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Abstract

We consider a protective measurement on a particle in a box and find that the particle participates in a local interaction
although its Bohm trajectory never comes near the interaction region. This confirms earlier results to the same extent for von
Neumann measurements and weak measurements, and challenges any realistic interpretation of Bohm trajectories. q 1999
Elsevier Science B.V. All rights reserved.
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1. Introduction

One can conceive situations in which a quantum
particle interacts locally with other degrees of free-

w xdom, but the trajectory that Bohmian mechanics 1,2
attributes to the particle never gets near the interac-
tion region. In view of the realistic interpretation that
is given to this trajectory – allegedly, it states the
‘actual position’ of the particle as a function of time

w x– the discovery of this possibility a few years ago 3
in the context of which-way detection in interferome-

w x w xters 4 , and its subsequent confirmation 5 in the
w xcontext of weak measurements 6 , should have been

quite disturbing to adherents of Bohmian mechanics
because it implies that the Bohm trajectories are
forever hidden. If you cannot rely on local interac-

) Corresponding author. E-mail: bge@mpq.mpg.de

tions to determine the ‘actual position’ of the parti-
cle, then you cannot determine it at all. The concept
of position itself becomes shaky.

Here is a drastic example illustrating what is at
stake. A track of bubbles in a bubble chamber comes
about as the result of a succession of local interac-
tions. It is common sense, common quantum sense,
to conclude that the electron, say, that produced the
bubbles went through the bubble chamber. Inasmuch
as the electron’s Bohm trajectory could have never
entered the chamber, Bohmian mechanics defies
common sense when it insists on the said realistic
interpretation of its trajectories.

Thus, as attractive the fully deterministic view
offered by Bohmian mechanics may be to its propo-
nents, the prize one must pay for it is very high. But
perhaps some are willing to pay it. It seems, how-
ever, that they must live with a great problem: On
the one hand the particle’s position plays a central
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role, on the other hand it is unobservable in impor-
tant situations.

The advocates of Bohmian mechanics have re-
sponded to the challenge raised by the observation of

w x 1Refs. 3,5 , but their answers are hardly satisfactory.
Perhaps the new example presented in this paper will
be helpful in going beyond this stage and toward a
resolution of the issue, possibly in the spirit ex-
pressed by one supporter of Bohmian mechanics

w xwho believes that Ref. 3 , and by implication also
w xRef. 5 , demonstrate ‘‘the need for a theory of

w xdetection . . . which tells us when it is legitimate to
infer from the firing of a detector that another system

w xhas ‘passed through it.’ ’’ 12 . In standard quantum
mechanics, of course, the knowledge that short-range
forces were at work in a well localized interaction is
all one needs to infer that this passage – or should
we say: this trespassing? – did occur, but Bohmian
mechanics apparently needs additional criteria.

The new example concerns a protective measure-
w xment 13,14 rather than a von Neumann measure-

w xment as in Ref. 3 or a weak measurement as in Ref.
w x5 . But the findings are essentially the same: Also
under the circumstances of a protective measurement
does the particle interact locally with another object
Ž .the meter although its Bohm trajectory does not
come anywhere near the interaction region.

The protective measurement probes a particle in a
box for its presence at the center of the box. A meter
experiences a momentum transfer and a consequent
displacement proportional to the probability for find-
ing the particle at the box center. In Section 2 we
give the solution of the Schrodinger equation for this¨
situation in the necessary detail and state the condi-
tions for the measurement to be a protective one
indeed. The Bohm trajectories of both the particle
and the meter are the subject matter of Section 3.
The paper ends with a brief summary and the con-
clusions we draw.

2. A protective measurement

The protective measurement is performed on a
particle of mass m that moves along the x axis and

1 w x w xSee Refs. 7–10 for a selection and Ref. 11 for additional
material.

is confined to the interior of the box yll-x- ll .
Another mass M serves as the meter; it moves freely
along the X axis and is coupled to the boxed-in
particle through the interaction

"
H se f trT d x X . 1Ž . Ž . Ž .int T

The strength of this interaction is proportional to the
Ž .dimensionless parameter e of order unity, say and

inversely proportional to its duration T. The para-
metric time dependence of H is specified by theint

Ž .function f whose essential properties are

f trT is a smooth function of t ; 2aŽ . Ž .
f trT s0 for tFyT and tGT ,Ž .
f trT G0 for yT- t-T ; 2bŽ . Ž .

