), is then orthogonal to the
not admit the usual Fock space structure with an ordivacuum state only if the truncated wave packet contains
nary particle interpretation. For these modbd < m), at least several photons of the normal modes or large
the Hamiltonian, [ dk [7} m; — (m*> — k%)@, @i], is un-  enough energy in the unstable mod&shis poses a quan-
bounded from below and has a continuous and unboundgdm mechanical condition for the reconstruction of a tachy-
spectrum of energies for each wave numbker Conse- onic peak from a truncated tail: the latter cannot be too
quently, these modes cannot be put in a ground state, arstnall. If it is too small, the initial quantum fluctuations
the fluctuations in the fieldg,, 7, inevitably grow expo- in the field ¢, which grow exponentially with time, over-
nentially with time. come the reconstructed peak. This observation limits the
For the normal mode$k| > m the vacuum state is superluminal propagation of the wave packet's peak: for
obviously the ground state of an harmonic oscillator oftime ¢ the wave packet can be reconstructed at a pxint
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only if at time r = 0 the tail in the regiomx > X, — tis  states to be mutually orthogonak” and L’ are ortho-
large enough to be orthogonal to the vacuum. gonal if their momentum uncertainty is smaller than the
To exemplify the last point, let us evaluate the fluctua-difference between their momentum expectation values:
tions of a local observable. The field ata point has singulad 7, z) < [(m) — (w[)|. Similarly, R” and D7 are
fluctuations, and one needs to consider smeared operatasghogonal only ifA(p(YI; p) < |<¢[> — (m})]. However,
like g, = [f()e(L — x',1)dx’, wheref(x) isnon-  if the tail is made arbitrarily small, at least one of the
vanishing only within a distancAL around the poinL,  two inequalities must be violated. This is so since the
and satisfies fdx = 1. Since(Wo|g|¥y) is identical to  right-hand side of the two inequalities must approach
the classically smeared field, the fluctuations are dominategero as the tail is made smaller and smaller, while the

by (Wolg*|Wo) = (@*)v + (@*)u, where the subscripts |eft-hand side cannot be made arbitrarily small due to the
N andU stand for the contributions of the normal and un-uncertainty principle. Thus, if the tails are too small,

stable modes. The contribution of the normal modes ishe wave packet®”, L7, and D7, which are classically
always finite. The unstable modes, however, yield an exdistinguishable, cannot be mapped into three mutually

ponentially growing fluctuation orthogonal quantum states. Quantum fluctuations then
2y~ Bl mT T>1/m i et 11 make it impossible to reconstruct the full wave packet
(@ = hilo[2mT] [AamT (1) fromits tail. Because of the unitary evolution of quantum

wherel, is the zeroth order modified Bessel function. ForStates, the scalar product of two quantum states is time

the observation of superluminal propagation two Condi_lndependent. Thus, the limitations found above to the

. P T reconstruction of quantum wave packets from their causal
tions hgve to satl_sﬂed. Firsty Tops > Ak (where TOb? . tails cannot be overcome by an amplification of the tails.
is the time at which the wave packet is observed); i.e.

the point of observation should be far outside the initial m. cor)clu3|on, we have 'shown that clgssmgl super-
lyminal-like effects become incompatible with unitarity in

Eg;\?vaédegfgneevm Yr?ir?ZICk‘reg asi&%nnda\;]vg n;gs;dleslgggu;r:q e quantum mechanical limit and are strongly suppressed.
P bropag bropag h“Iaheir suppression results from the smallness of the wave

. . 1
speed of light. This leads @, — DTobs > 3z. TheSe 5y evstail, in a similar way to the suppression of super-
d h i 1. E t 11) th
conditions require thal'miym > 1. Equation (11) thus ,minal effects in tunneling. Our argument strongly

impli(_es that for the signa_l amplitude to be Iar_ger t_han thequestions the possibility that these systems may have
amplitude of the fluctuations at the observation time, th‘?achyonlike quasiparticle excitations made of a small

signal amplitude should be exponentially large. number of photons [4].
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