` d t d tT
f trT s f trT s1; 2cŽ . Ž . Ž .H H

T Ty` yT

f trT s f ytrT is assumed for simplicity.Ž . Ž .
2dŽ .

Ž .As a consequence of the normalization 2c , the
t-integral of H ,int

d t H se "d x X , 3Ž . Ž .H int

is independent of the duration T. 2 Examples that
Žexhibit extreme smoothness all derivatives are con-

.tinuous are shown in Fig. 1.
Ž .For the particle, the interaction of 1 is a highly

local coupling to the meter, sensitive solely to the
particle’s presence in the immediate vicinity of xs0.
For the meter, however, H amounts to an externalint

force whose strength is proportional to the probabil-
ity density for finding the particle at the center of the
box. Therefore, one should expect that the net effect
on the meter is a momentum change DP whose size

Ž .is determined by the time integral 3 , roughly:
² Ž .:DP(e " d x ;e "rll .

If the duration T of the interaction is short on all
relevant time scales, so that a very strong interaction

2 Only the parametric t dependence is integrated over, not the
dynamical t dependence that might be hidden in the Heisenberg
operators x and X.



( )Y. AharonoÕ et al.rPhysics Letters A 263 1999 137–146 139

Fig. 1. A family of extremely smooth functions meeting the
Ž . Ž . Ž .y1 w Ž .criteria in 2 . The plot shows f trT s 2b K b yb 1

Ž .xy1 Ž w Ž .2 x w Ž .2 x.K b exp y b 1 q tr T r 1 y tr T for b s 0.50
Ž . Ž . Ž .—— , b s1 yyy , and b s2 yPyPy .

acts for a very short time, it is justified to replace
H by its Tsq0 version,int

H ™e "d t d x X , 4Ž . Ž . Ž .int

and the limit of an impulsive Õon Neumann mea-
surement is realized. 3 By contrast, the protectiÕe
measurement, which obtains when T is large on all
relevant time scales, takes advantage of the adia-
baticity that is characteristic of the temporal evolu-
tion in the opposite limit of a very weak interaction
lasting for a very long time.

Prior to the interaction – that is: t-yT – the
particle is in its ground state, and the meter has a
gaussian momentum distribution centered at Ps0
and a gaussian position distribution centered at Xs
0, so that the initial wave function of the whole
system is of the form

1r4y1r2 1
C t , x , X s ll cos p xrll 2rpŽ . Ž .Ž .ini 2

=
21r2 ya Ž t .Ž Xd P r " .a t dPr" e .Ž .

5Ž .

The first-line factor is the particle’s ground-state
wave function. In the gaussian of the second line we

3 Ž . Ž .The product d t d x must not be understood literally, but
rather as indicating an interaction that is very well localized in t
and in x.

measure X conveniently in units of the meter’s
coherence length "rdP. The complex function

y12 i 2
a t s 1q dP ty t 6Ž . Ž . Ž . Ž .0

"M

Ž .relates the time dependent spread d X t in position
to the time independent spread dP in momentum,

"r2y1< <d X t s a t , 7Ž . Ž . Ž .
dP

and thus accounts for the dispersive spreading of the
4 Ž .gaussian. The parameter t in 6 specifies the0

instant at which the meter is in a minimal uncertainty
Ž .state, d X t dPs"r2, typically when the initial0

state C is prepared, so that t FyT.ini 0

One verifies easily that C obeys the Schrodi-¨ini

nger equation

E
i" C t , x , XŽ .

E t
2 22 22" E p " E

s y q yž /ž / ž /½ 2m E x 2 ll 2 M E X

"
qe f trT d x X C t , x , X 8Ž . Ž . Ž . Ž .5T

Ž .for t-yT , when f trT s0 holds. The boundary
Ž .conditions of the box, viz. C t, xs"l, X s0, are

respected as well, of course.
We now turn to the situation of a protective

measurement and construct the corresponding ap-
Ž . Ž .proximate solution of 8 , given in Eq. 18 below.

This is done in a few steps. First we find the time
dependent ground-state wave function of the particle.
It depends parametrically on the strength of the

Ž .perturbation H and thus on the product e Xf trT .int

As a consequence, the resulting energy shift is X
dependent and gives rise to a force on the meter.
This in turn leads to a change in the meter’s momen-
tum and, in the course of time, also of its position.

Ž .The wave function 18 takes all of this into account,
and we verify that this approximate solution of the

Ž .Schrodinger Eq. 8 is indeed valid under the circum-¨
stances of a protective measurement.

4 Ž . < Ž . < 2The identity Re a t s a t enters here.
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If T is so large that a protective measurement is
being performed, then the perturbation by H isint

Ž .turned on and off so slowly and smoothly that the
particle undergoes an adiabatic transition to the
time-dependent ground state of the perturbed Hamil-
ton operator. In view of the identity

2E
< <y y2g cotg d x sin gyg xrllŽ . Ž .ž /E x

2g
< <s sin gyg xrll , 9Ž .Ž .ž /ll

the properly-normalized wave function of this ground
Ž .state is see Fig. 2

y1r2sin 2gŽ .
< <c x s ll 1y sin gyg xrll ,Ž . Ž .g ž /2g

10Ž .
Ž .where g t is that solution of

m ll X
yg cotgse f trT , 11Ž . Ž .

"T

for which g™pr2 as e™0. Accordingly, gspr2
Ž .holds not only for t-yT ‘before’ but also for

Ž .t)T ‘after’ , and to ensure the desired adiabaticity
of the evolution we must choose T so large that the

Ž .right-hand side of 11 is small for all X values that
are relevant. With e of order unity, this says essen-
tially that T has to be large compared with m ll Xr"

for all X values in question, which are thus the

Fig. 2. Adiabatic ground-state probability densities of the particle
Ž .in the box. The square of the wave function 10 is shown for g

1 11 9Ž . Ž . Ž .s p —— , g s p yyy , and g s p yPyPy . Dur-2 20 20

ing the protective measurement, the actual g values are very close
1to g s p all the time.2

Ž‘relevant time scales’ referred to above more about
.this below .

To first order in the perturbation – formally: to
Žfirst order in e which is not necessarily a small

.number itself – we then have

p 2 m ll X
g( q e f trT , 12Ž . Ž .

2 p "T

and the resulting time-dependent energy shift is

2
" "rll212E t s g y p (e f trT X .Ž . Ž .Ž .int 22 T2m ll

13Ž .

Since

12ll
d x c x d x s 1qO e , 14Ž . Ž . Ž . Ž .H g llyll

this shift is equal to the expectation value of H inint

the unperturbed state, as it must be to first order in
the perturbation.

Ž .As a consequence of the energy shift E t , theint

meter evolves under the influence of the force

E "rll
F t sy E t sye f trT , 15Ž . Ž . Ž . Ž .intE X T

Ž .and the resulting momentum change DP t and dis-
Ž .placement DX t are given by

t X X
DP t s d t F t ,Ž . Ž .H

yT

t X X X
DX t s d t ty t F t rM . 16Ž . Ž . Ž . Ž .H

yT

Ž . Ž .We recall 2c and 2d and note the respective t)T
values,

DP 'DP t)T sye "rll ,Ž .net

DX t 'DX t)T sye "tr M ll . 17Ž . Ž . Ž . Ž .net

In summary, during the protective measurement
the approximate, adiabatic solution of the Schrodi-¨

Ž .nger Eq. 8 is given by

1r4 1r2
C t , x , X sc x 2rp adPr"Ž . Ž . Ž . Ž .g

=eya wŽ XyD X .d P r " x2
e iŽ XyD X .D P r "qif ,

18Ž .
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where

1 1t 2X X X X
f t s d t DP t qF t DX tŽ . Ž . Ž . Ž .H ž /" 2 MyT

19Ž .

is a time-dependent phase of no further consequence.
Ž . Ž .When C t, x, X is inserted into 8 , the differ-

ence of the two sides consists of essentially three
terms. One of them contains

222g cotgqg y pr2 20Ž . Ž .
as a factor which is of order e 2 and therefore
negligible small. Another term features products such
as

Eg Ecg
. 21Ž .

E X Eg

Formally this term is of first order in e , but the g

derivative of c is orthogonal to c and therefore ag g

superposition of excited states of the particle in the
box. The probability for exciting the particle is thus
of order e 2, and we can neglect the consequent
corrections to C in the adiabatic regime. The third
term is proportional to

Eg Ecg
. 22Ž .

E t Eg

Again, we meet the g derivative of c and theg

previous argument applies as well; in view of the
Ž .smoothness of f trT , the time derivative of g is

not problematic either.
Ž . Ž .Since g of 11 and 12 depends on the meter

position X, the particle and the meter are entangled
Ž .at the intermediate times yT- t-T to which 18

applies. But when the protective measurement is
Ž . Ž .over, we have g t)T spr2sg t-yT and

Žthey are disentangled anew at least in the adiabatic
.approximation . Indeed, the final wave function that

obtains after the interaction is over,
1r4y1r2 1

C t , x , X s ll cos p xrll 2rpŽ . Ž .Ž .fin 2

=
1r2

a t dPr"Ž .

=eya Ž t .�w XyD X netŽ t .xd P r "42

=e iw XyD X netŽ t .x D Pnet r "qif Ž t . , 23Ž .
is a product of a particle wave function and a meter
wave function. The particle’s final wave function is

identical with its initial one, which is the defining
property of a protective measurement, of course. The
final wave function of the meter differs from the
initial one by the momentum transfer DP and thenet

Ž . Ž .displacement DX t of 17 , which come on top ofnet

the force-free evolution.
The t)T values of DP and DX are independent

Ž .of the duration T in the adiabatic limit considered
and they are the same for any repetition of the
protective measurement on equally prepared particles
and meters. One could – at least in principle if not in
practice – perform a yesrno measurement that deter-
mines whether the meter is indeed in the state speci-

Ž .fied by the X part of C t, x, X , and the answerfin

would invariably be ‘yes.’
Since DP and DX are proportional to thenet net

Ž .expectation value of Eq. 14 , we must conclude
Ž .therefore that the particle wave function c x pos-

sesses a physical significance for a single particle,
not only for an ensemble of particles. This observa-
tion is a very important, perhaps the most important
lesson of protective measurements.

In a final step, a standard von Neumann measure-
ment is done to extract the result of the protective
measurement from the t)T state of the meter.

Ž .Since both DP and DX t contain this informa-net net

tion, one could measure either the momentum P or
the position X of the meter. Their probability distri-
butions are, of course, the gaussians

21 1 PyDPnet
exp y 24Ž .ž /' 2 dP2p dP

and
21 1 XyDX tŽ .net

exp y , 25Ž .' ž /2 d X tŽ .2p d X tŽ .
Ž .where the time dependent spread d X T is as given

Ž .in 7 . As would be required of a good measurement,
they can be well distinguished from the unshifted
distributions obtained for DP s0 and DX s0,net net

provided that
< <DP 4dP or lldP<" 26Ž .net

holds. This condition is obvious for the momentum
Ž .distribution 24 , and for the position distribution

Ž . Ž . Ž .25 it follows from 6 and 17 , since they imply
Ž . Ž .that DX t rd X t (DP rdP for sufficientlynet net

late times t.
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We can now be more specific about the ‘relevant
Ž .time scales’ that were left in limbo at Eq. 11 .

Ž .Initially X is in the d X yT vicinity of Xs0,
Ž . Ž .finally in the d X T vicinity of XsDX T . Ac-

cordingly, relevant X scales are "rd P and
Ž . Ž ."Tr M ll , and "Tr m ll must be large compared

with either one. This amounts to the requirements

T4m llrdP and m<M ; 27Ž .
both are easily ensured.

3. Bohm trajectories

In Bohmian mechanics the Schrodinger wave¨
Ž . Ž . Ž .function C t, x, X of 8 and 18 is supplemented

Ž . Ž .by trajectories x t and X t that are deter-BM BM

mined by a pair of differential equations,
d x BM

sÕ t , x , X ,Ž .BM BMd t
d X BM

sV t , x , X . 28Ž . Ž .BM BMd t
Ž . Ž .The velocity fields Õ t, x, X and V t, x, X are re-

lated to the probability currents associated with
Ž .C t, x, X , and we could find them in the usual

Ž .manner by differentiating C t, x, X with respect to
x and X. A consistent result would, however, require
the inclusion of the corrections that go with the

Ž . Ž .terms of 21 and 22 . The book keeping is much
Ž .simpler and safer , when one identifies the velocity

fields with the aid of the continuity equation
E E E2 2 2

C q Õ C q V C s0 . 29Ž .Ž . Ž .
E t E x E X

Ž .The squared modulus of the adiabatic solution 18 is
< < 2given by the product of c and the gaussian ofg

Ž . w Ž . Ž .x25 with DX t , rather than DX t , so that thenet
< < 2time derivative of C has a term proportional to

EgrE t, and two terms proportional to the time
derivatives of DX and d X. The first one must be

Ž .compensated for by the ErE x contribution in 29 ,
the other two by the ErE X one.

To first order in the perturbation, we thus find

m ll X E f trT 8Ž .
1

Õ t , x , X se ll tan p xrllŽ . Ž .23
"T E t p

= 1 1< < < <1y p 1y x rll tan p x rllŽ . Ž .2 2

30Ž .

for the particle’s Bohm velocity field and

Ed X t XyDX t EDX tŽ . Ž . Ž .
V t , x , X s qŽ .

E t d X t E tŽ .

2
m ll E d X t 2Ž .

qe f trTŽ . 2
"T E t p

= 1< < < <p 1y x rll tan p x rll y1Ž . Ž .2

31Ž .

for the velocity field of the meter. Relevant steps on
Ž . Ž . Ž . Ž .the way from 18 and 29 to 30 and 31 are

given in the Appendix.
The Bohm equation of motion for the meter posi-

Ž .tion X t can be written in the compact formBM

d X t yDX tŽ . Ž .BM

d t d X tŽ .

m ll Ed X t 4Ž .
se f trTŽ . 2

"T E t p

= < <p 1y x t rllŽ .Ž .BM

= 1 < <tan p x t rll y1 . 32Ž . Ž .Ž .BM2

Since the values of the x dependent factor in theBM

second line are from the range y4rp 2 . . . 4rp 2

< <and since Ed XrE t -2dPrM, the time integral of
Ž 2 . Ž .the right-hand side cannot exceed 8rp e mrM -

Ž . Ž . Ž .lldPr" . Recalling the inequalities in 26 and 27
we note that this is a tiny number, so that the net

Ž .effect of the right-hand side of 32 is an additional
Ž .displacement by a very small fraction of d X t . Rare

Ž .exceptions put aside, the trajectory X t of theBM
Ž .meter is, therefore, such that X yT is in theBM

Ž . Ž .d X yT vicinity of Xs0 and X T in theBM
Ž . Ž .d X T vicinity of XsDX T .
Before the interaction begins and after it is over,

the velocity Õ vanishes, so that the Bohm particle is
at rest then. During the interaction it couples to the
meter at the center of the box and nowhere else, and

Ž .therefore one could imagine that a x t trajectoryBM
Ž .that starts at x t-yT s llr2, say, will touchBM

base at xs0 in the course of time and account in
this way for the momentum transfer to the meter.
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Such an imagined trajectory is sketched in Fig. 3. In
fact, the actual trajectory is not like this because
no Bohm trajectory reaches x

s0 if it didn’t start there ; 33aŽ . Ž .
the vast majority of trajectories never

come close to xs0. 33bŽ .
Ž .Concerning 33a we note that the velocity field

Ž . Ž .Õ t, x, X vanishes linearly at xs0 see Fig. 4 , so
that the approach to xs0 is exponential and xs0
cannot be reached. This is not just a property of the

Ž .adiabatic solution 18 but a more generally true
consequence of the invariance under the x™yx
inflection.

Ž .To demonstrate 33b we estimate – very conser-
vatively, of course – the maximal distance that the
Bohm particle can move. The modulus of the x

Ž .dependent factor in the second line of 30 never
Ž .exceeds 0.06 cf. Fig. 4 , so that

< <Õ t , x , XŽ .BM BM

m ll X dBM
-0.06 e f trT ll . 34Ž . Ž .

"T d t

Ž .If f trT first grows monotonically and then de-
creases, as is the typical situation and is the case for
the examples of Fig. 1, one has

dT
d t f trT s2 f 0 . 35Ž . Ž . Ž .H

d tyT

As a consequence of what is said above about typical
Ž . w Ž .xmeter trajectories X t see after Eq. 32 and inBM

Fig. 3. An imagined Bohm trajectory. The meter coordinate X
Ž .abscissa is given in units of the coherence length " rdP, and the
particle coordinate x in units of the box size ll . Crosses indicate

Ž . Žthe instants tsyT interaction begins , ts0 interaction is
. Ž .strongest , tsT interaction ends . This imagined trajectory

crosses the interaction region at xs0, but all actual trajectories
Ž .stay on one side of the xs0 line all the time see Fig. 5 .

Ž .Fig. 4. The x dependent factor in the second line of Eq. 30 .

view of the remarks at the end Section 2, the upper
Ž .bound of the X factor in 34 is a small number,BM

m ll X m ll XBM BM
e F e <1 , 36Ž .

"T "T max

and thus we find

x T yx yTŽ . Ž .BM BM

T
s d t Õ t , x t , X tŽ . Ž .Ž .H BM BM

yT

m ll X BM
= 0.06 f 0 e =2 ll 37Ž . Ž .

"T max

for the distance that the Bohm particle can move at
most from its initial position. Since this maximal
distance is tiny compared with the box width of 2 ll ,
only a small fraction of all possible Bohm trajecto-
ries start sufficiently close to xs0, and the state-

Ž .ment of 33b follows indeed.

4. Summary and conclusions

Our analysis of the protective measurement on the
Ž .boxed-in particle has established i that the final

state of the meter is independent of the duration of
Ž .the interaction in the relevant limit of adiabaticity ;

Ž .ii that this final state is invariably the same in each
repetition of the protective measurement on identi-

Ž .cally prepared particles and meters; iii that the
momentum transfer to the meter and its consequent
displacement are proportional to the probability for
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finding the particle near the center of the box; and
Ž .iv that the vast majority of Bohm trajectories of the
particle never come close to the box center where the
interaction with the meter happens. Fig. 5 illustrates
the latter point.

Ž . Ž .In conjunction, observations iii and iv state
that, in a typical case, the succession of ‘actual
positions’ that are ascribed to the particle in Bohmian
mechanics do not include the interaction region at
the box center. Nevertheless, an interaction between

the particle and the meter occurs undoubtedly, and
its net effect is predictable.

Accordingly, one has to concede either that the
particle’s Bohm trajectory and its position are unre-
lated, or that the particle’s position is irrelevant for
its participation in local interactions. The second
concession cannot be considered seriously because it
would put away with the phenomenological meaning
of position altogether. Therefore we can hardly avoid
the conclusion that the formally introduced Bohm

Fig. 5. Probability distributions before and after the protective measurement, and a typical Bohm trajectory. The meter coordinate X
Ž .abscissa is given in units of the coherence length "rdP, and the particle coordinate x in units of the box size ll . The plots are for the

Ž . Ž .2 Ž . w Ž .x w Ž .xbs1 function f trT of Fig. 1 and the following parameter values: t syT , dP Tr "M s0.001 see 6 ; lldPr"s0.01 see 26 ;0
Ž . w Ž .x Ž . w Ž .xmrMs0.01, m llr TdP s0.1 see 27 ; as well as es0.1, so that DP rdPsy10, DX t dPr"sy0.01 trT see 17 . The rightnet net

< Ž . < 2 < Ž . < 2and left clouds of the top plot show the probability distributions C tsyT , x, X and C ts500T , x, X , respectively, inini fin
Ž . Ž . < < 2accordance with Eqs. 5 and 23 . The inner iso-C lines enclose 50% of the probability, the outer ones 99%. The clouds are very well

separated, so that the meter’s position has changed by a clearly recognizable amount. The solid line is the Bohm trajectory that passes
through xs0.05 ll and Xsy"rdP at tsyT. In the bottom plot we take a much closer look at the relevant part of this Bohm trajectory.

Ž . Ž . Ž .The positions at the instants tsyT interaction begins , ts0 interaction is strongest , and tsT interaction ends are marked by crosses.
Obviously, the trajectory does not come anywhere near the interaction region at xs0.
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trajectories are just mathematical constructs with no
relation to the actual motion of the particle.
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Appendix A. Derivation of the Bohm velocity
( ) ( )fields 30 and 31

We proceed from noting that the t dependence in
< Ž . < 2 Ž . Ž .C t, x, X of 18 originates in g t as well as

Ž . Ž .DX t and d X t . The latter two are related to the
motion of the meter, the former to that of the parti-

< < 2cle. The time derivative of C splits naturally into
two contributions,

E Eg E EDX E2 2 2
C s C q C

E t E t Eg E t EDX

Ed X E 2q C , A.1Ž .
E t Ed X

Žwhere the first term on the right-hand side is related
to the motion of the particle and the last two terms to

.the the motion of the meter and the comparison with
Ž .the continuity Eq. 29 therefore establishes

E Eg E2 2
Õ C sy C A.2Ž .Ž .

E x E t Eg

for the particle, and

E EDX E Ed X E2 2 2
V C sy C y CŽ .

E X E t EDX E t Ed X
A.3Ž .

for the meter.

< < 2The gaussian meter factor in C does not de-
Ž .pend on g and x, so that we can simplify A.2 by

the replacement
2 2 1 12< <C ™ ll c scos p xrll q gy pŽ . Ž .g 2 2

= < < < <1y x rll sin p x rllŽ . Ž .

2
12y cos p xrll . A.4Ž .Ž .2

p

1This takes already into account that gy p is of2

Ž .first order in e , see Eq. 12 , and higher-order terms
are disregarded consistently. Accordingly, we get

12Õ t , x , X cos p xrllŽ . Ž .2

Eg 2xrll 12s ll dj cos pjŽ .H 2E t py1

< < < <y 1y j sin p j , A.5Ž .Ž . Ž .

where the boundary condition of vanishing probabil-
ity current at xsyll is incorporated. After evaluat-
ing the integral and collecting all the factors, Eq.
Ž .30 obtains.

Ž .Turning to A.3 now, we note that for a gaussian
Ž .of the form 25 , with DX replaced by DX, thenet

identities

E E
Gsy G , A.6aŽ .

EDX E X

E E XyDX
Gsy G , A.6bŽ .

Ed X E X d X

XyDX E
Gsy d X G , A.6cŽ .

d X E X

hold, where G is a stand-in for the gaussian. With
Ž . Ž .the aid of 43a and 43b , we get

E 2
V CŽ .

E X

E EDX Ed X XyDX2 2s C q C½ 5E X E t E t d X

< < 2Ed X Eg E c XyDXg
y G A.7Ž .

E t E X Eg d X

< < 2 < < 2for C s c G. The curly-bracket term suppliesg

Ž .the first two terms of 31 . The additional last term
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comes from a partial integration that affects the X
Ž .dependence of g . It gives the second line of 31 , as

Ž . Ž . Ž .soon as A.6c , A.4 , and 12 are employed. The
requirement of vanishing probability current for X
™y` specifies the boundary condition for the X
integration.

References

w x Ž . Ž .1 D. Bohm, Part I, Phys. Rev. 85 1952 166; Part II, 85 1952
180.

w x2 P.R. Holland, The Quantum Theory of Motion, Cambridge
University Press, Cambridge, 1993.

w x3 B.-G. Englert, M.O. Scully, G. Sussmann, H. Walther, Z.¨
Ž .Naturforsch. 47a 1992 1175.

w x4 M.O. Scully, B.-G. Englert, J. Schwinger, Phys. Rev. A 40
Ž .1989 1775.

w x5 Y. Aharonov, L. Vaidman, About position measurements
which do not show the Bohmian particle position, in: J.T.
Cushing, A. Fine, S. Goldstein, Bohmian Mechanics and
Quantum Theory: An Appraisal, Kluwer, Dordrecht, 1996,
pp. 141–154.

w x6 Y. Aharonov, D.Z. Albert, L. Vaidman, Phys. Rev. Lett. 60
Ž .1988 1351.

w x7 D. Durr, W. Fusseder, S. Goldstein, N. Zanghi, Z. Natur-¨
Ž .forsch. 48a 1993 1261.

w x8 C. Dewdney, L. Hardy, E.J. Squires, Phys. Lett. A 184
Ž .1993 6.

w x9 K. Berndl, M. Daumer, D. Durr, S. Goldstein, N. Zanghi,¨
Ž .Nuovo Cimento 110B 1995 737.

w x10 H.R. Brown, C. Dewdney, G. Horton, Found. Phys. 25
Ž .1995 329.

w x Ž .11 M.O. Scully, Phys. Scripta T 76 1998 41.
w x12 P.R. Holland, in a letter to BGE of November 10, 1998.
w x Ž .13 Y. Aharonov, L. Vaidman, Phys. Lett. A 178 1993 38.
w x14 Y. Aharonov, J. Anandan, L. Vaidman, Phys. Rev. A 47

Ž .1993 4616.


